物理学科談話会 Evidence for spin-fluctuation-mediated superconductivity in electron-doped cuprates] 2024 7/1214:00 - 15:00 本館21講義室 Prof. Nigel E. Hussey HH Wills Physics Laboratory, Bristol University, UK. & HFML-EMFL, Radboud University, The Netherlands.

In conventional, phonon-mediated superconductors, the transition temperature T_c and normal-state scattering rate $1/\tau$ - deduced from the linear-in-temperature resistivity $\rho(T)$ - are linked through the electron-phonon coupling strength λ_{ph} . In cuprate high- T_{c} superconductors, no equivalent λ has yet been identified, despite the fact that at high doping, α - the low-TT -linear coefficient of $\rho(T)$ - also scales with T_c. Here, we use high-field magnetoresistance to extract $1/\tau$ in electron-doped La_{2-x}Ce_xCuO₄ (LCCO) as a function of x from near-optimal doping to beyond the superconducting dome. A highly anisotropic inelastic component to $1/\tau$ is revealed whose magnitude diminishes tenfold across the doping series. Using known Fermi surface parameters and subsequent modelling of the Hall coefficient, we demonstrate that the form of $1/\tau$ in LCCO is consistent with scattering off commensurate antiferromagnetic spin fluctuations of variable strength λ_{sf} . The clear correlation between lpha, $\lambda_{\rm sf}$ and $T_{\rm c}$ then identifies low-energy spin-fluctuations as the primary pairing glue in electron-doped cuprates. The contrasting magnetotransport behaviour in hole-doped cuprates suggests that the higher T_c in the latter cannot be attributed solely to an increase in $\lambda_{
m sf}$. Indeed, the success in modelling LCCO serves to reinforces the notion that resolving the origin of high-temperature superconductivity in holedoped cuprates will require more than a simple extension of BCS theory.

Local contact: Prof. Shigeru Kasahara (7828) Quantum Condensed Matter Physics Laboratory.