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SUPPLEMENTARY MATERIAL

S1. Density functional calculations

Structure relaxations were performed with the
Car-Parrinello projector augmented wave (CP-PAW)
method [1]. We employed a plane wave cutoff of 30 Ryd
for the plane wave part and of 120 Ryd for the density,
respectively, and we used the following sets of (s,p,d)
projector functions per angular momentum: Cu(2,2,2),
O(2,2,1), C(2,2,1) and H(2,0,0). We employed a (4 ×
4 × 4) k mesh and the P 21/c symmetry was preserved
during the relaxation with the help of 60 constraints.
The relaxation with the generalized gradient approxima-
tion (GGA) functional [2] resulted in small bond length
changes of up to 4% and in angle changes up to 2◦ com-
pared to the experimental data from Ref. [3].

The relative strengths of the exchange pathways in
azurite have been obtained by using the electronic
structure technique of muffin-tin orbital (MTO) based
NMTO-downfolding [4, 5].

DFT calculations were performed with the full po-
tential local orbital method [6] (FPLO), version 8.50,
and the full potential augmented plane wave (FLAPW)
method as implemented in the WIEN2k [7] code, which
has been used to crosscheck the FPLO results for selected
supercells. Total energies for different spin configura-
tions were obtained in the GGA+U formalism, employing
both the atomic limit (AL) as well as the around mean
field (AMF) double counting correction. The AL double
counting correction turned out to be the better choice for
the calculation of a realistic set of model parameters for
azurite because the ratios Ji/J2 are strongly dependent
on U in the case of the AMF double counting correction
and can even adopt unphysical values (J1, J3 > J2).

Table SI shows the complete set of exchange coupling
parameters Ji, obtained with the FPLO code (version

U [eV] J1 J2 J3 J4 J5 J6 J7 Jm Jd

4 34.1 145.4 35.4 5.9 2.9 16.2 –1.7 5.9 –1.7

6 21.3 82.8 21.2 3.8 1.5 8.6 –1.8 3.9 –0.8

8 13.5 42.8 12.5 2.7 0.6 4.4 –1.7 2.6 –0.4

TABLE SI. Exchange constants in K derived from FPLO
GGA+U calculations with the atomic limit double count-
ing correction. Slater parameters are chosen as F0 = U ,
F2 = 8.6 eV and F4 = 5.4 eV, i.e., JH = (F2 +F4)/14 = 1 eV.

8.50) employing the GGA+U functional with atomic
limit double counting correction. The calculations were
repeated for three choices of the Coulomb correlation
strength, U = 4 eV, 6 eV and 8 eV. The Hund’s rule
coupling JH was chosen as JH = 1 eV. The dominant
coupling exhibits a proportionality to 1/U . Note that
the relative importance of the monomer-monomer cou-
pling increases as U is increased.

J2 is antiferromagnetic and the dominant interaction.
One can therefore apply perturbative considerations in
Ji/J2 and argue that interchain excitations can be ne-
glected to a first approximation (see Section S4). The es-
sential items are that the interchain exchange constants
J4 to J7 are small compared to J2 and that they con-
nect only to dimers of the neighboring chains (compare
Figs. 1 (c) and (d)).

This suggests to reduce the set of interaction param-
eters to a minimal model including J1, J2, J3, and Jm
only. In order to determine the effective values of these
exchange constants quantitatively, we performed a least-
square fit for the energy differences including only J1,
J2, J3, and Jm in the model and set all other parameters
to zero. It should be noted that the exchange constants
obtained in this way are effective parameters, which con-
tain the effect of the remaining parameters not included
in the model as statistical average. Furthermore, it is also
important that the procedure of statistical averaging is
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U [eV] J1 J2 J3 Jm

4 50.5 151.1 35.7 3.4

6 30.0 85.4 21.0 3.0

8 17.9 43.9 12.0 2.4

TABLE SII. Effective exchange constants in K for a minimal
model including only J1, J2, J3, and Jm obtained via statis-
tical averaging (see text).

done over a sufficiently large manifold, since otherwise
the effective parameters are to some degree arbitrary.
The results are shown in Table SII. It can be seen that
in the minimal model the effective parameters J1 and J3
show a strong asymmetry, which is not present in the full
set of interaction parameters shown in Table SI. This is
mainly due to integrating out of the fairly large coupling
parameter J6 in the model, which couples Cu monomer
with Cu dimer atoms and in this way provides an effec-
tive asymmetry of J1 and J3 (inclusion of J6 in addition
to the minimal model again results in nearly identical J1
and J3 values).

S2. DMRG calculations

The theoretical magnetization curve in Fig. 3 (b) has
been obtained with the static density-matrix renormal-
ization group (DMRG) method [8, 9] using m = 300
states per block and four sweeps in each magnetiza-
tion sector. The theory curves in Figs. 3 (c), 3 (d),
and S1 have been obtained using transfer-matrix DMRG
(TMRG [10, 11]) for the infinite system and m = 300.
Note that these are in agreement with previous TMRG
computations [12, 13] for the parameters of Ref. [14].

The transverse dynamic structure factor of Fig. 3 (e)
has been computed by dynamic DMRG [15] for the pa-
rameters of Table I, line 3, using open chains withN = 60
sites, up to m = 200 states per block and two sweeps per
energy point. Note that for a meaningful comparison of
scattering intensities with experiment, we had to take the
precise positions of the copper atoms in azurite into ac-
count and use the same momentum perpendicular to the
chain direction as in the experiment [16].

S3. Experiment

The specific heat of a plate-like azurite single crystal
with the total mass of 0.36 mg was measured, employ-
ing an ac-calorimetry according to Ref. [17]. The data
were taken in the temperature range 1.6 K ≤ T ≤ 30 K
and in magnetic fields up to 8 T. The experiments were
performed using a home-built AC-calorimeter especially
designed for small plate-like samples. The sample holder,
consisting of a resistive thermometer (Cernox CX-1080-

BG) and a heater, is attached to a 4He-bath cryostat
equipped with a superconducting magnet.

The magnetic susceptibility of azurite was measured
in the temperature range between 2 K ≤ T ≤ 300 K
and in magnetic fields up to H = 4 T using a Quantum
Design SQUID magnetometer. The orientation of the
single crystal (mass 55.26 mg) with respect to the exter-
nal field was H ⊥ b-axis. The data were corrected for the
temperature-independent diamagnetic core contribution,
according to Ref. [18] and the magnetic contribution of
the sample holder. The latter was determined from an
independent measurement.

S4. Perturbative treatment of interchain coupling

For a large and antiferromagnetic J2, one can use per-
turbative arguments to integrate out the copper dimers
and generate effective interactions between the monomer
copper atoms. In the limit of infinite J2, the two spins on
the corresponding dimer bond are in their singlet state
1√
2

(| ↑↓〉 − | ↓↑〉). In this limit, the only interaction be-

tween the monomer spins is Jm. However, one can use
degenerate perturbation theory in Ji/J2 to generate fur-
ther interactions between the monomer spins.

The second-order contribution to the monomer-
monomer interactions within a chain is known [19] to
be given by

J̃m =
(J1 − J3)2

2 J2
. (1)

This effective interaction enhances the bare interaction
Jm between the monomers along the chain provided that
J1 6= J3.

The interactions J4 and J7 connect dimers of neighbor-
ing chains (see Fig. 1 (d)). Accordingly, they contribute
to interchain monomer-monomer exchange only in third
order in perturbation theory and generate exchanges
∝ J2

1 J4/J
2
2 , J1 J3 J4/J

2
2 , J2

1 J7/J
2
2 and J1 J3 J7/J

2
2 . Us-

ing the values of the Ji in Table I, line 1, these effective
interchain exchanges are estimated to be at most on the
order of 0.3 K ≈ Jm/10 and thus can be neglected safely.

By contrast, J5 and J6 contribute in second order per-
turbation theory to interchain coupling since they con-
nect dimers with monomers of the neighboring chains
(see Fig. 1 (c)). The contribution from J5 is given by
(J1 + J3) J5/(2 J2). Inserting the numbers from Ta-
ble I, line 1, this again turns out to be on the order
of 0.2 K ≈ Jm/10, i.e., also J5 is sufficiently small to be
neglected safely.

The exchange constant J6 also contributes terms pro-
portional to J1 J6/J2 and J3 J6/J2 to interchain effec-
tive monomer-monomer coupling. Inserting again the
values of J1, J2, J3, and J6 in Table I, line 1 into the
second-order expression, we now obtain a contribution
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FIG. S1. TMRG and ED results for the zero-field specific
heat per spin. The ED computations were performed for N =
18 spins. We show results both for our new parameter set,
Table I, line 3, as well as for Kikuchi’s original parameter
set Table I, line 4 J1 = 19 K, J2 = 24 K, J3 = 8.6 K, and
Jm = 0 [14].

on the order of 1.4 K ≈ Jm/2 to the effective interchain
monomer-monomer coupling. On the one hand, this is
still sufficiently small not to give rise to relevant dis-
persion of the excitations perpendicular to the chains,
in agreement with inelastic neutron scattering on azu-
rite [16]. On the other hand, this value is too large to
neglect J6 completely.

In fact, in a mean-field picture, the monomer moments
influence the effective monomer-monomer exchange along
the neighboring chains. The reason is that the interchain
couplings connect the monomer spins only to one of the
dimer spins on the neighboring chains, thus breaking the
symmetry of the exchange process along the chains and
giving rise to corrections to (1). In this mean-field pic-
ture, the interchain coupling J6 has the same effect as
the intrachain coupling J1.

These arguments suggest that one may go from the
full three-dimensional model to an effective chain model
by neglecting J4, J5, and J7, and adding J6 to J1. The
difference between lines 1 and 2 of Table I or Tables SI
and SII can indeed be understood at least qualitatively
in this way although the reduction has been performed
in a completely different manner.

S5. Specific heat

Experimentally, two anomalies have been observed
in the magnetic specific heat at T ≈ 18 K [14] and
T ≈ 4 K [14, 16] (compare also top panel of Fig. 3 (d)).
Fig. S1 shows TMRG results for the specific heat per spin
C in zero magnetic field. For our new parameter set, Ta-

N monomer 〈Sz
i 〉 dimer 〈Sz

i 〉
18 0.47342867 0.01328567

24 0.47343148 0.01328426

30 0.47343154 0.01328423

36 0.47343154 0.01328423

TABLE SIII. Structure of the M = 1/3 plateau state for rings
with N sites and the parameters in line 3 of Table I.

ble I, line 3 (black line in Fig. S1), we find a maximum
of C at a temperature slightly above 10 K and a low-
temperature feature at T ≈ 3 K. Although this does not
reproduce the experimental temperatures exactly, it is in
better agreement with the experimental findings than the
results for the original parameter set of Ref. [14] (red line
in Fig. S1).

Fig. S1 includes exact diagonalization (ED) results for
rings with N = 18 spins. We observe that finite-size
effects have no visible effect for T >∼ 6 K.

S6. Structure of the 1/3 plateau

The 1/3 plateau state of azurite has been characterized
using NMR [20], which amounts to a measurement of the
expectation values 〈Sz

i 〉. This NMR study showed that
the dimer spins are essentially in their singlet state with
just 10% spin polarization on the dimers. Correspond-
ingly, the monomer spins are almost polarized on the 1/3
plateau.

Using ED for rings with N = 18, 24, 30, and 36 sites
and our parameters line 3 of Table I, we find the struc-
ture of theM = 1/3 plateau state presented in Table SIII.
We observe that the numerical results for the expectation
values converge rapidly with system size and read off that
the dimer spins are about 2.7% polarized each. This is
only slightly smaller than the 10% observed in Ref. [20].
We note that the NMR experiment [20] involved a ro-
tation around the crystallographic a-axis and speculate
that this gives rise to non-commuting fields which en-
hance the dimer polarization as compared to the ideal
Heisenberg model.

S7. Excitation spectrum on the 1/3 plateau

The excitation spectrum above the 1/3 plateau of
azurite has been probed by inelastic neutron scatter-
ing at H = 14 T [16]. These experiments observed
two cosine-like bands of magnetic excitations with a
minimum energy at the antiferromagnetic wave vector
k = π. The two bands are sketched by the dashed lines
in Figs. S2–S6. They are centered around ≈ 1.3 meV
and ≈ 2.35 meV and have a width of 20.2 K and 3.6 K,
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FIG. S2. Excitation spectrum at H = 14 T as computed
by exact diagonalization with the parameters in Table I, line
3. Solid black (red) lines connect the lowest excitations with
spin quantum numbers smaller (larger) by one than that of
the 1/3 plateau state. Dashed lines indicate the location of
the experimental result [16] for the corresponding excitations.
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FIG. S3. Same as Fig. S2, but for Kikuchi’s original parame-
ter set Table I, line 4, J1 = 19 K, J2 = 24 K, J3 = 8.6 K, and
Jm = 0 [14].
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FIG. S4. Same as Fig. S2, but for the parameter set of Gu
and Su [12, 13]: J1 = 23 K, J2 = 43.7 K, J3 = −9.3 K, and
Jm = 0.
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FIG. S5. Same as Fig. S2, but for a first parameter set pro-
posed in Ref. [16]: J1 = 1 K, J2 = 55 K, J3 = −20 K, and
Jm = 0.

0 π/4 π/2 3 π/4 π
k

0

0.5

1

1.5

2

2.5

3

E
 [m

eV
]

N=18, S
z
=2

N=18, S
z
=3

N=18, S
z
=4

N=24, S
z
=3

N=24, S
z
=4

N=24, S
z
=5

N=30, S
z
=4

N=30, S
z
=5

N=30, S
z
=6

FIG. S6. Same as Fig. S2, but for the second parameter set
proposed in Ref. [16]: J1 = 1 K, J2 = 55 K, J3 = −20 K, and
Jm = 6.5 K.

respectively. In particular the ratio of the bandwidths of
the upper and lower bands is 1.8/10.1 ≈ 1/5.6.

Figs. S2–S6 show the excitation spectrum as a func-
tion of momentum k along the chain direction on the
1/3 plateau computed by exact diagonalization with pe-
riodic boundary conditions. Black, blue, and red symbols
correspond to excitations with ∆Sz = −1, 0, and 1, re-
spectively. The blue symbol at k = 0 and energy E = 0
corresponds to the ground state of the 1/3 plateau. A
Fourier analysis of the lowest ∆Sz = ±1 excitations for
N = 30 sites yields the solid lines in Figs. S2–S6. One
observes that the lowest ∆Sz = ±1 excitations collapse
onto these lines for all sizes N , demonstrating that the
main effect of a finite system size N on these excitations
is a discretization of the allowed values of the momentum
k (see also [21]).

First let us look at our final parameter set Table I, line
3. The lowest black and red excitation in Fig. S2, i.e., the
two solid curves correspond to the two dispersion curves
already observed in Fig. 3 (e). Note that energy and mo-
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mentum resolution in Fig. 3 (e) is essentially limited by
the open ends of the finite-size chains which were used for
the dynamic DMRG computations. Evidently, inspec-
tion of the momentum-resolved bare energy levels shown
in Fig. S2 yields better energy-momentum resolution at
the expense of losing information about the neutron in-
tensities of the excitations. Indeed, in Fig. S2 we see a
large number of excitations at energies above 2 meV and
only the dynamic structure factor of Fig. 3 (e) shows that
they have very little contribution to the inelastic neutron
cross section. From the bare energy levels of Fig. S2, we
read off a bandwidth ratio of 1/5.3 which is very close to
the experimental value [16].

Fig. S3 shows the expected excitation spectrum for
Kikuchi’s original parameter set Table I, line 4 [14]. Note
that we have computed only the 20 lowest excitations in
some sectors for N ≥ 24 and that the density of states is
already quite large at energies above 1 meV in the present
case. Hence, some levels may be missing in Fig. S3 at
energies E > 2 meV for Sz ≤ N/6 and N ≥ 24. We nev-
ertheless keep this region in order to be able to show the
location of the excitations observed by inelastic neutron
scattering on azurite [16] (dashed lines). In the present
case it is not so easy to distinguish two cosine-like bands
in the numerical results. If one uses the lowest black and
red energy level, respectively, one finds a bandwidth ratio
close to 1/1.9, quite far off the experimental result [16].

Further proposals of parameters sets [12, 13, 16] con-
tain a ferromagnetic J3. Ref. [22] already pointed out
that a ferromagnetic J3 is hard to reconcile with the crys-
tal structure of azurite given the dx2−y2 character of the
relevant copper orbitals. We will nevertheless look at the
excitation spectra for these parameter sets and demon-
strate that they are either inconsistent or at least yield
less good agreement with the neutron scattering experi-
ments [16] than our final parameter set given in Table I,
line 3.

The parameter set of Gu and Su [12, 13] J1 = 23 K,
J2 = 43.7 K, Jxy

3 = −6.9 K, Jz
3 = −11.73 K, Jm = 0

has an artificially large magnetic anisotropy in the sup-
posedly ferromagnetic J3. Replacing this by an aver-
age value J3 = −9.3 K, we find the excitation spectrum
shown in Fig. S4. Not only is the bandwidth ratio of ap-
proximately 1/1.8 again far away from the experimental
result [16], but in this case the upper excitation branch
is about 1 meV (≈ 10 K) too high in energy.

Finally, Ref. [16] tried to invert perturbative results
for the effective monomer-monomer and dimer-dimer ex-
changes along the chain in order to propose J1 = 1 K,
J2 = 55 K and a ferromagnetic J3 = −20 K. We dis-
cuss two variants of these parameters, starting in Fig. S5
with Jm = 0. In this case, we find a bandwidth ratio
1/1.4 which is clearly inconsistent with the experimental
result. However, it was already proposed in Ref. [16] to
improve this behavior by adding a Jm = 6.5 K. The re-
sult with such a Jm included is shown in Fig. S6. While

inclusion of Jm = 6.5 K improves the agreement with
experiment [16], the result is not quite as good for our
final parameter set Table I, line 3. In particular, the
bandwidth ratio is just 1/4.

To summarize the discussion of this subsection, we
have demonstrated that our final parameter set Table I,
line 3 yields the best agreement with inelastic neutron
scattering on the 1/3 plateau [16] among the proposals
of Refs. [12–14, 16]. In particular, inelastic neutron scat-
tering is inconsistent with the parameters proposed in
Refs. [12–14].

S8. Perspectives

There are some further refinements of the model
for azurite to be implemented in future investigations.
Firstly, we have argued interchain coupling to be unim-
portant for a basic description of azurite, but, although
small, it is present and likely to be responsible for the
following features: (i) The strong curvature at the lower
edge of 1/3 plateau in the theoretical magnetization
curve of Fig. 3 (b) versus the smoother behavior ob-
served in the experiment for H ⊥ b is characteristic
for one- versus higher-dimensional physics [23–25]. (ii)
An ordering transition at temperatures slightly below
2 K [14, 26, 27] is evident in Fig. 3 (d), i.e., interchain
coupling affects thermodynamic properties at tempera-
tures of a few Kelvin. In view of the success of the
effective one-dimensional model Table I, line 3, we are
confident that our prediction of Table I, line 1 for the ex-
change ratios of the full three-dimensional model is also
reliable. Indeed, it would be very interesting to compare
the predictions of this three-dimensional model for the
zero-field ordered state with the corresponding recent ex-
perimental observations [28]. However, this will require
very different methods from the present work and thus is
an interesting topic for future investigations.

Secondly, we have neglected magnetic anisotropy in the
theoretical model although experiments [14] show that it
is present in azurite and affects magnetic properties for
a magnetic field parallel to the crystallographic b-axis at
an energy scale of a few Kelvin.

Finally, we would like to emphasize that we find all Ji
antiferromagnetic with similar values of J1 and J3, thus
placing azurite in a highly frustrated parameter regime.
This is reflected by the almost localized nature of the
dimer excitations. These excitations will become low-
energy excitations in magnetic fields around 32 T, and
one expects related unusual thermodynamic behavior like
an enhanced magnetocaloric effect [29, 30]. This calls
for additional thermodynamic measurements close to the
saturation field of azurite.
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nant, S. Süllow, and M. Lang, Phys. Rev. B 83, 104401
(2011).

[29] O. Derzhko, J. Richter, A. Honecker, and H.-J. Schmidt,
Low Temp. Phys. 33, 745 (2007).

[30] A. Honecker, S. Hu, R. Peters, and J. Richter, J. Phys.:

Condens. Matter 23, 164211 (2011).


