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Abstract

Electronic structure of a single vortex (or vortex core structure) in type-II su-
perconductors is theoretically discussed in the present thesis. Low-lying excited
states in the superconductors due to the vortex, i.e., “vortex bound states,”
are examined in detail on the basis of numerical calculations. Two points are
focused on: the effect of superconducting gap anisotropy on a vortex (Chapter
2) and the property of a vortex in quantum-limit situation (Chapter 3).

The anisotropy of a superconducting energy gap has substantial effects on
the structure of the vortex bound states. The local density of states around a
vortex is calculated in a clean superconductor with the gap anisotropy within
the framework of the quasiclassical theory of superconductivity. A characteristic
structure of the local density of states, observed experimentally in the layered
hexagonal superconductor 2H-NbSe2 by scanning tunneling microscopy (STM),
is well reproduced by assuming an anisotropic s-wave gap. The local density
of states (or the bound states) around a vortex in superconductors with gap
anisotropy is interpreted in terms of quasiparticle trajectories to facilitate an
understanding of the rich electronic structure observed in STM experiments.
This reveals not only a rich internal electronic structure associated with a vortex
core, but also unique ability of the STM spectroscopy.

The quantum limit means that the superconducting coherence length is small
in the limit, i.e., it is comparable to the atomic length order. Focusing on
quantum-limit behavior, fundamental structure of a vortex is studied by self-
consistently solving the Bogoliubov-de Gennes equation. The discreteness of the
energy levels of the vortex bound states is crucial for the vortex structure in the
quantum limit. The following are revealed by the study of the quantum limit.
The vortex core radius shrinks monotonically up to an atomic-scale length on
lowering the temperature T , and the shrinkage stops to saturate at a lower T .
The pair potential, supercurrent, and local density of states around the vortex
exhibit Friedel-like oscillations. The local density of states inside a vortex core
generally has particle-hole asymmetry induced by the existence of the vortex
itself.

Some essential properties of general vortices which are concealed within the
conventional non-quantum-limit analysis can be extracted by the quantum-limit
analysis. On the basis of the inherent particle-hole asymmetry inside vortex
cores, it is discussed in this thesis that electric charging of a vortex core is orig-
inated from the Friedel oscillation of the Bogoliubov wave functions around the
vortex (Chapter 4). This mechanism of the vortex core charging is independent
of the slope in the normal-state density of states at the Fermi level. The temper-
ature dependence of the vortex core charge is also presented. It is expected that
by using STM, information on the vortex core charging is extracted through a
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relation between the vortex core charge and the vortex bound states.
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Chapter 1

Introduction to Vortex

In the present chapter, I shall give a brief introduction to vortices in type-II
superconductors and mention “vortex bound states” discussed in the following
chapters. Open questions of the related experimental results will be pointed
out.

1.1 Type-II Superconductor and Vortex

Superconductors under magnetic fields exhibit the so-called Meissner-Ochsenfeld
effect, that is, the magnetic fields applied to superconducting material are ex-
pelled from the inside of the material. Some superconductors, called “type I,”
exhibit a perfect Meissner-Ochsenfeld effect up to a critical field Hc, and at this
critical field the transition to the normal state suddenly takes place. In the
other superconductors, called “type II,” magnetic fields are expelled up to a
lower critical field Hc1, and at an upper critical field Hc2 the superconductivity
is broken. In the intermediate field region Hc1 < H < Hc2, the magnetic field
partly penetrates into the material keeping the superconductivity. The magnetic
fields penetrate into the superconductors in the form of quantized flux lines.
The quantized flux lines exhibit characteristic phenomena in type-II supercon-
ductors, and a system constituted of such flux lines has a variety of physical
aspects.

Around the flux line, the supercurrent circularly flows and a quantity which
characterizes the superconductivity, i.e., the order parameter of superconduc-
tivity (a complex quantity), varies by 2πn in its phase. (n is an integer.) The
structure of such a flux line is called “vortex,” and the superconducting state
at Hc1 < H < Hc2 is called “vortex state” (and frequently called ”mixed state”
traditionally). In the present thesis, I will reveal the rich structure of individual
vortex (or the structure of vortex core) in type-II superconductors. The essence
of this study would provide implications for vortices in fermionic superfluid sys-
tems such as the superfluid 3He. Studies of vortices in superconductors under
magnetic fields could also be important from the applied physics point of view
in general. (For a historical review of the type-II superconductors, refer to Ref.
[1] and Sec. 1 of Ref. [2] for example.)
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1.2 Vortex Bound States

The superconducting state is an ordered state with symmetry breaking. The su-
perconductivity is characterized by a quantity (i.e., the order parameter), 〈aa〉,
symbolically. Here a is the annihilation operator for the fermionic quasiparti-
cles and 〈 〉 means the thermal average. In the superconducting state 〈aa〉 6= 0,
and, on the other hand, 〈aa〉 = 0 in the normal state. Thus the U(1) gauge
symmetry is broken in the superconducting state (〈aa〉 6= 0). (〈aa〉 is not U(1)
gauge invariable. That is, 〈aa〉 → 〈aa〉 exp[2iθ](6= 〈aa〉), when a → a exp[iθ] and
a† → a† exp[−iθ].) Now, it is a crucial point that the modulus of that quantity,
|〈aa〉|, determines an energy gap in the excitation spectrum of the supercon-
ducting state. Let us define the superconducting order parameter as ∆ whose
modulus |∆| gives the magnitude of the energy gap due to superconductivity.

When ∆ has a spatial dependence in superconductors, what does take place
there? The vortex state is one of the typical situations where ∆ varies spatially
in superconducting material. In analogy, let us consider a hetero junction in
semiconductors. It is well known that when semiconductors with different en-
ergy gaps are joined each other, a quantum well is constituted there. Similarly,
in superconductors, it is expected that if the superconducting gap |∆| has a
spatial dependence, a kind of the quantum well should be constituted and the
quantized energy levels due to the well should appear there. Around a vortex,
the phase of the order parameter ∆ varies by 2π with a rotation about the
vortex center; it means that one quantum flux penetrates there. When we take
the z axis in the direction of the flux line in cylindrical coordinates r = (r, θ, z),
the order parameter ∆ around a vortex is expressed as ∆(r) = ∆(r) exp[iθ].
Because of the indeterminacy of the phase factor exp[iθ] at the vortex center
r = 0, the magnitude part becomes ∆(r = 0) = 0 inevitably. Thus the gap
∆(r) is ∆(0) = 0 at the vortex center, and far from the vortex it recovers to
the uniform value ∆∞. This spatial structure of the energy gap gives rise to
low-energy bound states below the gap around a vortex as in the quantum well
systems.

The existence of the low-energy bound states around a vortex was first dis-
cussed theoretically in 1964 by Caroli, de Gennes, and Matricon[3]. Energy
spectra in spatially inhomogeneous superconductors can be obtained as the
eigenenergy spectra of the Bogoliubov-de Gennes (BdG) equation[4]. The BdG
equation corresponds to the Schrödinger equation for superconducting systems.
Caroli et al.[3] applied the BdG equation to a vortex system. They solved
the equation analytically by simplifying the problem. As a result, they found
low-energy excited states bounded around the vortex. These bound states due
to vortices are called “vortex bound states,” or “Caroli-de Gennes-Matricon
states,” or rarely “chiral branch.” The vortex bound states can have impor-
tant effects on the thermodynamics and transport in superconductors under
magnetic fields.

Theoretically, after the seminal work by Caroli et al.[3], several theorists
studied the electronic structure around vortices and its effects on physical phe-
nomena. Experimentally, nevertheless, there had existed for a long time no ex-
periments which could directly study the electronic structure around vortices[5].
In 1989, however, Hess et al.[6] first succeeded in experimentally observing
the electronic structure around vortices. They investigated the energy spectra
around vortices by a point-contact tunneling current probe with an atomic-scale
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spatial resolution, i.e., the scanning tunneling microscope (STM). The tunnel-
ing current I of the “normal state/insulator/(s-wave) superconductor (NIS)”
junction is given as[7]

I(V ) ∝
∫ ∞

−∞
dEN(E){f (E) − f(E + eV )}, (1.1)

where N(E) is the density of states in the superconductor, V is the bias voltage
applied to the junction, and f(E) is the Fermi function. Differentiating Eq.
(1.1) about V , one obtains the differential conductance,

dI(V )

dV
∝

∫ ∞

−∞
dEN(E){−df(E + eV )

dV
}. (1.2)

The derivative of the Fermi function becomes very sharply peaked at E = −eV
at low temperatures as if it is the delta function. Equation (1.2) means that we
can obtain the density of states N(E) of the superconductor by measuring the
differential conductance dI/dV at sufficiently low temperatures. The spatial
resolved probe, STM, enables us to measure dI/dV at each position on the
surface of the superconductor, so that we can obtain the local density of states
N(r, E) of the superconductor[8].

In absence of vortices, or sufficiently far from a vortex, the BCS energy gap
should appear in the energy spectra. Near the vortex center, on the other hand,
finite density of states was expected to exist inside the gap, due to the above
mentioned low-energy bound states (i.e., the vortex bound states) around a vor-
tex. In Figs. 1.1 and 1.2, shown is the experimental results for the energy spectra
at the vortex center and at some distance from it, observed first with STM in
1989 by Hess et al.[6] The superconducting material used in the experiment was
a clean type-II superconductor, the layered hexagonal compound 2H-NbSe2[8].
The BCS gap is certainly recovered far from the vortex center. It was, those
days, surprising that an unexpected large peak appeared in the experimentally
observed data at the zero bias voltage at the vortex center. According to the
experimental result, the above mentioned vortex bound states not only filled the
gap on the vortex, but also gave the characteristic peak structure at the vortex
center. It was later called the “zero-bias peak” at the vortex center. Actually
this peak originates just from the vortex bound state which belongs to the lowest
eigenenergy E1/2 of Caroli et al. (Strictly speaking[9], this large peak is com-
posed of the u1/2 component of the Bogoliubov wave function (u, v)[4] which
belongs to E1/2. The component v1/2, on the other hand, never constitutes the
large peak at E1/2, but just contributes to a smaller peak at E = −E1/2. This
point is crucial for revealing concealed properties of vortices such as the electric
charging of the vortex core[10]. I will discuss them in the chapter 3 and 4.) In
the next section, I point out the open questions of vortices related to the STM
experiments which I will deal with in the present thesis.

1.3 Open questions of the vortex structure ob-

served by STM experiments

As mentioned in the preceding section, Hess et al.[6] succeeded in observing the
electronic structure around vortices in NbSe2. They further advanced the inves-
tigation and revealed that a vortex had rich and complicated properties in its
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Figure 1.1: dI/dV vs V for NbSe2 at 1.85 K and a 0.02-T field, taken at three
positions: on a vortex (top curve), about 75 Å from a vortex (middle), and 2000
Å from a vortex (bottom). The zero of each successive curve is shifted up by
one quarter of the vertical scale. (From Ref. [6].)

Figure 1.2: Perspective image of dI/dV vs tunneling voltage (horizontal axis)
and position along a line that intersects a vortex (vertical axis). Cross sections
of this image at a few positions are shown in Fig. 1.1. (From Ref. [6].)
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electronic structure. After the first experimental success by Hess et al., several
theoretical studies of the electronic structure around a vortex were prompted by
the STM experiment. Shore et al.[11] numerically solved the BdG equation first
to obtain all the vortex bound states below the gap in order to explain the zero-
bias peak observed in the STM experiment. As a result, they not only explained
the existence of the zero-bias peak at the vortex center, but also found an energy
shift of the peak at a distance from the vortex center[11]. Their numerical result
showed that the zero-bias peak appeared at the vortex center and the peak split
into two (positive and negative energy peaks) at some distance from the vor-
tex center. This feature can be understood as follows. If quasiparticles rotate
on the vortex line, the quasiparticles have the angular momentum µ about the
vortex center. When µ is expressed as µ = pFr, the quasiparticles with larger
µ circulate farther away from the vortex center (pF is the Fermi momentum
and r is the radial distance of the quasiparticle from the vortex center). The
quasiparticle with the larger angular momentum may have the larger energy.
It is then expected that the energy of the quasiparticle is proportional to the
radial distance from the vortex center, i.e., the quasiparticles circulate farther
away from the vortex center as they have higher energy. The result obtained by
Shore et al.[11] reflected just this dispersion relation of the quasiparticle around
a vortex. (Note that the electron-like (hole-like) quasiparticle around a vor-
tex corresponds to the positive (negative) energy peak.) After this theoretical
prediction[11] was made, Hess et al.[12] attempted to observe such a splitting of
the peak around a vortex and eventually confirmed the prediction successfully
[Fig. 1.3]. Up to this point, so nice coincidence between experiment and theory
had been achieved.

However, a stimulating mystery also emerged at that time. In the above
experiment, Hess et al.[12] not only confirmed the splitting, but also found that
the STM imaging of a vortex (or the local density of states around a vortex)
was shaped like a “star” at a fixed energy and its orientation was dependent on
the energy, i.e., the sixfold star shape rotates as the bias voltage varies [Fig. 1.4]
(Fig. 4 in Ref. [12]). In the intermediate energy, a “ray” of the star splits into
a pair of nearly parallel rays [0.24 mV data in Fig. 1.4] (Fig. 1 in Ref. [13] or
Fig. 1 in Ref. [14]). A more detailed and lower-temperature investigation also
revealed later that the zero-bias peak in the spectral evolution along a radial
line from the vortex center does not split into two subpeaks observed in the
earlier experiment, but into three or more ones [Figs. 1.5, 1.6, and 1.7] (Figs. 9
and 10 in Ref. [8], or Fig. 6 in Ref. [15]).

These beautiful experimental observations by Hess et al. revealed that vor-
tices had rich electronic structure, which may be related to the thermodynamic
and transport properties of superconductors under magnetic fields. Their STM
experiments shed a new light on the physics of vortices. Yet, there have been
no sufficient theories which could explain these experimental results, although a
seminal developing idea has been proposed at the early stage. Such a theoretical
situation for the experimental results of the electronic structure around vortices
may have impeded the progress of this field. It has been desired that further
theoretical development from the early work should be advanced to break the
deadlock.

The most thorough theoretical study of a vortex was given in a paper by
Gygi and Schlüter[16] in 1991. Fundamental properties of a vortex were dis-
cussed in their paper on the basis of beautiful results of ingenious numerical
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Figure 1.3: Perspective view of the superconducting spectra as it evolves on an
800 Å line that penetrates through a vortex. Notice the zero-bias peak at the
vortex center and how it splits into two subgap peaks at larger radius from the
core. (From Ref. [8].) Note also that the evolution of the split peaks along radial

line represents a dispersion relation between the energy E (or bias voltage) and

the angular momentum µ (or radial distance r) of the quasiparticles around the

vortex center.
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Figure 1.4: Real space images of vortices in NbSe2 generated by measuring the
differential conductance dI/dV (x, y, V ) at each fixed bias voltage V (from Ref.
[13]).
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Figure 1.5: A detailed perspective of dI/dV (V, r) (at 50 mK) showing how
it evolves along the three lines sketched in Fig. 1.6. The perspective scale
corresponds to a 1000 Å sampling line with the vortex positioned at 250 Å
from the back. The outer subgap peak is not sensitive to angle, but the inner
peak collapses to zero energy at 30◦. A few spectra of the perspective data are
explicitly plotted in Figs. 1.5(d), 1.5(e), and 1.5(f). (From Ref. [8].)
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Figure 1.6: Schematic of the various sampling lines that pass through the vortex
core and are used for the spectral evolution data of Figs. 1.5 and 1.7. The
crystallographic a direction is indicated and lines up also with the vortex lattice
direction. (From Ref. [8].)

Figure 1.7: The subgap peak energies of Fig. 1.5 as a function of radius. The
solid line is a guide corresponding to the outer subgap peak data. (From Ref.
[8].)
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calculations. Every time I read that paper, I can find significant results re-
newedly and learn much from it. That study is truly excellent work and most
essence of a vortex is contained in their paper, from which we can get inspira-
tion to investigate various physics of vortices. Simultaneously, however, an issue
under developing those days was also discussed there. I should point out that
this issue was just the above mentioned anisotropic electronic structure around
the vortex observed by the STM experiments. While part of the features of the
experimental results could be captured by a developing analysis by them[17],
further theoretical development is hopefully expected to be advanced. In fact, a
consistent understanding of both the star-shaped structure and the anisotropic
spectral evolutions along radial lines mentioned above has been lacking during
these past years. I have tackled this problem, and found that the rich electronic
structure observed in the STM experiments (Refs. [12, 13, 14, 8, 15]) was able
to be understood in a natural way in terms of superconducting gap anisotropy
in the k space. From a more general point of view, it is found that the com-
plicated electronic structure around the vortex can be consistently understood
with “quasiparticle trajectories” from the viewpoint of the quasiclassical theory
of superconductivity. I will discuss them in the chapter 2.

Another current open question of vortices is the electronic structure around
vortices in high-Tc cuprate superconductors. The high-Tc cuprates have given
us many challenging problems in various fields of physics. Peculiar electronic
structure inside the vortex in these compounds observed recently by a few STM
experiments[18, 19] is one of the puzzling (but, interesting) properties of the
high-Tc superconductors. This problem is currently debated on with some con-
fusing. The point may be twofold for the present: (a) a probable anisotropic
(or unconventional) pairing of the Cooper pair (e.g., d-wave superconductivity),
and (b) a quantum-limit property, i.e., a possible existence of the short coher-
ence length ξ of superconductivity comparable to the atomic length order 1/kF

(kF is the Fermi wave number). As a first step to elucidate the vortex structure
in the high-Tc cuprates, I investigate the fundamental properties of a vortex in
the quantum limit (kFξ ∼ 1). I will discuss it in the chapter 3. Focusing on the
quantum limit, I can reveal the concealed properties of vortices, e.g., the electric
charging of vortices. In the chapter 4, I will discuss the vortex core charge as
an inherent property of general vortices.

The detailed background and motivation of my work in the present thesis
will also be given in the introductory sections of each following chapter.
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Chapter 2

Effects of Gap Anisotropy

on the Vortex Structure

2.1 Introduction

The existence of an anisotropy of a superconducting energy gap has attracted
a great deal of attention in various superconductors such as heavy fermion,
organic, and high-Tc compounds. On the other hand, the electronic structure
around vortices is a fundamental problem on the physics of both conventional
and unconventional superconductors. In this chapter, we discuss effects of the
gap anisotropy upon the electronic structure around a vortex, i.e., the bound
states around an isolated vortex in clean type-II superconductors.

Theoretically, the bound states around a vortex was discussed in 1964 by
Caroli, de Gennes, and Matricon[3], who considered a single vortex in an isotropic
s-wave superconductor. After this work, several theorists studied the electronic
structure around vortices (e.g., Refs. [20, 21, 22, 23, 24]). Experimentally, how-
ever, until the following success by Hess et al., there had existed for a long
time no experiments which could directly study the electronic structure around
vortices[5].

In 1989, a novel experimental method, scanning tunneling microscopy (STM),
opened up a way to study the electronic structure around vortices in type-II
superconductors[5, 8]. Using the STM method, Hess et al.[6] succeeded in mea-
suring spatially resolved excitation spectra, i.e., local density of states (LDOS)
around a vortex. They investigated the bound states around a vortex in the
layered hexagonal compound 2H-NbSe2 (Tc=7.2 K), and found a striking zero-
bias peak at the vortex center. Later the same peak and its collapse upon
substituting Ta for Nb as impurities in NbSe2 were also observed by Renner
et al.[25, 26] Several new theoretical studies of the electronic structure around
a vortex [27, 28, 11, 29, 16, 30, 31, 32, 33] were prompted by the success of
the STM experiment by Hess et al.[6] Some of these theories[11, 16, 30, 31, 32]
predicted that the zero-bias peak should split into two, i.e., into positive and
negative bias voltage peaks, if spectra are taken at some distance from the
vortex center (see, for instance, Fig. 3 in Ref. [11]). This splitting indicates
that quasiparticles of the vortex bound states with finite angular momentum
are distributed circularly, and circulate farther away from the core center as
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they have higher energy. The predicted splitting was actually confirmed in an
experiment.[12]

However, a mystery also emerged. In the above experiment, Hess et al.[12]
not only confirmed the splitting, but also found that the LDOS around the
vortex was shaped like a “star” at a fixed energy and its orientation was de-
pendent on the energy, i.e., the sixfold star shape rotates as the bias voltage
varies [Fig. 1.4] (Fig. 4 in Ref. [12]). Soon after this observation was made,
Gygi and Schlüter[17] proposed an explanation for this 30◦ rotation of the star-
shaped LDOS. On the basis of a sixfold perturbation, they explained that the
two states, i.e., the lower and higher energy stars were interpreted as bond-
ing or antibonding states[17]. Although they explained certain aspects of the
observation, the following features of the star-shaped LDOS observed in later
experiments[13, 14, 8, 15] could not be sufficiently understood by this pertur-
bation scheme. In the intermediate energy, a “ray” of the star splits into a pair
of nearly parallel rays [0.24 mV data in Fig. 1.4] (Fig. 1 in Ref. [13] or Fig. 1
in Ref. [14]). The zero-bias peak in the spectral evolution along a radial line
from the vortex center does not split into two subpeaks observed in the earlier
experiment, but into three or more ones [Figs. 1.5, 1.6, and 1.7] (Figs. 9 and 10
in Ref. [8], or Fig. 6 in Ref. [15].)

Specifically, the characteristic features of the LDOS observed in NbSe2 (Refs.
[12, 13, 14, 8, 15]) are summarized in detail as follows, when the magnetic field H
is applied perpendicular to the hexagonal plane: (1) The LDOS for quasiparticle
excitations has a sixfold star shape centered at the vortex core[12]. (2) The
orientation of this star depends on the energy. At zero bias, a ray of the star
extends away from the a axis in the hexagonal plane of NbSe2. Upon increasing
the bias voltage, the star rotates by 30◦ [Fig. 1.4]. (3) In the intermediate bias
voltage, a ray splits into a pair of nearly parallel rays, keeping its direction fixed
[0.24 mV data in Fig. 1.4] [13, 14]. (4) In the spectral evolution which crosses
the vortex center, there exist inner peaks in addition to the outer peaks which
evolve from the zero bias peak at the vortex center into the bulk BCS like gap
edges far from the vortex [Figs. 1.5, 1.6, and 1.7] [8, 15]. The inner peaks vary
with the angle of the direction in which the spectral evolution is taken. These
important and interesting observations (1)–(4) remain unexplained.

Quite recently, motivated by a possibility of a d-wave superconductivity in
high-Tc cuprates, Schopohl and Maki[34, 35] studied the electronic structure
around a vortex in a d-wave superconductor. On the basis of the quasiclassi-
cal Green’s function theory[36, 37, 38], the LDOS around a single vortex was
calculated in a superconductor with a d-wave energy gap. They found that
the LDOS exhibits a characteristic fourfold structure in the d-wave gap case,
which is contrasted with the isotropic s-wave gap case (a circularly symmetric
LDOS)[34, 35]. A gradual 45◦ rotation of this fourfold LDOS as the energy
changes was later reported by the present authors[39]. We note that this rota-
tion is similar to that observed in NbSe2[40].

In the context described above, we have investigated the electronic structure
around the vortex observed in NbSe2. We find that the rich structure of the
LDOS observed in the STM experiments (Refs. [12, 13, 14, 8, 15]) results mainly
from a superconducting gap anisotropy. Assuming an anisotropic s-wave gap
analogous to the d-wave one, we are able to obtain results favorably comparable
with the experiments. In a paper[41], we enumerated the following items as the
possible origin of the rich structure of the LDOS: (a) the effect of an anisotropic
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superconducting energy gap, (b) the effect of nearest-neighbor vortices, i.e., the
effect of the vortex lattice, and (c) the effect of the anisotropic density of states
at the Fermi surface. It is the purpose of the present chapter to discuss the gap
effect (a) in detail. As for the item (b), i.e., the vortex lattice effect, we gave a
detailed report in Ref. [42].

To date, NbSe2 has been the only compound in which the electronic struc-
ture around vortices was thoroughly investigated by STM. In this chapter, we
concentrate our attention on the LDOS observed in NbSe2 as a typical example
of a type-II superconductor. However, the essence of the present considerations
is equally applicable to other type-II superconductors in general. The LDOS
around a vortex reflects the internal electronic structure of the vortex, and an
understanding of this structure is important in elucidating dynamical properties
of vortices as well as static ones.

We consider the case of an isolated static vortex under a magnetic field
applied parallel to the c axis (or z axis). We restrict ourselves to a two dimen-
sional system, i.e., assume a two dimensional Fermi surface neglecting a small
warping of the Fermi surface along the c axis, which is appropriate to layered
superconductors such as NbSe2[87, 109].

In Sec. 2.2, we describe the quasiclassical theory we use for the study of the
vortex. Section 2.3 is devoted to the calculations of the LDOS around a vortex
under the influence of the gap anisotropy. In Sec. 2.4, we interpret the resultant
LDOS in terms of quasiparticle trajectories. The summary and discussions are
given in Sec. 2.5.

2.2 The quasiclassical theory of superconductiv-

ity

To investigate the LDOS around a vortex, we use the quasiclassical Green’s func-
tion theory[36, 37, 38]. The quasiclassical theory is a very powerful method,
especially for spatially inhomogeneous systems such as surfaces[45, 46] and
vortices[47, 48]. Furthermore, one can easily treat a superconducting gap anisotropy
as well as the Fermi surface anisotropy in the quasiclassical theory. We consider
the transportlike Eilenberger equation for the quasiclassical Green’s function

ĝ(iωn, r, k̄) = −iπ

(

g(iωn, r, k̄) if (iωn, r, k̄)
−if †(iωn, r, k̄) −g(iωn, r, k̄)

)

(2.1)

in a 2×2 matrix form (for even-parity superconductivity), namely,

ivF(k̄) · ∇ĝ(iωn, r, k̄) +
[

(

iωn −∆(r, k̄)
∆∗(r, k̄) −iωn

)

, ĝ(iωn, r, k̄)
]

= 0. (2.2)

The Eilenberger equation (2.2) is supplemented by the normalization condition

ĝ(iωn, r, k̄)2 = −π21̂. (2.3)

Here ωn = (2n + 1)πT is the Matsubara frequency. The vector r = (x, y) is the
center of mass coordinate, and the unit vector k̄ represents the relative coordi-
nate of the Cooper pair. The overbar denotes unit vectors. The commutator
[Â, B̂] = ÂB̂− B̂Â. We assume the Fermi velocity vF(k̄) is a function of k̄ with
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reflecting the anisotropy of the Fermi surface. Since we consider an isolated
single vortex in an extreme type-II superconductor where the Ginzburg-Landau
parameter κ � 1, the vector potential can be neglected in Eq. (2.2).

The Eilenberger equation in the matrix form (2.2) can be written down to
the following equations,

(

ωn +
vF(θ)

2

d

dr‖

)

f(iωn, r, θ) = ∆(r, θ)g(iωn, r, θ),

(

ωn − vF(θ)

2

d

dr‖

)

f †(iωn, r, θ) = ∆∗(r, θ)g(iωn, r, θ),

vF(θ)
d

dr‖
g(iωn, r, θ) = ∆∗(r, θ)f(iωn, r, θ)

− ∆(r, θ)f †(iωn, r, θ), (2.4)

which are supplemented by

g(iωn, r, θ) = [1 − f(iωn, r, θ)f †(iωn, r, θ)]1/2,

Re g(iωn, r, θ) > 0. (2.5)

Here, k̄ = (cos θ, sin θ),

vF(k̄) =
(

|vF(θ)| cos Θ(θ), |vF(θ)| sin Θ(θ)
)

=
(

vF(θ) cos Θ(θ), vF(θ) sin Θ(θ)
)

, (2.6)

and the following coordinate system is taken: ū = cos Θx̄ + sin Θȳ, v̄ =
− sinΘx̄ + cos Θȳ, and thus a point r = xx̄ + yȳ is denoted as r = r‖ū + r⊥v̄.
The center of a vortex line is situated at the origin r = (0, 0). The angle θ, i.e.,
the direction of k̄ is measured from the a axis (or x axis) in the hexagonal plane
of NbSe2. If one considers a cylindrical Fermi surface with anisotropic Fermi
velocity, then vF(k̄) = vF(θ)k̄ =

(

vF(θ) cos θ, vF(θ) sin θ
)

.
The self-consistent equation is given by

∆(r, θ) = N02πT
∑

ωn>0

∫ 2π

0

dθ′

2π
ρ(θ′)V (θ, θ′)f(iωn, r, θ′), (2.7)

where N0 is the total density of states over the Fermi surface in the normal state.
The θ-dependence of the density of states at the Fermi surface is represented by

ρ(θ) =
kF(k̄)

N0|k̄ · vF(k̄)| , (2.8)

which satisfies
∫

(dθ/2π)ρ(θ) = 1. We assume that the pairing interaction
V (θ, θ′) is separable, i.e., V (θ, θ′) = vF (θ)F (θ′), where v is the strength of
the pairing interaction and F (θ) is a symmetry function, e.g., F (θ) = cos 2θ for
a d-wave pairing, F (θ) = 1 for an isotropic s-wave pairing, etc.

The pair potential is written as

∆(r, θ) = ∆(r)F (θ). (2.9)
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To obtain a self-consistent pair potential, we solve Eqs. (2.4) and (2.7) itera-
tively. This computation is performed after a method of Ref. [39]. In the cal-
culation of the pair potential, we adopt the so-called explosion method[49, 50]
to solve Eq. (2.4).

The LDOS is evaluated from

N(E, r) = N0

∫ 2π

0

dθ

2π
ρ(θ)Re g(iωn → E + iη, r, θ)

≡
∫ 2π

0

dθ

2π
ρ(θ)N(E, r, θ), (2.10)

where η (>0) is a small real constant. The value of η represents the effect of
dilute impurities in a rough approximation[31, 33] or other smearing effects[51].
To obtain g(iωn → E + iη, r, θ), we have to solve Eq. (2.4) for η − iE instead
of the Matsubara frequency ωn. While we succeeded in this calculation in the
vortex lattice case with the explosion method, a huge computer-running-time
for the numerical calculation was needed in this method[42]. In the case of the
isolated single vortex, however, it is convenient to utilize a method of the Riccati
equation developed by Schopohl[34, 35, 52]. The Riccati equation simplifies the
numerical computation.

The Riccati equations[34] are given as

vF(θ)
d

dr‖
a(ωn, r, θ) − ∆(r, θ) +

(

2ωn + ∆∗(r, θ)a(ωn, r, θ)
)

a(ωn, r, θ) = 0,

(2.11)

vF(θ)
d

dr‖
b(ωn, r, θ) + ∆∗(r, θ) −

(

2ωn + ∆(r, θ)b(ωn, r, θ)
)

b(ωn, r, θ) = 0.

(2.12)
Equations (2.11) and (2.12) are obtained by substituting the following parametrization[34]
into the Eilenberger equations (2.4),

f =
2a

1 + ab
, f † =

2b

1 + ab
, g =

1 − ab

1 + ab
. (2.13)

We solve Eqs. (2.11) and (2.12) independently along the r‖ trajectory where
r⊥ is held constant. In the isolated single vortex under consideration, one can
integrate Eqs. (2.11) and (2.12) using solutions far from the vortex,

a−∞ =

√

ω2
n + |∆(−∞, r⊥, θ)|2 − ωn

∆∗(−∞, r⊥, θ)
,

b+∞ =

√

ω2
n + |∆(+∞, r⊥, θ)|2 − ωn

∆(+∞, r⊥, θ)
(ωn > 0) (2.14)

as the initial values, respectively[52]. To obtain stable solutions, the integral for
a is performed from r‖ = −∞, and for b from r‖ = +∞[52]. We numerically
integrate the first-order differential equations (2.11) and (2.12) by the adaptive
stepsize control Runge-Kutta method[53]. The Green’s function g(iωn → E +
iη, r, θ) is obtained from Eq. (2.13) if one solves Eqs. (2.11) and (2.12) for η−iE
instead of ωn. When we solve Eqs. (2.11) and (2.12) for η− iE, we use the self-
consistently obtained pair potential ∆(r) which is calculated beforehand.

From now on (in this chapter), the density of states, energies, and lengths
are measured in units of N0, the uniform gap ∆0 at the temperature T = 0,
and the coherence length ξ0 = vF0/∆0 (vF0 ≡ kF/N0), respectively.
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Figure 2.1: The density of states N(E) at zero field, where smearing parameter
η = 0.03 (solid line) or η = 0.001 (dashed line). It is calculated for the isotropic
cylindrical Fermi surface, and the degree of the gap anisotropy is cA = 1/3.

2.3 Pair potential and local density of states

Before going into technical details, we briefly explain our model and its pa-
rameter involved in connection with NbSe2, which is a typical type-II s-wave
superconductor. We assume the following model of an anisotropic s-wave pair-
ing in Eq. (2.9),

F (θ) = 1 + cA cos 6θ. (2.15)

Here we again stress that the angle θ, i.e., the direction of k̄ is measured from
the a axis (or x axis) in the hexagonal plane of NbSe2. Thus the parameter cA

denotes the degree of anisotropy in the superconducting energy gap[54, 55, 56].
The case cA = 0 corresponds to a conventional isotropic gap.

The anisotropic s-wave gap is certainly suggested in NbSe2 from a scanning
tunneling spectroscopy (STS) experiment at zero field[15]. The I-V tunneling
spectrum, observed at the extreme low temperature T = 50 mK, indicates a
substantial gap anisotropy (the gap amplitude with the averaged value 1.1 meV
distributes from 0.7 to 1.4 meV, see Fig. 1 in Ref. [15]), which is consistent with
the density of states in the anisotropic s-wave gap case [Fig. 2.1]. It is seen from
Fig. 2.1 that the gap edge distributes from E = 1 − cA to 1 + cA in the case
of the anisotropic gap. Then, the experimental data of STS[15] indicate that
cA ∼ 1/3. Similarly, a nuclear quadrupole resonance, NQR, experiment[57] in
NbSe2 suggests an anisotropic s-wave energy gap. The temperature dependence
of the spin-lattice relaxation rate 1/T1 is well fitted by an anisotropic energy
gap model following Hebel[58] with the value of a parameter δ/∆(0) ∼ 1/3[57].
Here the broadening in the gap edge, δ/∆(0), of Ref. [57] corresponds to δ/η0(0)
of Ref. [58]. This parameter δ/∆(0) corresponds well to our parameter of the
gap anisotropy, cA, because both parameters δ and cA yield the broadening in
the gap edge. We set cA = 1/3 as a representative case in the following.

In this chapter, we restrict our attention to the gap anisotropy effect only,
neglecting other effects, i.e., the vortex lattice effect and the effect of the
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Figure 2.2: Contour plot of the amplitude of the real-space variation part of the
pair potential, |∆(r)|. From the center, 0.1, 0.2, . . . , 0.9. The temperature is
T = 0.1Tc, and the degree of the gap anisotropy is cA = 1/3.

anisotropic density of states at the Fermi surface, to clearly see how the en-
ergy gap anisotropy influences the LDOS. We calculate the LDOS in the iso-
lated vortex case assuming an isotropic cylindrical Fermi surface (vF(k̄) ‖ k̄,
vF(θ) = vF0).

2.3.1 Pair potential

In order to calculate the LDOS, we need the self-consistent pair potential ob-
tained at the temperature, say, T = 0.1Tc (Tc is the superconducting transition
temperature). The self-consistently obtained real-space variation part of the
pair potential, ∆(r), certainly exhibits a weak sixfold structure both in its phase
and amplitude, which results from the anisotropic pairing, Eq. (2.15). This be-
havior is similar to that of the d-wave case[39], but sixfold symmetric here. In
Fig. 2.2, we show a contour plot of the amplitude of ∆(r). The amplitude |∆(r)|
is slightly suppressed in the x axis direction and its equivalent directions. As
shown in Fig. 2.2, the spatial variation of ∆(r) has weak anisotropy, but is al-
most circularly symmetric. However, the LDOS shows the characteristic sixfold
symmetric structure as mentioned below.

2.3.2 Local density of states

The LDOS calculated using the self-consistent pair potential has almost the
same structure, except for the length scale for its spread, as that calculated
using a test-potential ∆(r) = ∆(T ) tanh(r/ξ) exp(iφ) does, where ∆(T ) is the
uniform gap at the temperature T , ξ = vF0/∆(T ), and the cylindrical coordinate
system r = (r, φ) is taken. That is, the LDOS does not so affected by the weak
sixfold symmetric spatial structure of the real-space variation part of the pair
potential, ∆(r). We have seen the same situation also in the d-wave case.[39]
It means that a calculated sixfold or fourfold structure of the LDOS directly
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results from the k-space variation part of the pair potential, F (θ).
In Fig. 2.3, we show the LDOS N(E, r) for several energies E in the case

cA = 1/3, calculated by using the self-consistently obtained pair potential. It
is seen from Fig. 2.3(a) that the sixfold star centered at the vortex center is
oriented away from the x axis by 30◦ for E = 0. Next it is seen from Fig.
2.3(b) that at the intermediate energy each ray splits into two parallel rays,
keeping its direction. This characteristic feature was precisely observed in the
experiment by Hess[13, 14]. With increasing the energy E further, the sixfold
star becomes a more extended one, and its orientation rotates by 30◦ as seen
from Fig. 2.3(c). Note that in Fig. 2.3(c) the head of each ray splits in two. It
coincides with an experimental result (see the STM image for 0.48 mV in Fig.
1 of Ref. [13]). In this way, the anisotropic s-wave gap model well reproduces
the experimental features mentioned in Sec. 2.1: (1) the sixfold star shape,
(2) the 30◦ rotation, and especially (3) the split parallel ray structure at the
intermediate energy. We refer to Fig. 1 in Ref. [41] [Fig. 2.4 in this thesis]
where the density plots of the LDOS compared with the experimental data are
displayed, which is complimentary to Fig. 2.3 in the present chapter.

Another way to examine the quasiparticle excitations in the vortex states is
to see how the spectrum evolves along radial lines from the vortex center. We
show the spectral evolutions along the radial lines for 30◦ in Fig. 2.5(a), 15◦ in
2.5(b), and 0◦ in 2.5(c) from the x axis. The zero-bias peak splits into several
peaks in each spectral evolution. Cross sections of each spectral evolution at
r = 1 (r =

√

x2 + y2) are shown in Fig. 2.6 to provide the identification of each
ridge in Fig. 2.5.

In the calculation of Figs. 2.3 and 2.5, the smearing factor is chosen as
η = 0.03, which well reproduces the STM experimental data. It corresponds
to the solid lines of Fig. 2.6, where the peaks are labeled α–ε. The case with
smaller smearing effect (η = 0.001) is represented by the dashed lines in Fig.
2.6, where the spectrum has the sharp peaks labeled as A–E. (The structure of
these peaks is discussed in the next section.) As shown in Fig. 2.6, by increasing
the smearing effect, the spectrum of the dashed line (η = 0.001) is reduced to
that of the solid line (η = 0.03), and reproduces the STM experimental data.
It seems that the LDOS actually observed in STM experiments is somewhat
smeared due to impurities[31, 33] or other smearing effects[51].

In Fig. 2.5(a) (the 30◦ direction), there exist one peak at E = 0 and three
pairs of peaks. The peak at E = 0 in Fig. 2.5(a) [the ε peak in Fig. 2.6(a)]
corresponds to the ray which extends in the 30◦ direction in Fig. 2.3(a). This
peak is referred to as the inner peak in Refs. [8] and [15]. This inner peak [the
ε peak] corresponds to also the split parallel ray in Fig. 2.3(b) and the head
of the ray which splits into two in Fig. 2.3(c). The inner ε peak is, therefore,
sensitive to the angle of the radial line, and splits in a pair of peaks with the
variation of the angle [see Figs. 2.5(b) and 2.5(c)]. On the other hand, the
most inside pair of peaks in Fig. 2.5(a) [the δ peak in Figs. 2.5 and 2.6] is not
sensitive to the angle. This peak is referred to as the outer peak[8, 15]. As
shown in Fig. 2.7, the behavior of the calculated inner and outer peaks well
coincide with the experimental result (the experimental feature (4) in Sec. 2.1).
The positions of the outer δ and inner ε peaks as a function of r are compared
with the experimental data in Fig. 3 of Ref. [41] [Fig. 2.9].

Outside the inner ε and outer δ peaks, extra peaks appear in each calculated
spectral evolution [the α, β, and γ peaks in Figs. 2.5 and 2.6]. The result of
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Figure 2.3: The LDOS N(E, r) (η = 0.03) calculated for the energies E = 0
(a), 0.2 (b), and 0.4 (c). Large peaks in the vicinity of the vortex center are
truncated in the figures (a) and (b).
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Figure 2.4: Left column: Tunneling conductance images observed by Hess et

al. at 0.1 Tesla for the bias voltage 0.0mV (a), 0.24mV (b), 0.48mV (c), where
1759Å × 1759Å is shown (also see Refs. [13] and [14]). The horizontal direction
is the nearest-neighbor direction of the vortex lattice and also is the crystallo-
graphic a direction in NbSe2. Right column: The LDOS images calculated for
E = 0 (d), 0.2 (e), and 0.32 (f), where 6ξ0 × 6ξ0 is shown and cA = 1/2.
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Figure 2.5: Spectral evolutions N(E, r) (η = 0.03) along radial lines for 30◦

(a), 15◦ (b), and 0◦ (c) from the x axis. The zero-bias peak is truncated in the
figures. The peak lines in the spectra are labeled α–ε.
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Figure 2.6: Cross sections of the spectral evolutions (Fig. 2.5) at the distance
from the vortex center, r = 1. The directions of each radial line are 30◦ (a), 15◦

(b), and 0◦ (c) from the x axis. The peaks in the spectra are labeled A–E for
the dashed line spectra (η = 0.001) and α–ε for the solid line spectra (η = 0.03).
The labels α–ε correspond to those of Fig. 2.5.
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Figure 2.7: Comparison of the spectral evolutions between the theory and ex-
periment. Left column: The theoretically calculated spectral evolutions N(E, r)
(η = 0.03) along radial lines for 30◦ (a), 15◦ (b), and 0◦ (c) from the x axis
[Fig. 2.5]. Right column: The experimentally observed tunneling conductance
dI/dV (V, r) on NbSe2 (from Ref. [8]), 30◦ (a), 15◦ (b), and 0◦ (c) from the a
axis [Fig. 1.5]. Note that there exists nice coincidence on the behavior of the
(inner and outer) peaks.
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Figure 2.8: Spectral evolution N(E, r) (η = 0.03) from the angle 0◦ to 30◦ along
a circle whose radius r = 1. The center of this circle is situated at the vertex
center. The peaks labeled as α–ε correspond to those of Figs. 2.5 and 2.6.

the calculation shows that the extra peaks are relatively sensitive to the angle
of the radial line. The existence of the extra peaks is characteristic of the
gap anisotropy effect. The peaks α and β merge into the upper edge of the
energy gap, 1+ cA, far from the vortex. These extra peaks have not been noted
in experimental data so far. While each peak cannot be clearly identified in
experimental data yet, it seems that there is at least one new line outside the
outer peak in the data[59]. It is expected for future experiments to definitely
identify the extra peaks.

The dependence of the LDOS on the angle of the radial line is important,
because it gives a detailed information on the gap anisotropy. To see it, we show
in Fig. 2.8 a spectral evolution from the angle 0◦ to 30◦ along a circle whose
radius r = 1. From this, we can see how each peak moves, and joins up the
others with the variation of the angle. As mentioned above, the ε peak (that is,
inner peak) is sensitive to the angle φ of the radial line, and the δ peak (outer
peak) is insensitive to φ. The ε peak is located at E = 0 for φ = 30◦. When
φ deviates from 30◦, the peak splits into two which are positive and negative
energy peaks. With decreasing φ to 0◦, the energy E-position of the ε peak
increases. As for the peaks α, β, and γ, with decreasing φ from 30◦ to 0◦, the
E-position decreases for the γ peak, increases for the β peak, and is insensitive
for the α peak. The peaks β and γ overlap each other for φ = 30◦, and the
peaks α and β overlap each other for φ = 0◦ (see also Fig. 2.6). Here, we should
mention the behavior of the γ peak at φ ∼ 0◦. In Fig. 2.8, the γ peak seems to
join up the angle-insensitive δ peak near 0◦, that is, the γ peak is buried in the
δ peak in Figs. 2.5(c) and 2.6(c) (the 0◦ direction). Such a behavior of the γ
peak intimately relates to the value of the anisotropic gap parameter, cA. The
above behavior of γ is that of the case cA = 1/3. According as cA increases
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Figure 2.9: The ridge energies of the LDOS as a function of r along the radial
lines for 0◦ (a), 15◦ (b), and 30◦ (c) from the x axis (solid lines). cA = 1/2.
The labels α-ε are the same as those in Fig. 2.5. Experimental data (Ref. [15])
are also presented by points • (outer) and ◦ (inner), where r and E are scaled
by 350Å and 1.67mV, respectively.
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further, the position of the γ peak at 0◦ shifts to the higher energy side [see a
spectral evolution shown in Fig. 3(a) of Ref. [41] (the 0◦ direction) [Fig. 2.9(a)
in this thesis], where cA is set to 1/2 and we can see that a peak line, which
corresponds to the present peak γ (not denoted explicitly in that figure), evolves
away from the δ peak line].

2.4 Quasiparticle trajectories

In this section, we interpret the behavior of the quasiparticle bounded around
a vortex in terms of the quasiclassical picture.

2.4.1 Direction-dependent local density of states

In the quasiclassical approximation, the equations are independently given for
each direction of k̄. The Eilenberger equation (or the Riccati equation) for a
direction k̄ is independent of those for the other directions. The direction-
dependent local density of states N(E, r, θ) introduced in Eq. (2.10) is ob-
tained from the solution of the equation for the direction k̄ = (cos θ, sin θ).
The LDOS N(E, r) is calculated by integrating the direction-dependent LDOS
N(E, r, θ) over θ. In an isolated vortex state, the structure of N(E, r, θ) was
previously investigated analytically[22, 30, 32] and numerically[30]. According
to the results of these investigations, N(E, r, θ) has the following structure for
low energies below ∆0 in the isolated single vortex[22, 30, 32]. (Here, remind
ourselves of the notation: r = xx̄ + yȳ = r‖ū + r⊥v̄; ū = cos θx̄ + sin θȳ,
v̄ = − sin θx̄ + cos θȳ.) (i) N(E, r, θ) as a function of r = (r‖, r⊥) vanishes
everywhere except on a straight line along which r⊥ = const . = r⊥(E). This
straight line and r⊥(E) are referred to as “quasiparticle path” and “impact pa-
rameter,” respectively. (ii) Along the line r⊥ = r⊥(E), N(E, r, θ) has a single
maximum at r‖ = 0 and decreases exponentially for r‖ → ±∞. (iii) The im-
pact parameter r⊥(E) is a monotonically increasing function of E. One defines
E(r⊥) as the energy level of the state on the quasiparticle path with the im-
pact parameter r⊥. In extreme type-II superconductors where κ � 1, E(r⊥)
is determined by the minimum value of the amplitude of the pair potential on
the quasiparticle path r⊥ = r⊥(E). For the low energy levels, E(r⊥) is given
by E(r⊥)=sgn(r⊥)|∆(r‖ = 0, r⊥)| in a good approximation.

On the basis of the above properties (i)–(iii) of the direction-dependent
LDOS N(E, r, θ) studied by Kramer and Pesch[22], Klein[30], and Ullah et

al.[32], we interpret our result of the preceding section as follows.

For simplicity, we concentrate our attention to Eq. (2.11) as a representative.
Dividing Eq. (2.11) by F (θ), we rewrite this equation as

1

F (θ)

d

dr‖
a(ωn, r, θ)−∆(r)+

(

2
ωn

F (θ)
+∆∗(r)a(ωn, r, θ)

)

a(ωn, r, θ) = 0. (2.16)

In the case of the isotropic s-wave pairing (F (θ) = 1), N(E, r, θ) at a fixed
energy has the identical structure for each direction θ [the items (i), (ii), and
(iii)]. Then the LDOS N(E, r), obtained by integrating N(E, r, θ) over θ, ex-
hibits a “ring” shaped structure[34] in the real space. The impact parameter is
the radius of the ring.
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Figure 2.10: The direction-dependent LDOS N(E, r, θ) partly integrated from
θ = −30◦ to 30◦, where E = 0.5, η = 0.001, and 6ξ0 × 6ξ0 is shown in the real
space.

In the case of an anisotropic pairing, the situation is changed because of
the terms which include F (θ) in Eq. (2.16). According to Eq. (2.16), both the
length scale in the r‖ direction and the energy scale vary with θ, but otherwise
the form of the equation is same as that of the isotropic s-wave case. For the
direction θ where F (θ) is suppressed, the length of the spreading of N(E, r, θ)
along the quasiparticle path becomes large [note the items (i) and (ii), and the
term 1

F (θ)
da
dr‖

in Eq. (2.16)]. For the same θ, the effective energy becomes large

and then the impact parameter becomes far from the vortex center [note the
item (iii) and the term 2 ωn

F (θ)a in Eq. (2.16)].

2.4.2 Interpretation on the LDOS around a vortex

We show the partly integrated N(E, r, θ) in Fig. 2.10, where the integration is
done from θ = −30◦ to 30◦, and its schematic figure in Fig. 2.11, for the pairing
of Eq. (2.15) where cA = 1/3. Here, to clarify the structure of the LDOS, a
small smearing parameter (η = 0.001) is adopted. The peak lines shown in
Fig. 2.10 are composed of the quasiparticle paths of each direction θ described
above. These peak lines can be interpreted as the flows of quasiparticles shown
in Fig. 2.11. It is noted that the trajectories 1 and 2 appear, because F (θ) is
finite at θ = −30◦ and 30◦, i.e., the impact parameter is finite at these angles.
If F (θ) has a node, i.e., cA = 1, the impact parameter is infinitely far from
the vortex center for the quasiparticle path of the node direction[60], and the
trajectories 1 and 2 disappear. In the bound states, the quasiparticles flow along
these trajectories. We call it “quasiparticle trajectory.” The whole state at a
fixed energy is composed of such flows of quasiparticles along the quasiparticle
trajectories, while the individual quasiparticle paths of each direction θ [the
items (i) – (iii)] could be considered to be the Andreev reflections.

We show in Fig. 2.12 the LDOS N(E, r) obtained by integrating the direction-
dependent LDOS N(E, r, θ) over all θ. A schematic figure which corresponds
to Fig. 2.12 is shown in Fig. 2.13. The peaks which the radial lines cross are
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Figure 2.11: Schematic flow trajectories of quasiparticles with an energy 0 <
E < (1− cA). These trajectories correspond to those shown in Fig. 2.10. When
(1 − cA) < E < (1 + cA), the trajectories 1 and 2 disappear and only the
trajectory 3 is alive.

labeled A–E there. When the energy E elevates, the scale of the trajectory in
Fig. 2.13 increases with keeping its structure fixed. Therefore, the trajectory
has one-to-one correspondence to the peak of the spectrum of Figs. 2.5–2.8.
The peaks A–E of Fig. 2.13 precisely correspond to those of Fig. 2.6. These
peaks are smeared to appear as α–ε peaks in Fig. 2.6 (and thus in Figs. 2.5
and 2.8). The LDOS actually observed in STM experiments is not that shown
in Fig. 2.12 itself, but somewhat smeared one [Figs. 2.3, 2.5, and 2.6] due to
impurities[31, 33] or other smearing effects[51]. Roughly speaking, the peaks A,
B, C, D1, and E correspond to the peaks α, β, γ, δ, and ε, respectively.

The trajectory of Fig. 2.13 helps us to facilitate an understanding of the rich
structure of the LDOS. The trajectories B and C cross each other at the angle
φ = 30◦ from the x-axis in Fig. 2.13. Then, the peaks B and C (i.e., β and γ)
overlap each other in Figs. 2.5(a) and 2.6(a). The cross of the trajectories A and
B at φ = 0◦ in Fig. 2.13 corresponds to the overlap of the peaks A and B (i.e., α
and β) in Figs. 2.5(c) and 2.6(c). When φ varies from 30◦ to 0◦, the trajectories
C and D1 cross each other in Fig. 2.13, where cA = 1/3. It corresponds to the
result that the peaks γ and δ interchange their positions between Figs. 2.6(b)
and 2.6(c). However, this behavior of γ and δ depends on the anisotropic gap
parameter cA as mentioned at the end of Sec. 2.3. In the case of large cA, the
trajectories C and D1 does not cross for 0◦ ≤ φ ≤ 30◦ in Fig. 2.13. Even at
φ = 0◦, the trajectory D1 is located farther from the vortex center than the
trajectory C, for large cA. Then, the peak C (i.e., γ) is located at higher energy
than the peak D1 (i.e., δ) in the spectrum of Figs. 2.6(c) and 2.8, for large cA.
As seen in Fig. 2.6, the peak D2 tends to be buried in the other peaks, due to the
smearing effects. However, if the experiment is performed for the weak smearing
case, the peak D2 should be observed as a small peak, which splits from the
peak D1 (i.e., δ) at φ = 30◦ and approaches the peak E (i.e., ε) with decreasing
φ to 0◦. This D2 peak seems to be easily observed for the angle 0◦ < φ < 10◦.
We detect a small indication of the D2 peak for this angle region, if Fig. 2.8 is
enlarged at φ ∼ 0◦. The trajectories D1 and E (i.e., δ and ε) corresponds to
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Figure 2.12: The LDOS N(E, r) which is obtained by integrating the direction-
dependent LDOS N(E, r, θ) over θ, where E = 0.5, η = 0.001, and 6ξ0 × 6ξ0 is
shown.

Figure 2.13: Schematic figure of the LDOS N(E, r) for an energy 0 < E <
(1− cA). Points A–E correspond to the peaks of the dashed line spectra in Fig.
2.6.
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the trajectories 1 and 2 of Fig. 2.11, which is related to the lower edge of the
anisotropic energy gap. Therefore, these trajectories disappear for the higher
energy, (1− cA) < E < (1 + cA). The peaks D1 and E (i.e., δ and ε) merge into
the lower edge of the energy gap at E = 1 − cA far from the vortex.

2.4.3 Flows of quasiparticles around a vortex

The flows of the quasiparticles mentioned above are quantitatively represented
by the following quantity,

I(E, r) =

∫ 2π

0

dθ

2π
ρ(θ)vF(θ)N(E, r, θ), (2.17)

which we tentatively call “directional local density of states.” This directional
LDOS corresponds to a quantity obtained by integrating “spectral current den-
sity” introduced by Rainer et al.[48] over θ (or pf in Ref. [48]). The total current
density around a vortex is composed of the spectral current density[48]. In Figs.
2.14(a), 2.14(b), 2.14(c), and 2.14(d), we show the directional LDOS I(E, r) cal-
culated for E = 0.2, 1.2, 1.4, and 1.6, respectively. Here I(E, r) is calculated
under the condition considered in this section, i.e., under the anisotropic gap
and the isotropic cylindrical Fermi surface. It is seen from Fig. 2.14(a) that the
flow of the quasiparticle exhibits a sixfold anisotropy resulting from the sixfold
LDOS of the bound states (Fig. 2.3(b) and thus Fig. 2.13). Now, it is of interest
to note the flow with an energy near the upper gap edge, E = 1 + cA (' 1.3).
Comparing Figs. 2.14(b) and 2.14(d), we can see that the quasiparticles above
and below the upper gap edge flow each other in reverse directions except in the
vicinity of the vortex center. It certainly coincides with a result of an analysis
based on the Bogoliubov-de Gennes equation[16]. This feature should not be
influenced by the gap anisotropy.

2.5 Summary and discussions

The LDOS around an isolated single vortex is studied within the framework
of the quasiclassical theory. We consider the effect of the anisotropy of the
superconducting energy gap. Assuming the anisotropic s-wave energy gap in
Eq. (2.15), we succeed in theoretically reproducing the characteristic structure
of the LDOS observed in STM experiments; the observed features, i.e., the items
(1)–(4) for NbSe2 listed in Sec. 2.1, are well described in terms of the anisotropic
gap model. We point out the existence of the missing peaks (α, β, and γ) at
the higher energy side in the spectral evolution shown in Figs. 2.5–2.8, which
is expected to be looked for in a future experiment. We also notice the further
splitting of the observed broad peaks as shown, for example, in Fig. 5(b) (δ →
D1 and D2). These predictions, which reflect the gap anisotropy, may be checked
by using a purer sample at lower temperatures, because smearing effects, due
to lattice defects or thermal broadening, mask the fine details. We attempt
to interpret the calculated LDOS in terms of the quasiparticle trajectory. This
enables us to thoroughly understand the STM results and the internal electronic
structure of the vortex. In this chapter, the value of our parameter is chosen
appropriate for NbSe2. However, the essence of the obtained results should
be applicable to other type-II superconductors in general although the degree
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Figure 2.14: The directional LDOS I(E, r) (η = 0.03) for the energies E = 0.2
(a), 1.2 (b), 1.4 (c), and 1.6 (d). The arrows in the figures represent only the
directions of I(E, r).
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of the gap anisotropy cA and the symmetry of F (θ) will be different in each
case. Even in other anisotropic superconductors, the explanation in terms of
the quasiparticle trajectory would be helpful to an understanding of the internal
electronic structure of vortices.

2.5.1 Comparison with other theories and effects of the

vortex lattice

Let us comment on prior works which are connected with the star-shaped LDOS
observed in NbSe2. On the basis of a sixfold perturbation, Gygi and Schlüter[17]
explained that the lower and higher energy stars observed by STM were inter-
preted as bonding or antibonding states. The STM results (1) and (2) listed in
Sec. 2.1 were able to be explained by this perturbation scheme. They adopted
a sixfold crystal lattice potential in NbSe2 as the perturbation. Recently, Zhu,
Zhang, and Sigrist[61] investigated the effect of the underlying crystal lattice
by means of a non-perturbation method, i.e., a method of diagonalizing a tight-
binding Bogoliubov-de Gennes (BdG) Hamiltonian in a discrete square lattice,
where the crystal lattice potential, i.e., the band structure is determined a priori.
This method supplements the perturbation theory of Ref. [17]: the absolute ori-
entation of the star relative to the underlying crystal lattice was determined[61].

By this non-perturbation approach, also a gradual rotation of the star-
shaped LDOS was obtained in the intermediate energy region[61]. Neverthe-
less, it is not yet clear whether the crystal lattice effect is able to reproduce the
remaining experimental findings (3) and (4), i.e., the split parallel ray struc-
ture and the behavior of peaks in the spectral evolutions. The model used in
Ref. [61] is the discrete lattice model, and therefore it is impossible to obtain
detailed spectra, e.g., spectral evolutions along radial lines, due to the discrete-
ness. Hence, it is desired to treat the crystal lattice potential effect with a
non-perturbation method in the continuum limit.

Now, the crystal lattice potential determines the band structure, and in-
fluences the structure of the Fermi surface. The effect of the crystal lattice
potential should appear as the anisotropy of the Fermi surface. In our frame-
work, the anisotropy of the Fermi surface is taken into account by assuming an
anisotropic density of states at the Fermi surface, ρ(θ), which appears in the
θ-integral of Eq. (2.10), and the anisotropic Fermi velocity vF(θ), which appears
in the Eilenberger (or Riccati) equations. The experimental findings (1)–(4) can
be reproduced qualitatively, if we introduce a large anisotropy in vF(θ).

Gygi and Schlüter considered also the effect of nearest-neighbor vortices,
i.e, that of the vortex lattice[17]. They adopted a sixfold anisotropy of the
vector potential as the vortex lattice effect, and treated it as the perturbation.
However, the periodicity of the pair potential is also an important effect of
the vortex lattice, as pointed out by Klein and Pöttinger[30, 33]. In extreme
type-II superconductors such as NbSe2 where κ � 1, the periodicity of the pair
potential is expected to have stronger effects upon the structure of the LDOS
than the anisotropy of the vector potential does. We find in Ref. [42] that the
effect of the periodicity gives a characteristic sixfold structure to the LDOS.

This structure of the LDOS which results from the periodicity of the pair
potential appears only at high magnetic fields such as 1 T for the material
parameters appropriate to NbSe2, where the vortex core regions substantially
overlap each other[42]. At a lower magnetic field such as 0.1 T, the calculated
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LDOS reduces to the almost circular structure. On the other hand, the LDOS
observed in a STM experiment exhibits the star-shaped structure in spite of a
low field 0.025 T (see Fig. 12 in Ref. [62]). Therefore, in the case of NbSe2 at
low magnetic fields, we need to consider the effects of anisotropy other than the
vortex lattice effect in order to explain the star-shaped LDOS. Both the vortex
lattice effect and the anisotropic superconducting gap one are important for the
star-shaped LDOS observed in NbSe2 at high magnetic fields. We expect a fu-
ture STM experiment to be performed on isotropic superconducting compounds
or metals to clarify the vortex lattice effect and confirm predictions of Ref. [42].

In STM experiments on NbSe2, one of the directions of nearest-neighbor
vortices coincides with the a axis (see the literature by Hess et al. [8, 6, 12,
13, 14, 15, 62, 63] or Renner et al.[25]), except for extreme low fields[64]. This
experimental fact gives evidence of a correlation of the vortex lattice with the
underlying crystal lattice of NbSe2. It was recently found that in d-wave super-
conductors, higher-order (nonlocal correction) terms in the Ginzburg-Landau
equation, which reflect the fourfold symmetric property of the d-wave pairing,
give rise to a preferred direction of the vortex lattice[65, 66, 67]. In NbSe2,
the sixfold anisotropic pairing, Eq. (2.15), is expected to give rise to the same
correlation as the d-wave pairing does, and it may be the origin of the ex-
perimental fact mentioned above. A possibility of the correlation of the vortex
lattice with the underlying crystal lattice was recently reported also in a high-Tc

cuprate[68, 69].

2.5.2 Beyond the quasiclassical approach

We mention the LDOS around a vortex in high-Tc cuprates. It seems from
various experiments that high-Tc material is a d-wave superconductor[70]. A
fourfold structure of the LDOS is predicted in d-wave superconductors by theo-
retical studies based on the quasiclassical theory[34, 35, 39]. The origin of this
fourfold structure is same as that discussed in the present chapter for the gap
anisotropy. Recently, Maggio-Aprile et al. observed tunneling spectra around
vortices in a high-Tc cuprate, YBa2Cu3O7−δ, with STM[18, 71, 69]. However,
the spectroscopic images of STM have not exhibited any sign of a fourfold
structure yet. We expect further detailed experiments to observe the fourfold
symmetric LDOS structure.

When we consider the high-Tc materials, the quantum effects should be
taken into account. The quasiclassical theory is certainly valid only in systems
where the atomic scale spatial variation of the Green’s function can be neglected
with respect to the coherence length scale one[38, 72]. The effects neglected in
the quasiclassical theory can be important in the case of the high-Tc cuprate;
the quantization of energy levels of the bound states cannot be treated by the
quasiclassical theory, and while it is possible in the quasiclassical approximation
to divide the equation into individual equations for each direction of k̄, it is
impossible in the quantum-mechanical limit. Although we expect the fourfold
structure of the LDOS should be observed in future experiments, the above
effects may change the situation in the case of the high-Tc cuprate. It is certainly
desired on the theoretical side that a fully quantum-mechanical approach clears
up this problem in future.

As for the fully quantum-mechanical approach, it is needed to solve the BdG
equation without quasiclassical approximations. The BdG equation cannot be
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written in a local form in the case of an anisotropic pairing, and therefore it
is difficult to treat this equation in the continuum limit. One of the possible
approaches to this problem is the method of diagonalizing a BdG Hamiltonian
for a specific lattice model[61, 73, 74, 75, 76]. In the lattice model, however, the
atomic scale variation of wave functions among the lattice points is uncertain.

In most superconductors (ξ � 1/kF), the atomic scale variation of the wave
function is a redundant information and can usually be neglected on the basis of
the quasiclassical theory. On the other hand, in the high-Tc cuprate supercon-
ductors, kFξ ' εF/∆0 ∼ 1 (the Fermi wave-number and energy are kF and εF,
respectively)[72], and therefore the atomic scale variation and the quantization
of bound states in a vortex may be crucial for the electronic structure around
the vortex in the cuprates.

The high-Tc cuprate is certainly the only superconductor possessed of a
possibility of an experimentally detectable quantization in the vortex bound
states. According to Ref. [3], a substantial energy quantization (of the order
of ∆2

0/εF ∼ 10 K) is expected to exist in the high-Tc cuprate. However, to
the present author’s knowledge, the system considered in Ref. [3] is an isotropic
s-wave superconductor and the mechanism of the quantization in the case of
anisotropic pairing is not yet understood. In case of gap node due to anisotropic
pairing, it is expected that the separation of the energy levels becomes small.
Further experiments, which, e.g., investigate spatial variation of this quantized
bound states in the high-Tc cuprates with STM and then compare its result
with the quasiclassical prediction[34, 35, 39] in order to clarify how the quan-
tum effects mentioned above modify the vortex bound states, are the need for
alternative theoretical studies of the vortex bound states.

2.5.3 Concluding remarks

The electronic structure of vortices in a compound, LuNi2B2C, was quite re-
cently investigated by STM[77]. Although no conductance peaks related to
localized quasiparticle states in the vortex core are observed in the experiment,
due to a short mean free path (of the order of the coherence length) and thermal
broadening effects at 4.2 K (Tc ≈ 16 K)[77], a rich (maybe fourfold) structure
of the LDOS such as that discussed in the present chapter is expected to be de-
tected in STM spectra by lowering the temperature and decreasing impurities
or defects. If an anisotropic bound states around a single vortex is observed,
it should suggest an anisotropy of the pairing in this compound. The direction
(in the k-space) in which the superconducting gap is suppressed corresponds to
that (in the real space) of a ray of the LDOS at zero bias.

Finally, low-temperature STM is the unique experimental method which has
the ability not only to image the distribution of the vortex lattice, but also to
probe the electronic structure of individual vortices. We expect future STM
experiments to be performed in vortex states on various superconductors such
as organic conductors, high-Tc cuprates, heavy fermion superconductors (e.g.,
UPt3), and a recently discovered non-copper-layered perovskite superconductor,
Sr2RuO4[78] which has nearly cylindrical Fermi surfaces[79, 80] and a possibil-
ity that an odd-parity superconductivity would be realized in it[81, 82]. The
information on the vortex bound states available from STM spectra can be one
of clues to the pairing. The low-temperature STM experiments deserve a great
deal of attention.
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Chapter 3

Quantum-Limit Property of

a Vortex

3.1 Introduction

Growing interest has been focused on vortices both in conventional and un-
conventional superconductors from fundamental and applied physics points of
view. This is particularly true for high-Tc cuprates, since it is essential that one
understands fundamental physical properties of the vortices in the compounds
to better control various superconducting characteristics of some technological
importance. Owing to the experimental developments, it is not difficult to reach
low temperatures of interest where distinctive quantum effects associated with
the discretized energy levels of the vortex bound states are expected to emerge.
The quantum limit is realized at the temperature where the thermal smear-
ing is narrower than the discrete bound state levels[22]: T/Tc ≤ 1/(kFξ0) with
ξ0=vF /∆0 the coherence length (∆0 the gap at T = 0) and kF (vF ) the Fermi
wave number (velocity). For example, in a typical layered type-II superconduc-
tor NbSe2 with Tc = 7.2 K and kFξ0 ∼ 70, the quantum limit is reached below
T < 100 mK. As for the high-Tc cuprates, the corresponding temperature is
rather high: T < 10 K for YBa2Cu3O7−δ (YBCO).

Important microscopic works to theoretically investigate the quasiparticle
spectral structure around a vortex in a clean limit are put forth by Caroli et

al.[3, 83], Kramer and Pesch[22], and Gygi and Schlüter[16]. The low-lying ex-
citations are essential to correctly describe low-T thermodynamic and transport
properties in the vortex state (or the mixed state). These include anomalous
electric[84, 85] or thermal Hall conductivity[86] and mysterious observations
of the quantum magnetic dHvA oscillations[87]; various topics are debated
intensively[88]. Yet there has been no serious attempt or quantitative calcu-
lation to explore deep into the quantum regime.

The purposes of the present chapter are to reveal the quantum-limit aspects
of the single vortex in s-wave superconductors and to discuss a possibility for
the observation of them.

The present study is motivated by the following recent experimental and
theoretical situations: (1) The so-called Kramer-Pesch (KP) effect[22, 16, 89,
90]; a shrinkage of the core radius upon lowering T (to be exact, an anomalous
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increase in the slope of the pair potential at the vortex center at low T ) is
now supported by some experiments[91]. The T dependence of the core size
is studied by µSR on NbSe2[92] and YBCO[93], which is discussed later. The
KP effect, if confirmed, forces us radically alter the traditional picture[1] for the
vortex line such as a rigid normal cylindrical rod with the radius ξ0. (2) The
scanning tunneling microscopy (STM) experiment on YBCO by Maggio-Aprile
et al.[18], which enables us to directly see the spatial structure of the low-lying
quasiparticle excitations around the vortex, arouses much interest. They claim
that surprisingly enough, there exist only a few discretized bound-state levels
in the vortex core, i.e., the vortex is almost “empty.” It resembles our naive
image for conventional s-wave superconductors where in the quantum limit a few
quantized levels of the bound states remain inside the bulk energy gap ∆0. (3)
The theoretical situation on this subject[18] is still very confusing; Some[74, 94]
claim that the bound-state energy levels are not discretized for d-wave pair, but
discretized for s-wave pair. Some[72] claim the discretized-like structure even
for the former. For s-wave case, where the formulation of the problem is well
defined, we should establish our understanding of the vortex structure in the
quantum limit. (4) Lastly, we are motivated by a curiosity; Previously we have
calculated the local density of states (LDOS) for s-wave pair on the basis of
the quasiclassical (Eilenberger) theory[41, 95, 42], successfully applied to the
STM observations on NbSe2 done by Hess et al.[8, 6, 12, 13, 14, 15]. We are
particularly interested in what happens in LDOS at further lower T , say, below
50 mK deep into the quantum limit, at which it may be now feasible to perform
STM experiments.

Prompted by these motivations, we self-consistently solve the Bogoliubov-de
Gennes (BdG) equation[4], which is one of the most fundamental microscopic
equations of superconductivity and contains fully quantum effects.

3.2 Bogoliubov-de Gennes theory

We start with the BdG equations for the quasiparticle wave functions uj(r) and
vj(r) labeled by the quantum number j:

[ −1

2kFξ0
∇2 − EF

]

uj(r) + ∆(r)vj(r) = Ejuj(r),

−
[ −1

2kFξ0
∇2 − EF

]

vj(r) + ∆∗(r)uj(r) = Ejvj(r), (3.1)

in a dimensionless form, where ∆(r) is the pair potential and EF (=kFξ0/2) the
Fermi energy. The length (energy) scale is measured by ξ0 (∆0). For an isolated
single vortex in an extreme type-II superconductor, we may neglect the vector
potential in Eq. (3.1). The pair potential is determined self-consistently by

∆(r) = g
∑

|Ej |≤ωD

uj(r)v∗j (r){1 − 2f (Ej)} (3.2)

with the Fermi function f(E). Here, g is the coupling constant and ωD the
energy cutoff, which are related by the BCS relation via the transition tem-
perature Tc and the gap ∆0. We set ωD = 10∆0. The current density is
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Figure 3.1: The spatial variation of the pair potential ∆(r) normalized by ∆0

around the vortex for several temperatures and kFξ0 = 16. The length r is
measured by ξ0.

given by j(r) ∝ Im
∑

j

[

f(Ej)u
∗
j (r)∇uj(r) + {1 − f(Ej)}vj(r)∇v∗j (r)

]

. We
consider an isolated vortex under the following conditions. (a) The system
is a cylinder with a radius R. (b) The Fermi surface is cylindrical, appro-
priate for the materials such as NbSe2 and high-Tc cuprates. (c) The pair-
ing has isotropic s-wave symmetry. Thus the system has a cylindrical sym-
metry. We write the eigenfunctions as uj(r) = unµ(r) exp

[

i(µ − 1
2 )θ

]

and

vj(r) = vnµ(r) exp
[

i(µ + 1
2 )θ

]

with ∆(r) = ∆(r) exp
[

− iθ
]

in polar coor-
dinates, where n is a radial quantum number and the angular momentum
|µ| = 1

2 , 3
2 , 5

2 , · · ·. We expand the eigenfunctions in terms of the Bessel func-
tions Jm(r) as unµ(r) =

∑

i cniφi|µ− 1
2
|(r) and vnµ(r) =

∑

i dniφi|µ+ 1
2
|(r) with

φim(r) =
√

2
RJm+1(αim)Jm(αimr/R),

(

i = 1, 2, · · · , N , and αim is the i-th zero

of Jm(r)
)

. The BdG is reduced to a 2N × 2N matrix eigenvalue problem[16].
Our system is characterized by kFξ0, which is a key parameter of the present
problem.

3.3 Results

In Fig. 3.1, the calculated spatial variation of ∆(r) is displayed for various T . It
is seen that as T decreases, the core size ξ1 defined by ξ−1

1 = limr→0 ∆(r)/
(

r∆∞(T )
)

shrinks and the oscillatory spatial variation with a wave length ∼ 1/kF becomes
evident in ∆(r)[22, 16]. The physical reason for this Friedel-like oscillation lies
in the following facts. All eigenfunctions unµ(r) and vnµ(r) contain a rapid
oscillation component with 1/kF. At lower T the lowest bound states, whose
oscillation amplitude is large near the core, dominate physical quantities. We
note that the oscillatory behavior can always appears at sufficiently low T ir-
respective of values of kFξ0. We also mention that a similar oscillatory spatial
variation around a vortex core in the Bose condensate of 4He is found theoreti-
cally, due to the roton excitations[96].
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Figure 3.2: The current distribution normalized by cφ0/(8π2ξ3
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temperatures, where φ0 is the flux quantum and κ (�1) is the GL parame-
ter. The inset shows the field distribution normalized by φ0/(2πξ2

0κ2). The
temperatures are the same as in Fig. 1, and kFξ0 = 16.

The associated supercurrent jθ(r) and the field H(r) are shown in Fig. 3.2.
Reflecting the above oscillation, jθ(r) also exhibits a weak oscillation around
r = 0.2–0.5 ξ0. It is difficult to see the oscillation in H(r), because it is obtained
by integrating jθ(r) via the Maxwell equation ∇ × H = 4π

c j(r), resulting in
a smeared profile. It is also seen that the position of the maximum of jθ(r)
becomes shorter as T decreases. These features quite differ from those obtained
within the Ginzburg-Landau (GL) framework[1, 97].

The T dependence of ξ1(T ) for various kFξ0 values is shown in Fig. 3.3.
Coinciding with Kramer and Pesch[22] for s-wave pair and Ichioka et al.[90] for
d-wave pair, ξ1(T ) decreases almost linearly with T , that is, ξ1(T )/ξ0 ∼ T/Tc

except at extremely low T . An important difference from these quasiclassical
theories[22, 90] appears at lower T . At a lower T < T0 ' Tc/(kFξ0), where the
quantum limit is realized, the shrinkage of the core size stops to saturate, and
the saturated value is estimated as ξ1/ξ0 ∼ (kFξ0)

−1.

According to the µSR experimental data[92, 93], the core radius in NbSe2

shows a strong T dependence, while that in YBCO with Tc=60 K is almost
T -independent below ∼0.6Tc. This seemingly contradicting result can be un-
derstood as follows. The strong T dependence in NbSe2 is the usual KP effect
corresponding to the curves for larger kFξ0 in Fig. 3.3. At lower T than T0

estimated as ∼100 mK (kFξ0 ∼ 70), the shrinkage must saturate (the above
experiment is done above ∼2 K). As for the YBCO data, since the estimated
kFξ0 is small (∼4[18] for YBCO with Tc=90 K), the saturation is already at-
tained at a relatively high T such as shown in Fig. 3.3. Thus the absence or
weakness of the KP effect in YBCO is simply attributable to the fact that the
quantum-limit temperature T0 is quite high.
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Figure 3.3: The T dependence of the vortex radius ξ1 normalized by ξ0 for
several kFξ0 (= 1.2, 2, 4, and 16 from top to bottom).

Reflecting the shrinkage of the core radius, the bound-state energies Eµ in-
creases as T decreases. This T -dependent Eµ shift, due to the KP effect, and its
saturation at lower T may lead to a nontrivial T dependence in thermodynamic
and transport properties.

In Fig. 3.4, we plot the energy levels Eµ of the low-lying bound states
(

µ =
1
2 , 3

2 , · · · , 13
2

)

as a function of kFξ0, at sufficiently low T (T/Tc = 0.01) where
increasing of the energy levels saturates. It is seen that in large-kFξ0 region,
the bound states densely pack inside the gap ∆0, allowing us to regard them as
continuous ones. This is the case where the quasiclassical approximation[22, 90]
validates. In small-kFξ0 region, where the quantum effect is important even
at high T , only a few bound states remain within the low-energy region. We
find that even for small |µ|, the spacing between the energy levels Eµ is not
constant, but rather becomes narrower as |µ| increases. The often adopted for-
mula Eµ/∆0 = 2µ/(kFξ0) or 2µ/(kFξ1) due to Caroli et al.[3, 83], or Eµ/∆0 =
(2µ/kFξ0) ln[ξ0/2ξ1] by Kramer and Pesch in the limit ξ1 � ξ0[22] do not sat-
isfactorily explain our self-consistent results. Instead, our result is empirically
fitted to a formula E1/2/∆0 = (0.5/kFξ0) ln[kFξ0/0.3] for large kFξ0 as shown
in the dotted curve in Fig. 3.4.

In Fig. 3.5, the spectral evolution, i.e., the spatial variation of LDOS, which
is calculated by N(r, E) ∝ ∑

j

[

|uj(r)|2f ′(E − Ej) + |vj(r)|2f ′(E + Ej)
]

, is
shown for kFξ0=8 at low temperature T=0.05Tc. It is well contrasted with
that of the higher T case by Gygi and Schlüter[16] (see, for comparison, Fig.
15 in Ref. [16] where kFξ0 ∼ 70 and T ' 0.13Tc, calculated under the two-
dimensional Fermi surface). As lowering T , because of the quantum effects, the
thermally smeared spectral structure drastically changes and becomes far finer
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Figure 3.4: The lowest seven bound-state energies Eµ, normalized by ∆0, as a
function of kFξ0, at enough low temperature T/Tc = 0.01. The dotted line is a
fitting curve (see the text).

one around the vortex. The spectra are discretized inside the gap and consist of
several isolated peaks, each of which precisely corresponds to the bound states
Eµ

(

|µ| = 1
2 , 3

2 , · · ·
)

. Reflecting the oscillatory nature of the eigenfunctions
uµ(r) and vµ(r) with the period 1/kF, the spectral evolution also exhibits the
Friedel-like oscillation as seen from Fig. 3.5.

To show clearly the particle-hole asymmetry of the LDOS of Fig. 3.5, which
is another salient feature, we present in Fig. 3.6 the spectra at the vortex center
r = 0 and 0.2ξ0

[

We can barely see the asymmetry in Wang and MacDonald[74]
(

see Fig. 3(a) in Ref. [74]
)]

. At the center r = 0, the bound-state peak with
E1/2, which comes from u1/2 and v−1/2, appears on E > 0 side and other peaks
for |Eµ| < ∆0 (which include E−1/2) vanish at r = 0, because only u1/2(r)
and v−1/2(r) ∝ J0(r = 0) 6= 0. The particle-hole asymmetry in the vortex
bound states appears even if the normal-state density of states is symmetric.
These features are subtle[16] or absent[95] in the previous calculations. This
asymmetry around the vortex is quite distinctive, should be checked by STM
experiments, and may be crucial for the Hall conductivity in the mixed state.

Let us argue some of the available experimental data in the light of the
present study. The lowest bound state level E1/2/∆0 is estimated by Maggio-
Aprile et al.[18] for YBCO with Tc=90 K (E1/2=5.5 meV and ∆0=20 meV),
yielding kFξ0 ∼ 4. Since it implies that ξ0 is only of the order of the crystal-
lattice constant, we should caution that Maggio-Aprile et al.[18] take their data
for the spectral evolution every 10 Å apart near the core, thus the important
spatial information on LDOS might be lost. So far the existing STM data[18,
15, 77] taken at the vortex center are almost symmetric about E=0, e.g., on
NbSe2 at T=50 mK[15]. The reason why the so-called zero-bias peak is centered
just symmetrically at E=0 is that kFξ0 is large and T is too high to observe the
quantum effects.

We emphasize that in any clean s-wave type-II superconductors at appropri-
ately low T

(

< T0 ' Tc/(kFξ0)
)

, one can observe these eminent characteristics
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associated with the quantum effects. We should note also that a vortex in
superfluid newtron star matters is a candidate for the extreme quantum-limit
vortex[98].

3.4 Summary

We have analyzed the vortex core structure and the related quasiparticle energy
spectrum by self-consistently solving the BdG equation for an isolated vortex in
a clean s-wave type-II superconductor, focusing on the low-T quantum effects.
We have found the far richer structure in the pair potential, supercurrent, and
LDOS than what one naively imagines from the corresponding calculations done
at high T or kFξ0 � 1[16, 95], and pointed out experimental feasibility to
observe it.

The widely used working hypothesis for the vortex core of a rigid normal rod
with the radius ξ0[1] must be cautiously used for the clean superconductors of
interest: the magnetic field distribution probed by neutron diffraction[99, 100]
or µSR[92, 93, 101] through the magnetic form factor analysis based on the
GL theory[102] must be taken with caution. Detailed investigations of various
mysteries associated with the vortices, e.g., the Hall effect in the mixed state[84,
85] and the thermal Hall conductance[86] belong to future work.
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Chapter 4

Electric Charging of a

Vortex Core

4.1 Introduction

Electric charging phenomena around vortices have the potential of becoming one
of the key features in the physics of the mixed state in type-II superconductors.
Until quite recently, little was known about the electric charging inherent in
vortices, while it has been well recognized since the 1950’s that each vortex line
carries a quantized magnetic flux. Only recently, it was noticed that an elec-
tric charge accumulates around a static vortex line in type-II superconductors.
Khomskii and Freimuth[103], and Blatter et al.[104] theoretically discussed the
electric charging around a vortex[105]. If the electric charging of vortices is
experimentally confirmed, it will open the door to an unexplored field in which
one expects various electromagnetic phenomena to originate from the electric
charge trapped by vortices.

In spite of the growing interest in vortex core charging, firm experimental
evidence of the charging is lacking at present. However, various experimental
attempts are now in progress and are on the verge of detecting a charge accu-
mulation inside vortex cores. One such experiment is a spin-polarized neutron
scattering investigation of the flux line lattice in Nb by Neumann et al.[106]
They detected a nonzero nuclear contribution to the Bragg peaks correspond-
ing to the periodicity of the flux line lattice. This experimental result strongly
suggests existence of the vortex core charge; if each vortex constituting the flux
line lattice traps electrons or holes, the response of the underlying nuclei to these
will induce a distortion of the nuclear lattice around the vortices[106, 107]. Var-
ious types of experiments which will attempt to detect the vortex core charge
are also planned. In addition, an experiment to observe the temperature T and
magnetic field H dependence of the vortex core charge is expected in order to
establish the existence of the vortex core charging. Therefore, it is certainly
desired that detailed theoretical predictions for the temperature or magnetic
field dependence of the vortex core charge should be presented for experimental
verification.

In this chapter, we present the structure of the carrier density around a
static single vortex and its temperature dependence, solving self-consistently
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the Bogoliubov-de Gennes (BdG) equation[4]. On the basis of the solutions of
the BdG equation, we discuss not only the temperature dependence but also
the relation between the charging of the vortex core and the so-called Caroli-de
Gennes-Matricon (CdGM) states (or the vortex bound states).

The CdGM states, i.e., low-energy excited states due to vortices, were first
discussed theoretically by Caroli et al.[3] Their existence was experimentally
confirmed by Hess et al.[6, 12], who observed spatial dependence of the excita-
tion spectra around a vortex with scanning tunneling microscopy (STM). The
local density of states (LDOS) around a vortex, probed by STM, depends on
the Bogoliubov wave functions of the CdGM states uj(r) and vj(r), labeled by
the quantum number j. The LDOS N(r, E) (to be exact, thermally smeared
LDOS, i.e., the tunneling conductance) is given as

N(r, E) = −
∑

j

[

|uj(r)|2f ′(E − Ej) + |vj(r)|2f ′(E + Ej)
]

, (4.1)

where Ej is the eigenenergy and f(E) the Fermi function (the prime represents
the derivative). The STM enable us to extract detailed information on the wave
functions around a vortex. Here, we notice that the carrier density around a
vortex, n(r), also relates to these wave functions:

n(r) = 2
∑

Ej>0

[

|uj(r)|2f(Ej) + |vj(r)|2{1 − f(Ej)}
]

. (4.2)

The electric charging (or the inhomogeneous electron density distribution) around
a vortex is related to the LDOS through the wave functions uj(r) and vj(r).
This suggests unique potential ability of the STM; the structure of the LDOS
probed by STM relates to the spatial structure of the vortex core charge.

Regarding the previous theories of the mechanism of the vortex core charg-
ing, Khomskii and Freimuth[103] based their scenario on a normal-core model.
Assuming that the vortex core is a region of normal metal surrounded by a
superconducting material, they considered that the corresponding difference in
the chemical potential[108] leads to a redistribution of the electrons[103]. Blat-
ter et al.[104] discussed the charging mechanism, considering spatial variation of
the pair potential ∆(r) around a vortex. On the basis of the zero-temperature
version of Eq. (4.2), they obtained n(r) by combining the spatial variation of
the wave function v(r) with particle-hole asymmetry in the normal-state den-
sity of states at the Fermi level. The discussion was, however, based on a wave
function which was the same form as the uniform solution of the BdG equation,
namely[104]

vk(r) =

√

1

2

(

1 − ξk

Ek

)

, Ek =
√

ξ2
k + |∆(r)|2. (4.3)

The spatial variation of vk(r) was directly determined by the local value of ∆(r),
which is not exactly appropriate for the vortex system. It is desired that one
should base the calculation on the exact wave functions of the CdGM states.

Prompted by this motivation, we will self-consistently solve the BdG equa-
tion to obtain the exact wave functions uj(r) and vj(r) of the CdGM states
(including the extended states above the gap).
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4.2 Formulation

We start with the BdG equation[4] given, in a dimensionless form, by

[ −1

2kFξ0
∇2 − µ

]

uj(r) + ∆(r)vj(r) = Ejuj(r),

−
[ −1

2kFξ0
∇2 − µ

]

vj(r) + ∆∗(r)uj(r) = Ejvj(r), (4.4)

where µ is the chemical potential and ξ0(=vF/∆0) is the coherence length [∆0

is the uniform gap at T = 0, and kF (vF) is the Fermi wave number (velocity)].
In Eq. (4.4), the length (energy) scale is measured by ξ0 (∆0). For an isolated
single vortex in an extreme type-II superconductor, we may neglect the vector
potential in Eq. (4.4). To maintain macroscopic charge neutrality in the mate-
rial, in Eq. (4.2) we constrain the electron density in a uniform system to be
constant on the temperatures. We use µ determined at each temperature by
this constraint, which is equivalent at zero temperature to Eq. (4) of Ref. [108].
The pair potential is determined self-consistently by

∆(r) = g
∑

|Ej |≤ωD

uj(r)v∗j (r){1 − 2f (Ej)}, (4.5)

where g is the coupling constant and ωD the energy cutoff, which are related
by the BCS relation via the transition temperature Tc and the gap ∆0. We
set ωD = 20∆0. We consider, for clarity, an isolated vortex under the fol-
lowing conditions. (a) The system is a cylinder with a radius R. (b) The
Fermi surface is cylindrical. (c) The pairing has isotropic s-wave symmetry.
Thus the system has cylindrical symmetry. We write the eigenfunctions as
uj(r) = un,l(r) exp

[

i(l − 1
2 )θ

]

and vj(r) = vn,l(r) exp
[

i(l + 1
2 )θ

]

with ∆(r) =

∆(r) exp
[

− iθ
]

in polar coordinates, where n is the radial quantum number and
the angular momentum |l| = 1

2 , 3
2 , 5

2 , · · ·. We expand the eigenfunctions in terms
of the Bessel functions[3] Jm(r) as[16]

un,l(r) =

N
∑

i=1

cniφi|l− 1
2
|(r),

vn,l(r) =

N
∑

i=1

dniφi|l+ 1
2
|(r), (4.6)

where φim(r) = [
√

2/RJm+1(αim)]Jm(αimr/R) and αim is the i-th zero of
Jm(r). We set R = 20ξ0. The BdG equation is reduced to a 2N × 2N matrix
eigenvalue problem. This useful technique to solve Eq. (4.4), developed by Gygi
and Schlüter[16], has been utilized in some cases[16, 109, 94, 110, 111, 112, 98, 9].
Our system is characterized by a parameter kFξ0[111, 112, 9], important for the
present problem. From our standpoint, all interactions between the quasiparti-
cles are renormalized to g in Eq. (4.5) and additional screening does not exist
in the Hamiltonian. The screening for the charge ordering is excluded as in
the charge density wave studies[113]. If some screening effect is considered, in
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Figure 4.1: The spatial variation of the carrier density n(r) (in arbitrary units)
around the vortex for several temperatures and kFξ0 = 4. The contribution of
the extended states to n(r) at T = 0 is shown by the dotted line. The difference
between this contribution and the total n(r) at T = 0 is the contribution of the
bound states.

principle we may take it into account as an external potential in Eq. (4.4) and
solve self-consistently the equations together with an additional equation, e.g.,
the Poisson’s equation. Such a study, if meaningful, is left for a future work.
Using the calculated uj(r) and vj(r), we obtain the LDOS N(r, E) and the
carrier density n(r) from Eqs. (4.1) and (4.2), respectively.

4.3 Results

In Fig. 4.1, we present the spatial structure of the carrier density n(r) around
the vortex at several temperatures. The Friedel oscillation appears at low tem-
peratures, because each wave function of the low-energy CdGM states oscillates
with a period ' k−1

F . It is striking that the carrier density at the vortex center
exhibits strong temperature dependence and leads to a substantial charging at
low temperatures.

The carrier density at the vortex center in Fig. 4.1 decreases with respect
to that far from the core. Consequently, in the case of the present electron
system (i.e., the two-dimensional free electron system), the sign of the vortex
core charge is opposite to the sign of the electron which is the dominant charge
carrier in the present case. When the dominant charge carriers are holes, we
only have to treat these holes as carriers in that system instead of the electrons
and there are no changes in the formulation [Eqs. (4.1), (4.2), and (4.4)–(4.6)].
The density of the dominant carriers (holes) decreases near the vortex center in
this case as well.

The density of the dominant carriers decreases near the vortex center, as
long as the wave functions around a vortex for the dominant carriers are given
by Eq. (4.6)[114]. This is related to particle-hole asymmetry in the LDOS
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Figure 4.2: The spectral evolution of the LDOS N(E, r) (in arbitrary units) at
T/Tc = 0.05 and kFξ0 = 4.

inside the vortex core and can be understood in connection with the CdGM
states as follows. In the definition of the angular momentum l in Eq. (4.6),
the bound-state energy spectrum is El > 0 for l > 0 (and El < 0 for l < 0),
where El = −E−l. In Fig. 4.2, we show the spectral evolution obtained from
Eq. (4.1). In systems where kFξ0 is small (the quantum limit), the asymmetry
in the LDOS appears conspicuously. The two largest peaks near E = 0 are
noticeable [the peaks A and B]. The peak A at E = El=1/2 (> 0) is composed

of |ul=1/2(r)|2
(

= |vl=−1/2(r)|2
)

. The peak B at E = E−1/2 (< 0) is composed of

|v1/2(r)|2
(

= |u−1/2(r)|2
)

. From Eq. (4.6), u1/2(0) 6= 0 and v1/2(0) = 0 because
Jm(0) 6= 0 only for m = 0. The asymmetry between u1/2(r) and v1/2(r) leads to
the particle-hole asymmetry in the LDOS inside the core[9]. Now, according to
Eq. (4.2), n(r) is constructed from the wave functions which belong to E > 0.
The contribution from the extended states (E > ∆0) is presented as the dotted
line in Fig. 4.1. The remaining contribution to n(r) come from the bound
states. The lowest bound state v1/2(r), which belongs to the lowest bound state
eigenenergy E1/2 > 0, predominantly determines the structure of n(r) in the
vicinity of the vortex center. The amplitude |v1/2(r)|2 is equal to that of the
peak B in the LDOS. The spatial profile of n(r) is determined by the shape
of |v1/2(r)|2, i.e., the peak B. Since |v1/2(r)|2 decreases to zero with r → 0 as
seen from the spatial profile of the peak B in Fig. 4.2, we can infer that n(r)
decreases near the vortex center.

According to discussions[104] based on Eq. (4.3), the carrier density near
the vortex center has a sensitive dependence on the slope in the density of
states. It might be expected that if the derivative of the density of states is
negative, the carrier density increases at the vortex center. To examine it, we
have investigated the case of the energy band, k2/2m + k4/4m2ε0, (see Ref.
[115]) which has a negative derivative of the density of states in two dimensions.
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Figure 4.3: The temperature dependence of the carrier density n0 = n(r = 0)
at the vortex center. In the figure δn0/n∞ are plotted for several kFξ0, where
δn0 = |n0 − n∞| and n∞ (≡ ninf) is the plateau density far from the core.

In the calculation with a fixed µ, the carrier density far from the core certainly
decreases with the growth of the gap ∆(T ) on lowering T , which is consistent
with the precondition of Ref. [104]. In this situation, on the basis of Eq. (4.3),
the carrier density n(r) is naively expected to recover to the normal-state value
on approaching the center r = 0 where ∆(r) = 0. n(r) is then expected to
increase at the center. However, according to results of the calculation based
on the wave functions of the CdGM states, n(r) decreases at the vortex center.
We conclude that, the carrier density near the vortex center is determined by
the electronic structure inside the vortex core, which is insensitive to the slope
in the normal-state density of states at the Fermi level.

Let us focus on the magnitude of the core charge. The carrier density at the
vortex center, from which the order of magnitude of the core charge is estimated,
exhibits substantial temperature dependence as shown in Fig. 4.3. We plot
δn0/n∞, where δn0 = |n0 − n∞|, n0 = n(r = 0), and n∞ is the plateau density
n∞ = n(R/2), to which the calculated n(r) settles away from the core. We
note that the kFξ0 dependence of the density, δn0/n∞ ∼ (kFξ0)

−α ' (∆0/εF)α,
varies with the temperature (εF is the Fermi energy). Our numerical data show
that α ≈ 1 near T = 0 and α ≈ 2 near T = 0.5Tc. The exponent α is crucial to
the magnitude of the core charge. In most conventional superconductors, the
parameter kFξ0 is of the order of 100. It can be 1 – 10 in high-Tc cuprates.
Depending on the estimate of α, there can appear substantial differences in the
evaluation of the magnitude of the core charge. According to our results, α
depends on the temperature as above. To estimate the total core charge Qv per
unit length along the vortex axis, we consider the charging volume in Fig. 4.1
to be a cone with a height δn0 and a base radius r1 (2kFr1 = π). n(r) almost
recovers to n∞ initially at r1 ∼ k−1

F at low temperatures. Qv is evaluated as
Qv ≈ eπr2

1δn0/3. We consider a pancake vortex in a layer, and the distance
between each layer is d. In this case n∞ = 2πk2

F(2π/d)/8π3. We then obtain
Qv ∼ e(kF ξ0)

−αd−1 at low temperatures.
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4.4 Discussions

We should comment on the vortex dynamics in the context of the above temper-
ature dependence of n0, although the issue concerning the dynamics is seriously
controversial at the present time[116]. Feigel’man et al.[117] proposed a nondis-
sipative transverse force acting on a vortex originating from δn0 (see also Ref.
[115]). Kopnin et al. reported that the effect proposed by Feigel’man et al.[117]
can be understood from the viewpoint of the spectral flow theory, where n0

is regarded as the spectral flow parameter C0[118, 119]. The parameter C0 is
independent of the temperature. Hence it appears to be inconsistent with the
temperature dependence of n0 presented in this chapter. Even in a neutral
system with a fixed µ, n0 exhibits substantial temperature dependence in our
calculations. While Kopnin[120] discussed the temperature dependence of that
force, the temperature dependence of δn0 itself at the vortex center seems not
to be explicitly included there. We hope for a further investigation based on the
CdGM solutions[3] to reveal possible mutual relations between these theories
(Refs. [117], [118], [119], and [120]) and the significant temperature dependence
of n(r) in the present paper[121].

We point out a relation between the present work and STM experiments.
Maggio-Aprile et al.[18] and Renner et al.[19] observed spectral evolutions of the
LDOS inside the vortex cores in the high-Tc cuprates. They detected particle-
hole asymmetry in the LDOS near the core center (see Fig. 2 in Ref. [19]). We
expect that the asymmetry observed in the experiments has the same origin as
the asymmetry shown in Fig. 4.2 does (see also Ref. [9]). We speculate that
even if the superconductivity in the compounds consists of the preformed pairs
or is in the crossover region between the BCS superconductivity and the Bose-
Einstein condensation, the Bogoliubov wave functions would still be defined. If
so, the electronic state of the vortex core in the compounds is understood as the
Andreev scattering[48] and it is the coherent state. From our results based on the
Bogoliubov wave functions, we conclude that the particle-hole asymmetry inside
the vortex core observed in the experiments[18, 19] implies the corresponding
existence of the vortex charging. According to another STM experiment by
Renner et al.[25], the coherent electronic structure inside the core, observed as
sharp structure of the LDOS, is smeared gradually by impurity doping. We
predict that the vortex core charge decreases by impurity doping, because the
charging is related to the sharp LDOS structure inside the vortex core in our
scenario.

4.5 Summary

We investigated the electron density around a single vortex on the basis of the
BdG theory. Its temperature dependence was presented. We expect that ex-
perimental data regarded as the vortex core charge will exhibit the temperature
dependence as shown in Fig. 4.3. If such dependence is observed, those experi-
mental data will become solid evidence of the vortex core charging. We discussed
the microscopic charging mechanism, which is independent of the slope in the

density of states at the Fermi level, by considering the CdGM states around the
vortex. We pointed out the relation between the vortex bound states, probed po-
tentially by STM, and the vortex core charging, based on the inherent particle-
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hole asymmetry inside the vortex core originated from the CdGM states of the

vortex.

58



Chapter 5

Conclusion

A fresh understanding of the electronic structure around vortices has been ac-
quired since the success of the STM experiment by Hess et al. in 1989. It
was steadily established that the electronic structure inside the vortex core in
clean superconductors was quite different from the traditional normal-core elec-
tronic structure. From the theoretical point of view, a careful study based on
scrupulous consideration of the Bogoliubov wave functions or Green’s functions
around a vortex is the only way to a steady understanding of the vortex struc-
ture in clean superconductors. On the basis of the non-perturbation approach,
it was able to be revealed that anisotropy in the superconducting energy gap
has significant consequences in the real space STM images and spectra around
vortices. This opens a possibility that one could determine even the symmetry
of the pairing function through the (energy dependent) imaging spectroscopy of
a vortex by STM. The study presented in this thesis gave an actual example in
which the theory was able to be comparable with the experiment on the existing
material. It is expected that, future STM experiments are performed on various
superconductors in the vortex state, so that potential ability of the STM blooms
with future further development of theories.

Focusing on quantum-limit behavior, we were able to reveal essential proper-
ties of vortices which were concealed within the conventional non-quantum-limit
analysis. Especially, it was found that the local density of states inside a vor-
tex core generally has particle-hole asymmetry induced by the existence of the
vortex itself. It would have implications for various physical phenomena related
to vortices. As an example, the electric charging of a vortex core was discussed
on the basis of the particle-hole asymmetry inside the core. The atomic-length-
order oscillation of the Bogoliubov wave functions around the vortex and the
particle-hole asymmetry inside the vortex core cooperatively give rise to the
vortex core charge. It is not until we carefully consider the exact Bogoliubov
wave functions around a vortex that the relation between the vortex core charge
and the electronic structure around the vortex (or the vortex bound states) be-
comes clear. Future STM experiments are hopefully expected to investigate a
vortex core focusing on particle-hole asymmetry inside the vortex core. A direct
observation of the electric charge around a vortex by a new probe, the single-
electron transistor scanning electrometer (SETSE)[122], also deserves a great
deal of attention as a future hopeful experiment.

Vortices broadly appear in various situations around nature. They are of key
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importance not only to the condensed matter physics, but also to the superfluid
neutron star matter systems[98], the cosmology of the early Universe[123] and so
forth. The vortices will keep giving us the variety of nature as physical subjects
for both experimental and theoretical researches.
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[94] M. Franz and Z. Tešanović, Phys. Rev. Lett. 80, 4763 (1998).

[95] N. Hayashi, M. Ichioka, and K. Machida, Phys. Rev. B 56, 9052 (1997).

[96] S. Giorgini, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 77, 2754 (1996),
and earlier references therein.

[97] E. H. Brandt, Phys. Rev. Lett. 78, 2208 (1997).

[98] F. V. De Blasio and Ø. Elgarøy, nucl-th/9808057. The first investigation of
a vortex line in superfluid neutron star matter systems based on the BdG
theory was done by De Blasio and Elgarøy. It is probable for the quantum
limit to be realized in those systems.

[99] M. Yethiraj, D. McK. Paul, C. V. Tomy, and E. M. Forgan, Phys. Rev.
Lett. 78, 4849 (1997).

[100] M. R. Eskildsen, P. L. Gammel, B. P. Barber, A. P. Ramirez, D. J. Bishop,
N. H. Andersen, K. Mortensen, C. A. Bolle, C. M. Lieber, and P. C. Can-
field, Phys. Rev. Lett. 79, 487 (1997).

[101] J. E. Sonier, R. F. Kiefl, J. H. Brewer, D. Bonn, S. Dunsiger, R. Liang,
R. I. Miller, D. R. Noakes, and C. E. Stronach, cond-mat/9806064.
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