Unkonventionelle Supraleitung

Serie 2

Verteilung: 8.November	Abgabe: 15.November

2.1 Assuming that liquid ³He may be described as a Fermi gas (FG), with a molar volume of 37 cm^3 , estimate the following:

i) The Fermi temperature $T_{\rm F}$, the magnetic susceptibility $\chi_{\rm FG}$, the specific heat $C_{\rm FG}$, and the sound velocity $S_{\rm FG}$.

Then, to appreciate the deviations of the actual properties of ³He (Fermi *liquid*) from the expectations for a Fermi *gas*, compare your estimates with the experimental low-temperature (between 2 and 100 mK) values, given in the following table:

$C/RT (\mathrm{K}^{-1})$	$S ({\rm ms}^{-1})$	$\chi ~(\mathrm{cgs})$	$KT (K \cdot \mu W/m)$	ηT^2 (poise K ²)
2.78	183	$3.3 \times 10^{38} \beta^2$	500	2.5×10^{-6}

Low-Temperature Properties of ³He at Atmospheric Pressure

Here K is the thermal conductivity, η is the viscosity, β is the magnetic moment of the ³He nucleus in cgs units, and $R = N_A k_B$ is the gas constant (with N_A the Avogadro number: $N_A = 6.022 \times 10^{23}$, and k_B the Boltzmann constant: $k_B = 1.38 \times 10^{-16} \text{ erg} \cdot \text{K}^{-1}$).

<u>Hints</u>: Recall the following (refer to the lecture notes of Solid State I, or see standard textbooks on the solid state physics, such as, *"Introduction to Solid State Physics"* by C. Kittel)

- The density of ³He is $\rho = N/V = N_A/37 \text{cm}^3$ and the bare mass of ³He nucleus is $m_3 = 0.5008 \times 10^{-23}$ g.
- The Fermi wave number is $k_{\rm F} = (3\pi^2 \rho)^{1/3}$. The Fermi energy is $E_{\rm F} = \hbar^2 k_{\rm F}^2 / 2m_3$. $T_{\rm F} = E_{\rm F}/k_{\rm B}$. The density of states is $N(E_{\rm F}) = 2D(E_{\rm F}) = 3\rho/2E_{\rm F}$ [$D(E_{\rm F})$ is the density of states *per spin*]. $\hbar = 1.055 \times 10^{-27}$ erg s.
- $\chi_{\rm FG}$ and $C_{\rm FG}$ for a Fermi gas, may also be obtained from Eqs. II.3, II.4, II.5, and II.13 of the experiment lecture notes, setting the Fermi-liquid parameters F_l and Z_l to zero and replacing the magnetic moment $\mu_{\rm B}$ of a free electron by the ³He nuclear magnetic moment β , and $m^* \to m_3$.
- When calculating $C_{\rm FG}/RT$, use $N(E_{\rm F})$ per mol defined as $N(E_{\rm F}) = 3N_{\rm A}/2E_{\rm F}$.
- $S_{\rm FG}^2 = 1/(\kappa m_3 \rho)$, where κ is the compressibility [Use the expression for κ^{-1} shown in the problem **1.1** or Eq. II.8 in the experiment lecture notes, and note the chemical potential $\mu \approx E_{\rm F}$ at sufficiently low temperatures].

ii) How well localized in real space are the ³He atoms? (Provide a rough estimate of the uncertainty in the position of the ³He atoms in any direction, in units of Å.)

<u>Hint</u>: Consider the Heisenberg's uncertainty relation $\Delta x \Delta p \sim h$, $(p = \hbar k)$, or consider the wavelength of the de Broglie wave for a ³He atom with momentum $p = (2m_3 k_{\rm B} T_{\rm F})^{1/2}$.

2.2 Considering liquid ³He to be a Fermi *liquid* (FL).

i) What is the value of the effective mass (m_3^*/m_3) of the ³He atoms?

ii) Estimate the Fermi-liquid parameters Z_0 and F_1 for ³He.

iii) Compare the observed values of K and η , at 2 mK and atmospheric pressure (see the above table in 2.1), with those of other familiar liquids such as oil and water at 300 K, N₂ at 77 K, and ⁴He at 4.2 K.[‡]

<u>Hints</u>: For the comparison of the Fermi liquid (FL) and Fermi gas (FG) properties recall that

- The specific heat $C: C \propto N(E_{\rm F})$ and $N(E_{\rm F}) \propto 1/E_{\rm F} \propto m$. Then, consider the ratio $C_{\rm exp}/C_{\rm FG}$. ($C_{\rm exp}$ is the experimental value given in the table of Probl. **2.1**.)
- Refer to Eq. II.5 in the experiment lecture notes, for the effective mass $m_{FL} = m_3^*$ as a function of the bare mass, $m_{FG} = m_3$, and the Fermi-liquid parameter F_1 . Also, refer to Eq. II.13 for the magnetic susceptibility χ_{FL} , in which Z_0 appears. Note $\chi \propto N(E_{\rm F}) \propto m$. And $k_{\rm F} = (3\pi^2 \rho)^{1/3}$ is a function of only the density ρ and therefore $k_{\rm F}$ is the same for both the FG and the FL.
- From the table of 2.1, at T = 2 mK, the thermal conductivity $K = 500/(2 \times 10^{-3})$ [μ W/m] and the viscosity $\eta = 2.5 \times 10^{-6}/(2 \times 10^{-3})^2$ [poise].

[‡] <u>Sources</u>: For the properties of common liquids see: "Properties of Materials at low temperatures, a compendium", V.J. Johnson (Ed) NBS/USA 1961. For the properties of normal liquid ³He see: "The theory of Quantum Liquids" Vol. I, Chap. I, by D. Pines and P. Nozières, Addison-Wesley, 1966 (see references therein).