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I. DFT ENERGY MAPPING METHOD AND
ADDITIONAL RESULTS
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FIG. 1. Calculated total energies for the tetragonal I41/amd
structure of ZnCr2O4 at U = 2 eV, compared to the energies
of the Heisenberg Hamiltonian. The fit is almost perfect.

The density functional thoery (DFT) energy mapping
method requires the calculation of a large number of
magnetic energies for spin configurations; these are then
mapped to the Heisenberg Hamiltonian to extract the ex-
change interactions. For this purpose, we perform DFT
calculations with the all electron full potential local or-
bital (FPLO) basis [1] and the generalized gradient ap-
proximation to the exchange correlation functional [2].
We apply the DFT+U method [3] to the strongly corre-
lated 3d orbitals of the Cr3+ ions. We fixed the Hund’s
rule coupling JH to a literature value JH = 0.72 eV [4]
and only varied the on-site interaction strength U . An
important aspect to the approach is that we use many
more energies than would be required to solve for the
exchange interactions and find the optimal solution us-
ing singular value decomposition. In this way, we get
statistical information on the error bars of the exchange
couplings, and a randomly incorrect energy cannot derail

the entire calculation. As an example for the procedure,
Fig. 1 shows the comparison between DFT and Heisen-
berg Hamiltonian energies for one example (the U = 2 eV
line in Table VI). The almost perfect fit indicates that
the extracted nine exchange interactions reproduce the
24 DFT energies very well. All structures used in this
work are given in Table I.

In Tables II-IX, we present the full results of the DFT
energy mapping calculations. Bold lines are interpolated
to yield the experimental Curie-Weiss temperatures as
explained in the main text. Bonds are partly identified by
bond lengths which are given in the last line of the tables.
We converged the energies of the 2 × 1 × 1 supercells of
the cubic structures with 8 × 8 × 8 k meshes and the
energies of the 2× 2× 1 supercells of the tetragonal and
orthorhombic structures with 6× 6× 6 k meshes.

II. MORE DETAILS ABOUT THE CUBIC
MgCr2O4 HAMILTONIAN

For cubic MgCr2O4, our Hamiltonian (given as bold
line in Table III) differs slightly from the Hamiltonian ex-
tracted from inelastic neutron scattering by Bai et al. [9].
Therefore, we investigated if the DFT energy mapping
result has a significant dependence on the crystal struc-
ture we use for the calculation. Low temperature cubic
structures for MgCr2O4 have been determined by Dut-
ton et al. [5], Ortega-San-Mart́ın et al. [7] and by Gao
et al. [8]. The full results for the DFT energy mapping
for these structures is contained in Tables III, IV and V,
respectively. All three calculations agree in the crucial
details: the most important subleading coupling is anti-
ferromagnetic J3a ∼ 2K, followed by antiferromagnetic
J3b ∼ 0.5K and ferromagnetic J2 ∼ −0.4K. Thus, the
result of the DFT energy mapping is solid and the small
disagreement with the INS fit is probably not due to un-
certainties in the structure determination. In fact, we
also confirmed for the Gao et al. [8] structure that DFT
relaxation of the oxygen coordinate does not change this
conclusion. Neither does resolution of more exchange
interactions: For the Gao et al. [8] structure, we deter-
mined also J4 (and J6). At J4 = −0.07K, it is almost
impossible to resolve and not resolving it definitely does
not add signifcant error to any of the other couplings.
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TABLE I. Structures used in this work.
material space group Texp (K) a (Å) b (Å) c (Å) Zn/Mg Cr O reference
ZnCr2O4 Fd3̄m 15 8.31948 – – 8a 16d 32e (0.2622 0.2622 0.2622) [5]
ZnCr2O4 I41/amd 5.4 5.8875 – 8.3090 4b 8d 16h (0.000 0.52500 0.73790) [6]
ZnCr2O4 Fddd 5.7 8.343 8.3012 8.3144 8a 16d 32h (0.01193 0.23534 0.00722) [6]
MgCr2O4 Fd3̄m 15 8.32768 – – 8a 16d 32e (0.2591 0.2591 0.2591) [5]
MgCr2O4 Fd3̄m 19 8.3329 – – 8a 16d 32e (0.2612 0.2612 0.2612) [7]
MgCr2O4 Fd3̄m 20 8.3196 – – 8a 16d 32e (0.261 0.261 0.261) [8]
MgCr2O4 I41/amd 10 5.8961 – 8.3211 4b 8d 16h (0.000 0.5224 0.7393) [7]
MgCr2O4 Fddd 5.4 8.3041 8.3228 8.3526 8a 16d 32h (0.01130 0.23865 0.01093) [6]

FIG. 2. Structures of ZnCr2O4. The coordinates are given in Table I.

TABLE II. Exchange couplings of cubic ZnCr2O4, calculated
within GGA+U. The structure from Ref. [5] determined at
T = 15K was used.

U (eV) J1 (K) J2 (K) J3a (K) J3b (K) TCW (K)
1.25 62.0(4) 0.4(2) 2.5(3) 2.4(3) -508.5
1.5 56.0(3) 0.3(2) 2.3(3) 2.3(3) -458.7
1.75 50.6(3) 0.2(2) 2.0(2) 2.1(2) -414.2
1.90 47.6(3) 0.2(2) 1.9(2) 2.0(2) -390
2. 45.7(2) 0.2(2) 1.9(2) 2.0(2) -374.3

2.25 41.3(2) 0.1(1) 1.7(2) 1.8(2) -338.4
2.5 37.3(2) 0.1(1) 1.6(1) 1.7(1) -305.8

dCr−Cr(Å) 2.94138 5.09462 5.88276 5.88276

III. ELECTRONIC ENERGIES

For corroborating the spin-Peierls scenario we outline
in the main text, it would be best to consider the entire
energy balance to clearly see the place of the magnetic
energy gain in the spin-Peierls transition. However, the
electronic energy alone calculated from the experimental
crystal structures is insufficient for this purpose. A fu-
ture, more comprehensive study would involve ab-initio
molecular dynamics which would have two essential fea-
tures: (i) it would permit equilibration of the structures
at a given temperature near the transition, taking out
inevitable potential energy contributions that are due to
the fact that even a very precise experimental crystal
structure of ZnCr2O4 or MgCr2O4 at, say, T = 10K, will

TABLE III. Exchange couplings of cubic MgCr2O4, calcu-
lated within GGA+U. The structure from Ref. [5] determined
at T = 15K was used.

U (eV) J1 (K) J2 (K) J3a (K) J3b (K) TCW (K)
1.25 78.7(4) -0.4(3) 2.5(3) 0.7(3) -608.9
1.5 72.0(3) -0.4(2) 2.3(2) 0.7(3) -556.6
1.75 66.0(3) -0.4(2) 2.1(2) 0.6(2) -509.7
2. 60.6(2) -0.4(2) 1.9(2) 0.6(2) -467.5

2.25 55.7(2) -0.4(1) 1.7(2) 0.6(2) -429.3
2.46 51.9(2) -0.4(1) 1.6(2) 0.5(2) -400
2.5 51.2(2) -0.4(1) 1.6(1) 0.5(1) -394.6

dCr−Cr(Å) 2.94428 5.09964 5.88856 5.88856

be, due to error bars on lattice parameters and oxygen
position, a small distance in parameter space and there-
fore a non-negligible distance in energy from the DFT
optimum. (ii) This approach would also introduce the
small vibrational energy that is part of the energy bal-
ance at ∼ 14K. As a rough approximation to this, we de-
termine an approximate electronic energy that is relevant
to the transition. We use DFT to relax the only free in-
ternal position in the three crystal structures, the oxygen
position. We do this because experimentally, determin-
ing the oxygen position precisely is difficult, in particular
using x-ray diffraction, so this position is likely to carry
some error. Note that full structural relaxation would
not be helpful here because for the T ∼ 14K phase tran-
sition, the zero temperature lattice parameter and lat-
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TABLE IV. Exchange couplings of cubic MgCr2O4, calculated
within GGA+U. The structure from Ref. [7] determined at
T = 19K by neutron diffraction was used.

U (eV) J1 (K) J2 (K) J3a (K) J3b (K) TCW (K)
1.5 61.6(3) -0.2(2) 2.5(3) 0.7(3) -482.7
1.75 56.1(3) -0.2(2) 2.2(2) 0.7(3) -438.7
1.994 51.2(2) -0.3(2) 2.0(2) 0.6(3) 400
2. 51.1(2) -0.3(2) 2.0(2) 0.6(2) -399.1

2.25 46.5(2) -0.3(1) 1.9(2) 0.6(2) -363.5
2.5 42.4(2) -0.3(1) 1.7(2) 0.5(2) -331.1
2.75 38.7(2) -0.3(1) 1.6(1) 0.5(2) -301.7

dCr−Cr(Å) 2.94613 5.10284 5.89225 5.89225

TABLE V. Exchange couplings of cubic MgCr2O4, calculated
within GGA+U. The structure from Ref. [8] determined at
T = 20K by powder synchrotron X-ray diffraction was used.

U (eV) J1 (K) J2 (K) J3a (K) J3b (K) TCW (K)
1.5 63.9(3) -0.2(2) 2.5(3) 0.8(3) -500.6
1.75 58.2(3) -0.2(2) 2.3(2) 0.7(3) -455.3
2. 53.1(2) -0.3(2) 2.1(2) 0.7(2) -414.7

2.097 51.2(2) -0.3(2) 2.0(2) 0.6(2) 400
2.25 48.4(2) -0.3(2) 1.9(2) 0.6(2) -378.1
2.5 44.2(2) -0.3(1) 1.7(2) 0.6(2) -344.8
2.75 40.4(2) -0.3(1) 1.6(1) 0.5(2) -314.5

dCr−Cr(Å) 2.94142 5.09469 5.88285 5.88285
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FIG. 3. Comparison of electronic energies of ZnCr2O4 or
MgCr2O4 obtained by optimizing the oxygen positions using
nonmagnetic GGA and spin-polarized GGA+U calculations.
Abbreviations C-Zn, T-Zn and O-Zn are for cubic ZnCr2O4,
tetragonal ZnCr2O4 and orthorhombic ZnCr2O4 structures,
and the same holds for MgCr2O4. At the C-Mg label, energies
for three cubic MgCr2O4 structures are given in the order
Dutton et al. [5], Ortega-San-Mart́ın et al. [7] and Gao et
al. [8].

tice symmetry are not relevant. Fig. 3 shows the two
sets of energies, determined with nonmagnetic GGA and
spin-polarized GGA+U calculations, respectively. As the

GGA+U, U = 2 eV functional describes the magnetic
Hamiltonian correctly, we consider this to be the better
approximation. The figure demonstrates that electroni-
cally, the structures with different symmetry can be ex-
tremely close, as for example the ZnCr2O4 cubic and or-
thorhombic structures or the MgCr2O4 cubic and tetrag-
onal structures, both calculated within GGA+U. This
means that the magnetic energy jump of ∼ 15K per for-
mula unit (note that Figs. 2(c,d) of the main text give
energies per spin) is very relevant in comparison which
supports our spin-Peierls scenario. However, we can also
see that some other electronic energy comparisons are
not that close even if energy scales are still comparable.
It is these cases where the more comprehensive approach
outlined above of finite temperature ab-initio molecular
dynamics would be needed for a definite answer because
it would allow reconciliation between lattice parameters
determined near the transition temperature and DFT op-
tima at the same temperature. To show that experimen-
tal crystal structures with the same symmetry taken at
very similar temperatures can yield substantially differ-
ent electronic energies, we have included in Fig. 3 elec-
tronic energies for the three cubic MgCr2O4 structures
we considered. The fact that their energies can vary by
as much as 100K shows that the present approach is in-
complete and needs further investigation which is beyond
the scope of the present study.

IV. DETAILS OF MONTE CARLO
SIMULATIONS

Monte Carlo simulations are performed on systems of
classical Heisenberg spins with N = 16L3 sites, where
L3 is the number of cubic unit cells. The spin length
is

√
S(S + 1) =

√
15/2. Several update algorithms are

used together: the heatbath method, over-relaxation and
parallel tempering. Parallel tempering is done every 100
Monte Carlo steps (MCs) and overrelaxation is done at
every MCs. Thermalization is made in two steps: first a
slow annealing from high temperature to the temperature
of measurement T during teq MCs followed by teq MCs
at temperature T . After thermalization, measurements
are done every 10 MCs during tm MCs.
The parameters of our simulations are N = 8192

spins for tm = 2 teq = 107 MCs for thermodynamic
quantities in Fig. 3(a,b,c,d), and N = 128000 spins for
tm = 10 teq = 5. 105 MCs for the structure factor in
Fig. 3(e).
The structure factor in Fig. 3(e) has been computed as

would be measured by neutron scattering:

S(q) = F (|q|) 1

N

∣∣∣∣∣
N∑
i=1

S⊥
i exp(ıq · ri)

∣∣∣∣∣ , (1)

where ri is the position of site i and S⊥
i is the vector spin

Si projected in the plane orthogonal to the wavevector
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TABLE VI. Exchange couplings of tetragonal ZnCr2O4, calculated within GGA+U. The structure from Ref. [6] determined at
T = 5.4K was used.

U (eV) Jxy
1 (K) Jz

1 (K) J2 (K) J ′
2 (K) Jxy

3a (K) Jxy
3b (K) Jz

3a (K) Jz
3b (K) J7 (K) TCW (K)

1.25 61.9(3) 60.1(2) 0.5(5) 0.5(2) 2.6(4) 2.2(4) 2.7(5) 2.2(4) -0.2(2) -502.2
1.5 55.8(3) 54.2(2) 0.4(4) 0.4(2) 2.3(3) 2.1(3) 2.4(4) 2.1(3) -0.2(2) -452.7
1.75 50.4(2) 48.8(2) 0.3(4) 0.3(1) 2.1(3) 2.0(3) 2.1(3) 1.9(3) -0.2(1) -408.6
1.86 48.2(2) 46.6(2) 0.3(4) 0.3(1) 2.0(3) 1.9(3) 2.0(3) 1.9(3) -0.1(1) -390
2. 45.6(2) 44.1(1) 0.2(3) 0.3(1) 1.9(2) 1.8(2) 1.9(3) 1.8(2) -0.1(1) -368.9

2.25 41.2(2) 39.7(1) 0.2(3) 0.2(1) 1.7(2) 1.7(2) 1.7(2) 1.7(2) -0.1(1) -333.2
2.5 37.2(2) 35.8(1) 0.1(2) 0.2(1) 1.6(2) 1.6(2) 1.6(2) 1.6(2) -0.1(1) -300.9

dCr−Cr(Å) 2.94071 2.94375 5.09171 5.09697 5.88143 5.88143 5.8875 5.8875 6.5702

TABLE VII. Exchange couplings of tetragonal MgCr2O4, calculated within GGA+U. The structure from Ref. [7] determined
at T = 10K was used.

U (eV) Jxy
1 (K) Jz

1 (K) J2 (K) J ′
2 (K) Jxy

3a (K) Jxy
3b (K) Jz

3a (K) Jz
3b (K) J7 (K) TCW (K)

1.25 69.4(4) 67.3(3) -0.1(6) 0.1(2) 2.6(5) 0.4(5) 3.1(5) 0.8(5) -0.4(2) -539.1
1.5 63.1(3) 61.1(2) -0.1(5) 0.0(2) 2.4(4) 0.4(4) 2.8(5) 0.7(4) -0.3(2) -489.4
1.75 57.5(3) 55.6(2) -0.2(4) 0.0(2) 2.2(3) 0.4(3) 2.5(4) 0.7(3) -0.3(2) -445.0
2. 52.5(2) 50.6(2) -0.2(4) -0.1(1) 2.0(3) 0.4(3) 2.2(3) 0.6(3) -0.3(1) -405.2

2.03 51.8(2) 50.0(2) -0.2(4) -0.1(1) 2.0(3) 0.4(3) 2.2(3) 0.6(3) -0.3(1) -400
2.25 47.9(2) 46.1(2) -0.2(3) -0.1(1) 1.8(2) 0.4(2) 2.0(3) 0.6(2) -0.2(1) -369.2
2.5 43.7(2) 42.0(1) -0.2(3) -0.1(1) 1.7(2) 0.4(2) 1.8(2) 0.5(2) -0.2(1) -336.7

dCr−Cr(Å) 2.945 2.94805 5.09913 5.10441 5.89001 5.89001 5.8961 5.8961 6.57977
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FIG. 4. Monte Carlo simulations: Specific heat (left) and energy per spin (right) for parameters of MgCr2O4 obtained
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in simulations for the cubic structure (dashed line at 5K) is lower than the experimental value of TN . Using Bai’s parameters
[9] does not affect the main conclusions of our paper.

q, as seen by neutrons. F (q) is the tabulated form factor of Cr(III) ions.
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TABLE VIII. Exchange couplings of orthorhombic ZnCr2O4, calculated within GGA+U. The structure from Ref. [6] determined
at T = 5.7K was used.

U (eV) Jx
1 (K) Jy

1 (K) Jz
1 (K) J2 (K) J ′

2 (K) J ′′
2 (K) Jx

3a (K) Jx
3b (K) Jz

3a (K) Jz
3b (K) Jy

3a (K) TCW (K)
1.5 62.8(3) 46.9(2) 73.0(3) 0.2(7) 0.6(2) -0.4(7) 5.2(3) 4.6(4) 2.8(3) 2.2(3) -1.0(3) -493.6
1.75 57.1(2) 42.0(2) 66.7(2) 0.1(6) 0.5(2) -0.4(6) 4.7(3) 4.3(3) 2.6(3) 2.1(2) -0.9(3) -447.6
2. 52.0(2) 37.6(2) 61.0(2) 0.1(5) 0.4(2) -0.3(5) 4.2(2) 3.9(2) 2.3(2) 1.9(2) -0.8(2) -406.3

2.11 49.9(2) 35.9(2) 58.8(2) 0.0(5) 0.4(2) -0.3(5) 4.1(2) 3.8(2) 2.2(2) 1.9(2) -0.8(2) -390
2.25 47.3(2) 33.6(2) 55.9(2) 0.0(4) 0.4(1) -0.3(4) 3.8(2) 3.7(2) 2.1(2) 1.8(2) -0.7(2) -369.1
2.5 43.1(2) 30.0(1) 51.3(1) 0.0(3) 0.3(1) -0.3(3) 3.5(2) 3.4(2) 2.0(2) 1.7(2) -0.7(2) -335.3

dCr−Cr(Å) 2.93725 2.94232 2.94464 5.08905 5.09309 5.10185 5.8745 5.8745 5.88463 5.88463 5.88929

TABLE IX. Exchange couplings of orthorhombic MgCr2O4, calculated within GGA+U. The structure from Ref. [6] determined
at T = 5.4K was used.

U (eV) Jx
1 (K) Jy

1 (K) Jz
1 (K) J2 (K) J ′

2 (K) J ′′
2 (K) Jx

3a (K) Jx
3b (K) Jz

3a (K) Jz
3b (K) Jy

3a (K) TCW (K)
1.5 62.0(5) 62.3(5) 62.8(4) 0.8(1.3) -1.3(1.4) 0.3(5) 3.0(5) 0.7(3) 4.4(7) 1.0(5) 1.1(4) -491.8
1.75 56.4(4) 56.8(4) 57.1(4) 0.6(1.1) -1.2(1.1) 0.2(4) 2.6(4) 0.6(2) 3.9(5) 1.0(4) 1.1(4) -446.7
2. 51.4(3) 51.8(3) 52.0(3) 0.4(9) -1.0(9) 0.1(3) 2.4(3) 0.6(2) 3.4(5) 1.0(4) 1.0(3) -406.3

2.04 50.6(2) 51.0(3) 51.2(3) 0.4(9) -1.0(9) 0.1(3) 2.4(3) 0.6(2) 3.4(5) 0.9(4) 1.0(3) -400
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