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Unfolding of electronic structure through induced representations of space groups:
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We revisit the problem that relevant parts of band structures for a given cell choice can reflect exact or
approximate higher symmetries of subsystems in the cell and can therefore be significantly simplified by an
unfolding procedure that recovers the higher symmetry. We show that band-structure unfolding can be understood
as projection onto induced irreducible representations of a group obtained by extending the original group of
translations with a number of additional symmetry operations. The resulting framework allows us to define a
generalized unfolding procedure that includes the point group operations and can be applied to any quantity in
the reciprocal space. The unfolding of the Brillouin zone follows naturally from the properties of the induced
irreducible representations. In this context, we also introduce a procedure to derive tight-binding models of
reduced dimensionality by making use of point group symmetries. Further, we show that careful consideration of
unfolding has important consequences on the interpretation of angle-resolved photoemission experiments. Finally,
we apply the unfolding procedure to various representative examples of Fe-based superconductor compounds
and show that the one-iron picture arises as an irreducible representation of the glide-reflection group, and we
comment on the consequences for the interpretation of one-iron versus two-iron Brillouin zone representations.
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I. INTRODUCTION

Ab initio electronic structure calculations have become a
primary tool of research for understanding the microscopic
behavior of solids. The multitude of methods that have
emerged to deal with periodic crystal systems, such as density
functional theory (DFT) [1], rely on the Bloch theorem [2]
in one form or another. The Bloch theorem builds upon the
translational symmetry of the crystal lattice and paves the way
for the fundamental concepts needed to understand the elec-
tronic structure of periodic systems, such as the classification
of electronic states in terms of wave vectors k and the notion
of band structure. Many important properties of the crystal,
such as magnetic or transport properties, are encoded in the
band structure. In addition, the band structure is important for
the interpretation of a few experimental measurements such as
angle-resolved photoemission spectroscopy (ARPES).

However, a problem arises in the practical use of DFT
calculations whenever we have to deal with systems in
which the original translational symmetry is broken. These
situations are encountered, for example, in calculations on
doped materials or in magnetically ordered systems. Often in
these situations we have to employ large supercells whose size
determines the periodicity of the band structure through the
Bloch theorem. This results in a complicated band structure
consisting of many bands, which is hard to interpret.

Recently, a number of methods have emerged [3–10] to
alleviate this problem. A common approach shared among
these methods, implicitly or explicitly, is a transformation from
one Bloch basis to another.

An important aspect of the Bloch theorem is that it is
an expression of one of the fundamental group-theoretical
principles, which states that the eigenstates of a physical
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system can be classified according to the irreducible repre-
sentations of its group of symmetries [11]. In light of this, the
band-structure unfolding can be viewed as a transformation
between the irreducible representations of different translation
groups. Despite the number of recent publications [3–9], a
rigorous consideration of the group-theoretical aspects of the
band-structure unfolding is still missing, and as a consequence
certain important properties are overlooked, especially in
relation to ARPES experiments.

The purpose of this work is to attempt to close this
conceptual gap by introducing a band-structure unfolding
based on group theory. This treatment allows us to incorporate
point group symmetries into a unified framework, and it
generalizes the idea of using glide-reflection operations,
initially proposed in the context of LaFeAsO [12], in order to
obtain models of reduced dimensionality. Our band-structure
unfolding also allows for a clear understanding of the two-Fe
versus one-Fe description of the electronic properties of
Fe-based superconductors.

We will show that band-structure unfolding can be achieved
by projecting the bands onto the induced irreducible represen-
tations of the supergroup of the initial group of translations.
We will also show that this leads naturally to the concept of
the unfolded Brillouin zone. With the help of the point group
operations, band structures can be unfolded beyond the limits
of translational symmetry. Furthermore, tight-binding models
with a reduced number of orbitals can be formulated under
certain conditions.

The group-theoretical formulation of the unfolding pro-
cedure in terms of projections onto the irreducible subspaces
allows us to unfold any quantity in reciprocal space if we know
how it behaves under the symmetry operations of the crystal
lattice. In addition, unfolding artifacts such as “ghost bands”
[6] or “incomplete bands” [13] are naturally explained as bands
with projections onto the multiple irreducible subspaces in
cases with broken symmetry.
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II. METHOD

A. Group of translations

One of the fundamental statements in solid-state physics is
that the eigenstates of the Hamiltonian of a periodic system can
be classified according to the irreducible representations of the
group of translational symmetries of the system. Let us denote
the crystal lattice as L = {Rn = ∑3

i=1 ni ai |ni = 1, . . . ,Ni},
where n = (n1,n2,n3), N = N1N2N3 is the number of unit
cells in the lattice, Rn are their position vectors, and ai are
the vectors spanning the unit cell. We would like to point
out that the following discussion applies equally in one and
two dimensions, and that we choose three dimensions for
the sake of definiteness. The lattice is invariant under the
action of the group of translation operators T = {T̂n}, such
that Rn + Rm = T̂m Rn, where periodic boundary conditions
T̂Ni

= 1 are assumed. The translation group T is an Abelian
cyclic group generated by the three generators T̂ai

. As such,
its irreducible representations are one-dimensional and given
by �(k)(T̂n) = exp(−ik · Rn). There are N inequivalent irre-
ducible representations ofT and they can be enumerated by the
vector index k ∈ B(L), where B(L) = {∑3

i=1 gi bi |gi ∈ [0,1)}
is the Brillouin zone (BZ), and bi = 2πεijkaj × ak/[a1 ·
(a2 × a3)] are unit vectors of the reciprocal latticeL−1. To each
irreducible representation �(k) corresponds a one-dimensional
subspace Vk, defined as a codomain of the projection operator

P̂k = 1√
N

∑
n

[�(k)(T̂n)]†T̂n = 1√
N

∑
n

exp(ik · Rn)T̂n.

(1)

Because for all n, [T̂n,Ĥ ] = 0, the subspaces Vk will be
orthogonal irreducible subspaces of the Hamiltonian Ĥ , and
thus a symmetry classification of the eigenstates of the
Hamiltonian is achieved.

To proceed, we assume that we have P localized elec-
tronic states, |0,μ〉, μ = 1, . . . ,P , centered at positions sμ,
occupying the unit cell located at origin 0. The sites sμ do
not necessarily have to be different since we can consider
cases with multiple orbitals per atomic site. The translationally
invariant electronic states of the crystal lattice are obtained by
the action of T onto these states, and the resulting localized
electronic states are |Rn,μ〉 = T̂n|0,μ〉 at positions Rn + sμ.
Application of the projector (1) to the states |0,μ〉 results in
the familiar Bloch states,

|k,μ〉 = 1√
N

∑
n

exp(ik · Rn)|Rn,μ〉. (2)

Using (2) as a basis, the Hamiltonian Ĥ is brought to the
block-diagonal form, with N blocks of size P × P , whose
elements are given by [Ĥk]μν = 〈k,μ|Ĥ |k,ν〉. Every block
Ĥk can be diagonalized separately, yielding a set of P bands
at k. A set of bands for every k ∈ B(L) represents the band
structure for the given lattice L.

B. Extension to additional symmetry operations

In many applications, the translation group T can be
expanded with a certain number of operations, which are,
approximately, symmetry operations of the lattice L. When

this is the case, we will have a new group S, such that T
is an invariant subgroup of S, denoted T�S. Due to this
fact, irreducible representations of S can be induced from T
in a simple manner. Furthermore, the addition of every new
symmetry operation will halve the number of independent
states |k,μ〉 at every k, since additional operations will produce
one-half of the states |k,μ〉 from another half, and thus will
halve the number of bands, producing the unfolded band
structure. This is subject to certain conditions that will be
outlined in the discussion that follows.

Let us assume now that we are expanding T with K

operations Ĉi , denoted in Seitz notation [14,15] as Ĉi =
(Ûi |τ i), i = 1, . . . ,K , where Ûi is a point group operation and
τ i is a fractional translation (with respect to the translations
T̂n of T) so that the combination of Ĉi and T̂n leads to a space
group S. Operations Ĉi are allowed to be pure translations
but not pure point group operations, since in the case of the
pure point group operations, we would not be able to interpret
the unfolded band structure in terms of a lattice of reduced
periodicity.

The action of Ĉi on an arbitrary point in the Cartesian space
is given by

Ĉi r = Ûi r + τ i

while the combined action of Ĉi and T̂n results in the space
group operation Ŝni defined as

Ŝni r = T̂nĈi r = Ûi r + Rn + τ i = (Ûi |Rn + τ i)r.

The space group operators Ŝni induce an action on the localized
states. Under the point group operations Ûi and fractional
translations τ i states, |Rn,μ〉 transform into each other
as (Ûi |τ i)|Rn,μ〉 = ∑

ν |Rn,ν〉Wνμ(Ĉi), where the matrices
Ŵ (Ĉi) represent the action of the operations Ĉi = (Ûi |τ i) in
the basis composed of the states |Rn,μ〉. Their matrix elements
can be written as Wγδ(Ĉi) = rγ δδ(sδ − Ĉi sγ ), where δ is the
Kronecker delta and sites sδ and Ĉi sγ are considered equal if
they differ by a lattice vector. The total action of Ŝni is

Ŝni |Rm,μ〉 =
∑

ν

|Rm + Rn,ν〉Wνμ(Ĉi). (3)

The task is now to induce the irreducible representations of the
space group S. We first note that the operators Ĉi are the right
coset representatives of S with respect to T. Let the factor
group, corresponding to this right coset decomposition, be
C = S : T. The well-known property of space groups is that
every space group is solvable, that is, every space group can be
decomposed into a series S0�S1� · · · �SD = S, where every
factor group in the decomposition is Abelian. In addition to
that, it is always possible to find the decomposition series
where the factor groups Ci = Si+1 : Si are cyclic groups
of index 2 or 3. This simplifies the induction procedure
further, since in case the factor group C is not a cyclic
group, we can always decompose it into a subgroup series
C0�C1� · · · �CB = C, where every Ci is a cyclic group.

In the induction procedure, from every irreducible repre-
sentation of T, multiple irreducible representations of S can
be induced. Some of these irreducible representations will be
one-dimensional, while some will be multidimensional. The
multidimensional induced irreducible representations ofSwill

195121-2



UNFOLDING OF ELECTRONIC STRUCTURE THROUGH . . . PHYSICAL REVIEW B 90, 195121 (2014)

mix irreducible representations ofTwith different k. Since our
goal is to perform the unfolding within the same k, we have
to restrict ourselves only to the cases in which the induction
procedure yields one-dimensional irreducible representations
of S.

C. One-dimensional irreducible representations of S:
Unfolding procedure

For every irreducible representation �(k) of T, irreducible
representations of S are determined from the little cogroup
Lk [14,15]. The little cogroup is a group of all point
group operations Û k

i such that Û k
i k = k + K , where K is a

reciprocal-lattice vector. Given an irreducible representation
�(k,α) of Lk, an irreducible representation �(k,α) of S is
induced, where the coset representatives Ĉi are represented
by

�(k,α)((Ûi |τ i)) = exp(−ik · τ i)�
(k,α)(Ûi)

and the index α runs over all irreducible representations of
the little cogroup. This holds across the entire interior of the
BZ, with the exception of the BZ boundary for the cases of
the symmorphic space groups, where the induction procedure
is more complex, and more sophisticated methods, such as
Herring’s method, are needed [14,15]. We will just assume that
k never lies on the BZ boundary, but it can be arbitrarily close
to it. In cases in which Ûi = 1, i.e., where the operators Ĉi are
just fractional translations, which is the case of translational
unfolding, the little cogroup Lk will contain all fractional
translations and will be the same for every k. In this case,
the irreducible representations of the little cogroup, �(k,α),
are taken to be the irreducible representations of the group of
fractional translations, modulo T, meaning that two fractional
translations are considered to be identical if they differ by Rn.

When k is invariant (up to the reciprocal-lattice vector K )
under all point group operators of C, then from the irreducible
representation �(k) of T, K one-dimensional irreducible
representations �(k,α) will be induced. When this is the case,
the �(k,α)(Ûi) will be roots of unity so that we can write, in
general,

�(k,α)((Ûi |τ i)) = exp
(−2f α

i /K
)

exp(−ik · τ i), (4)

where f α
i is an integer such that 0 � f α

i < K . The integers
f α

i , with the operation of addition modulo K , constitute a
group isomorphic to Lk. We use the convention that α = 0
denotes the unit irreducible representation, thus f 0

i = 0. When
(4) is taken into account, the projectors onto the irreducible
subspaces are given by

P̂kα = 1√
KN

∑
n

∑
i

exp(ik · Rn)[�(k,α)(Ĉi)]
†Ŝni

so that the Bloch basis (2) corresponding to S can be written,
in analogy to (1), as

|k,μ,α〉 = 1√
KN

∑
n

∑
i

∑
ν

exp
(
2πif α

i /K
)

× exp[ik · (Rn + τ i)]|Rn,ν〉Wνμ(Ĉi). (5)

By employing the basis Eq. (5), Ĥk can be brought into
block-diagonal form with K blocks Ĥkα of size P/K × P/K .

(a)

(b)

FIG. 1. (Color online) Brillouin zone unfolding. (a) Folded band
structure showing two bands belonging to two irreducible represen-
tations �(k,0) and �(k,1) of S. (b) The unfolded band structure shows
that �(k,1) = �(k+kf ,0), leading to the unfolded Brillouin zone, shown
in yellow and purple backgrounds. The folding vector kf is shown in
green.

Each block Ĥkα can be diagonalized separately and will
yield P/K bands. It is important to note that because of the
addition of a fractional translation in Eq. (5), the reciprocal
space period of blocks Ĥkα is larger than the BZ. Since the
only difference between the blocks Ĥkα is in the exponential
prefactor exp(−2πif α

i /K) in Eq. (5), we can restrict ourselves
to only one block, i.e., Ĥkα , and then reproduce the other
blocks by allowing k to leave the BZ, because we can choose
kαβ

f ∈ B(L) such that

kαβ

f · Rn = 2πz,
(6)

kαβ

f · τ i = 2π
f

β

i − f α
i

K
,

where z is an integer. In this way, we can have Ĥkβ = Ĥk+kαβ

f ,α
.

The vectors kαβ

f are the folding vectors. The diagonalization

of the block Ĥkα and its extensions outside of the BZ, by
the folding vectors, produces the unfolded bands. The BZ,
enlarged by the K folding vectors kαβ

f , is the unfolded BZ
(Fig. 1).

It is important to stress here that because Ĉi involves
the fractional translations τ i , and due to the requirement of
the one-dimensionality of the irreducible representations of
S, the unfolded band structure represents the band structure
of the crystal lattice with the unit cell size reduced by
a factor of K , which can be simply translationally folded
back along the folding vectors to represent the starting band
structure, regardless of the point group operations Ûi . Because
of this, we can effectively describe the electronic structure
with a Hamiltonian of smaller dimensionality. We can also
understand this in a different way. Since |k,μ,α〉 are the
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symmetry adapted basis vectors, no interaction contained in
the Hamiltonian can cause a transition between the states with
different α, thereafter all dynamical processes are contained
within their respective irreducible subspaces. We have seen
that different irreducible representations become equivalent if
shifted by the folding vectors, meaning that no information is
lost if we just keep a single irreducible representation, as long
as we expand it onto the entire unfolded Brillouin zone.

One more important issue to note is that our requirement for
the one-dimensional irreducible representations of S implies
that the unfolding that utilizes the point group operations is
exact only for k values that are invariant under all point group
operations Ûi . For example, if we use the screw-axis opera-
tions, the unfolding will be exact only along a corresponding
high-symmetry line in the Brillouin zone. However, if the
electronic properties are dominantly one-dimensional along
the given high-symmetry line, the unfolding can still be used
across the entire Brillouin zone while preserving the accuracy
up to a significant degree.

To unfold the band structure given in the Bloch basis (2),
we just need to calculate the matrix elements of the projectors
P̂kα . The matrix elements are given by

[P̂kα]γ δ = 〈k,γ |P̂kα|k,δ〉

= 1

K

∑
i

exp
(
2πiαf α

i /K
)

exp(ik · τ i)Wγδ(Ĉi). (7)

If we assume that from the band-structure calculations we
obtain bands |k,n〉, where n is the band index, we can
unfold the bands by applying the projectors (7) to the column
vector containing the projections of bands onto the localized
states w

μ

k,n = 〈0,μ|k,n〉. In our particular case, we have used
the Vienna Ab-Initio Simulations Package (VASP) [16] to
obtain the band structure. Since, within the VASP package,
the exponential factors exp(−ik · sμ) for fractional site vector
sμ are already included in the projections w

μ

k,n, the exponential
factors in Eq. (7) can be omitted, simplifying the expressions
even further.

D. Unfolding of tight-binding models

In general, any observable Âk can be unfolded by employ-
ing the projectors P̂kα so that Âkα = P̂kαÂkP̂kα . With the help
of Eq. (5) it is also possible to unfold tight-binding models.
The matrix elements of the Hamiltonian in the tight-binding
model are defined in the Bloch basis Eq. (2) as

[Ĥk]μν = 〈0,μ|Ĥ P̂k|0,ν〉
=

∑
Rn

tμν(Rn) exp(ik · Rn), (8)

where tμν(Rn) = 〈0,μ|Ĥ |Rn,ν〉 are the hopping energies.
This result follows from Ĥk = P̂kĤ P̂k and the fact that Ĥ

commutes with P̂k and that P̂k is idempotent. We define the
matrix composed of the hopping energies tμν(Rn) as t̂(Rn).
The unfolding of the tight-binding model is achieved by
calculating the matrix elements of the Hamiltonian in the basis
Eq. (5) and then casting the resulting expression in the form

of Eq. (8),

[Ĥkα]μν = 〈0,μ|Ĥ P̂kα|0,ν〉
=

∑
n

∑
i

tαμν(Rn + τ i) exp[ik · (Rn + τ i)], (9)

where the corresponding hopping energy matrix is t̂ α(Rn +
τ i). The hopping energies of the unfolded TB model can then
be read off as coefficients of the exponential terms exp[ik ·
(Rn + τ i)]. The hopping energy matrices t̂ α(Rn + τ i) will
have the same block-diagonal structure of Ĥkα . The general
expression for the hopping energies is then

t̂ α(Rn + τ i) = exp
(
2πif α

i /K
)

K
t̂(Rn)Ŵ (Ĉi). (10)

It should be noted here that for K > 2, the unfolded hop-
ping energies can become complex due to the prefactor
exp(2πif α

i /K). However, this prefactor does not affect the
eigenvalues and eigenvectors of Ĥkα since it amounts to an
overall, k-independent, unitary transformation of the Hamil-
tonian. Furthermore, in the unfolded picture, we extend a
single irreducible representation beyond the BZ boundaries,
so that in the tight-binding model we expect to have a
single set of hopping energies independent of the irreducible
representation. This manifestly does not hold for Eq. (10)
since the exponential prefactor depends on α. Because of
this, the exponential prefactor in Eq. (10) can be dropped and
the irreducible representation-independent unfolded hopping
energies can be defined as

t̂(Rn + τ i) = 1

K
t̂(Rn)Ŵ (Ĉi). (11)

When the unfolded hopping energies are defined in this way,
the index α can be omitted from Eq. (9). Since we already
concluded that the t̂ α(Rn + τ i) are block-diagonal, a reduction
of the dimensionality of the tight-binding model is achieved.
Practically, this means that orbital indices μ and ν can be
taken to run only over the first block in the block-diagonalized
Hamiltonian, since other blocks are symmetrically equivalent.

E. Relation to ARPES

Angle-resolved photoemission is one of the most direct
ways to experimentally observe the band structure in solids
[17]. However, the interpretation of raw experimental data
is a very complicated process and often relies heavily on
comparisons with density functional theory calculations.
This becomes especially difficult in systems with broken
translational symmetry, since, on the one hand, supercell
calculations have to be employed by density functional theory
resulting in complicated folded band structures, while on
the other hand ARPES data often show the unfolded band
structure, sometimes offset away from the first Brillouin
zone [6,18]. This was already discussed in the context of
band-structure unfolding [6]. However, some important issues
were not considered, such as the fact that multiple irreducible
representations are involved in the unfolding as well as the
effect of high-symmetry regions of the Brillouin zone.

The observed photoelectron intensity at energy ω in ARPES
experiments can be directly related to the one-electron spectral
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function [19,20]

I (ω) ∼
∑

k

∑
f

∑
ij

Mkf iAkij (ω)Mkjf ,

where Mkf i = 〈k,f |ε · x̂|k,i〉 are the dipole matrix elements
between the initial Bloch state |k,i〉 and the final Bloch state
|k,f 〉, and Âkij (ω) are the matrix elements of the one-electron
spectral function. Using the projectors from Eq. (1), this can
be rewritten as

I (ω) ∼ tr

(∑
k

ε · x̂P̂kÂ(ω)P̂kε · x̂

)
, (12)

where the trace is taken only over the final states, and Â is
restricted to the occupied subspace. If the observed system has
approximate symmetry given by a group S�T, either because
(i) we have a slight breaking of the translational symmetry, or
(ii) most of the contribution to the sum over k in Eq. (12) comes
from the surface states lying in the high-symmetry region of
the Brillouin zone, we can extend the summation over k onto
the irreducible subspaces of S so that we have

I (ω) ∼ tr

⎛
⎝∑

k

∑
αβ

ε · x̂P̂kαÂ(ω)P̂kβε · x̂

⎞
⎠ .

Since S is an approximate symmetry, the off-diagonal blocks
P̂kαÂP̂kβ can be neglected. In addition, we can use the folding
relations, Eq. (6), to replace the summation over the irreducible
representation index α with the summation over the unfolded
Brillouin zone to obtain

I (ω) ∼ tr

⎛
⎝∑

kα

ε · x̂P̂kαÂ(ω)P̂kαε · x̂

⎞
⎠ , (13)

where kα = k + kαβ

f ,∀β, belong to the Brillouin zone un-
folded in accordance with Eq. (6). In this case, the ARPES
experiment will observe the spectral function Âkα(ω) =
P̂kαÂ(ω)P̂kα instead of the spectral function Âk(ω) =
P̂kÂ(ω)P̂k. One important detail in Eq. (13) is the fact that
the irreducible representation α is only selected through the
effect of dipole operators and the trace over the final states.
This means that the actual irreducible representation observed
in the experiment depends on the experimental conditions.

This is a very important conclusion, since it tells us that
in order to carefully interpret raw ARPES data, we have to
take into account two considerations. The first one is the
possible effect of high-symmetry regions in the Brillouin
zone. This implies the incorporation of point group operations
into the unfolding—we would like to stress here that this
issue is distinct from orbital symmetry selection by means
of polarization. The second consideration is that we have to
take into account all irreducible representations arising from
the unfolding process and then use Eq. (6) to reconstruct the
band structure from the ARPES data, if necessary.

Among the mentioned effects of high-symmetry regions
of the Brillouin zone, the most important one is caused by
the presence of the surface, which can effectively lower the
dimensionality of states entering expression (12). This effect
can be accounted for in our formalism by extending the
two-dimensional restriction of the full translation group by

(a)

(b)

FIG. 2. (Color online) (a) Projection on the ab plane of a 2 × 1
supercell of tetragonal FeSe. The fractional translation τ along a is
shown in green. The iron atoms lie in the same plane, parallel to
the plane of the drawing, while the lighter colored selenium atoms
are vertically displaced above the plane, and the darker colored ones
are below. (b) kz = 0 plane of the Brillouin zone corresponding to
the single unit cell of FeSe. The yellow filling marks the Brillouin
zone corresponding to the supercell. The folding vector kf is shown
in green.

all point group operations that leave the surface invariant and
then considering the resulting irreducible representations. We
give an example of this by considering the application of the
glide-reflection group to iron-based superconductors later on.

III. APPLICATIONS

Iron-based superconductors provide an excellent play-
ground for the unfolding method presented here. The crystal
structures of iron pnictides and iron chalcogenides consist
of layers of Fe atoms tetrahedrally coordinated by the
pnictogen/chalcogen atoms, as shown in Fig. 2(a). The various
compounds may show differences in the stacking sequence
of the iron pnictogen/chalcogen layers, as well as in the
composition of the spacer layers. For most of the iron pnic-
tide/chalcogenide families, a minimal translationally invariant
unit cell consists of two iron and two pnictogen/chalcogen
atoms. This unit cell can be reduced further by considering
the glide-reflection operations, which combine the translations
between the nearest-neighbor iron atoms with reflections in the
xy plane, thus mapping two translationally inequivalent iron
and pnictogen/chalcogen sites into each other.

In the following, we shall consider four representative un-
folding examples. In the first case, we will apply translational
unfolding on a 2 × 1 supercell of FeSe where the translational
symmetry is kept in the supercell. In the second case, we will
apply translational unfolding on a P-doped CaFe2As22 × 2
supercell (Ca4Fe8As7P), where the translational symmetry has
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FIG. 3. (Color online) Unfolding of the tetragonal FeSe doubled along the a axis. (a) The folded band structure. (b) Projection of bands
onto �(k,0). (c) Projection of bands onto �(k,0). (d) Unfolded picture. Irreducible representation �(k,0) is extended past the boundaries of the
Brillouin zone by the folding vector kf = (π/a,0,0).

been broken by the substitution of one As by P. In the third
case, we unfold the 16-band tight-binding model (2 × 5 Fe
bands and 2 × 3 Se bands) for FeSe at 10 GPa to an 8-band
tight-binding model. At this pressure, the structure shows
important dispersion along kz and it allows for an analysis
of the unfolding procedure in all three directions. Finally, in
the fourth case we apply unfolding of the two-iron unit cell to
the one-iron unit cell representation in the specific case of the
body-centered space group I4/mmm. With this last example,
we want to show that the unfolding procedure is independent
of whether the space group is body-centered or not.

A. Translational unfolding of FeSe

As a first example, we consider a simple case of translational
unfolding, where the translation group T is expanded by
fractional translations Ĉi = (1|τ i). We define a 2 × 1 supercell
of tetragonal FeSe [Fig. 2(a)] by doubling the unit cell along
the a axis of FeSe. In Fig. 3(a), we show the corresponding
supercell band structure along the path �-X [Fig. 2(b)]. To
unfold the bands, we employ the fractional translation τ = a,
which is an additional symmetry that the supercell has on
top of the translational symmetry T. With this, the factor
group C is isomorphic to the cyclic group of order 2, with the
generator (1|τ ), and from every irreducible representation T,
two irreducible representations with α = 0 and 1 are induced,
so that the generator Eq. (4) is represented by

�(k,0)((1|τ )) = exp(−ik · τ ),
(14)

�(k,1)((1|τ )) = − exp(−ik · τ ).

The resulting band projections onto the irreducible represen-
tations are shown in Figs. 3(b) and 3(c), while the unfolded
picture, where the irreducible representation �(k,0) is extended
outside the supercell BZ, is shown in Fig. 3(d). Evidently,
�(k+kf ,0) = �(k,1), with kf = (π/a,0,0).

B. Translational unfolding of P-doped CaFe2As2

The unfolding shown in Fig. 3 is perfect, because the frac-
tional translation (1|τ ) is an exact symmetry of the supercell

and every band will belong to only one of the irreducible
representations of S. In a more realistic case, where the opera-
tions Ĉi are only approximate symmetries, the bands will have
nonzero projections onto multiple irreducible representations,
although usually one of the irreducible representations will
be dominantly present in every band. Such a situation occurs,
for example, when studying doped compounds. Here we have
chosen to investigate the phosphorus-doped CaFe2As2.

It is well known that when pressure is applied on CaFe2As2,
it undergoes a magnetostructural phase transition from a
magnetically ordered orthorhombic phase to a nonmag-
netic, collapsed tetragonal phase [21,22]. In previous studies
[23–25], we simulated the application of pressure under
different conditions by means of density functional theory
calculations, and we were able to predict the appearance
of the collapsed tetragonal phase at a critical pressure that
is accompanied by the disappearance of the Fermi surface
pockets centered around the � point. This feature has been
recently confirmed by angle-resolved photoemission experi-
ments [26,27].

An orthorhombic to collapsed tetragonal phase transition
in CaFe2As2 can also be induced by chemical pressure. For
example, substitutional doping of phosphorus into the arsenic
sites causes CaFe2As2 to enter the collapsed tetragonal phase
at a doping level of around 5% [28]. To fully understand how
chemical pressure is related to the application of physical
pressure, we have performed a sequence of full structural
relaxations of P-doped CaFe2As2. For the different doping
levels, we have considered supercells of various sizes. Our
density functional theory calculations predict that P-doped
CaFe2As2 undergoes an orthorhombic to collapsed tetragonal
phase transition for a doping between 9.375% and 12.5%,
in good agreement with the experimental observations [28].
To analyze the electronic structure in the collapsed tetragonal
phase of P-doped CaFe2As2, we have to perform the unfolding
of the band structure.

Relaxed Ca(FeAs0.875P0.125)2 has an orthorhombic unit cell
where the phosphorus atom is breaking the translational sym-
metry, as shown in Fig. 4. The unit cell of Ca(FeAs0.875P0.125)2

is a supercell consisting of four primitive unit cells of
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FIG. 4. (Color online) The unit cell of Ca(FeAs0.875P0.125)2. The
fractional translations τ i are shown in green.

CaFe2As2. This unit cell contains a total of eight iron atoms.
The corresponding fractional translations are τ 1 = (a + b)/2
and τ 2 = (a + c)/2, where a, b, and c are the unit vectors of
the supercell, as shown in Fig. 4. These fractional translations
map the two translationally inequivalent iron atoms to the eight
iron atoms of the supercell.

The corresponding band structure is shown in Fig. 5(a). The
band structure is calculated along the path given by (0,0,0) −
(2π/a,0,0) − (2π/a,2π/a,0) − (0,0,0) − (0,0,2π/c). Four
irreducible representations can be induced. We will select the
irreducible representation �(k,0) and extend it to the unfolded
Brillouin zone. The resulting unfolded band structure, obtained
by extending the irreducible representation�(k,0), is shown in
Fig. 5(b). Despite the fact that the fractional translations τ i

are not the exact symmetries of Ca(FeAs0.875P0.125)2, the band
projections onto different irreducible representations are still
mostly orthogonal, having relatively clean unfolded bands as
a result. This allows us to clearly see the disappearance of the
hole pockets centered around �, since the set of three hole
t2g bands is pushed below the Fermi level by around 0.2 eV.
Comparison of the unfolded bands to the band structure of the
collapsed tetragonal phase of CaFe2As2 under pressure [24,26]
confirms that phosphorus doping and application of hydrostatic

pressure affect the structural and electronic properties of
CaFe2As2 in a remarkably similar way.

C. Unfolding from a 16-band to an 8-band tight-binding model
for FeSe under pressure

We will now demonstrate the use of Eqs. (10) and (11) for
the unfolding of tight-binding models. We consider as a test
system FeSe at 10 GPa with significant dispersion in all three
directions. The crystal structure has been obtained from ab
initio simulations of hydrostatic pressure at 10 GPa [24,25].
We have used the projective Wannier functions as implemented
in the FPLO code [29] for the derivation of the 16-band tight-
binding model, which consists of five 3d orbitals per iron
site and three 4p orbitals per selenium site. The structure
under 10 GPa of hydrostatic compression is chosen because
the three-dimensional character of the Fermi surface is more
pronounced compared to ambient pressure.

As previously mentioned, the two translationally nonequiv-
alent iron sites can be mapped onto each other with the help of
the glide-reflection operations Ĉi = (τ i |σ̂z) with i = 1,2. The
fractional translations τ i connect the nearest-neighbor iron
atoms as shown in Fig. 2(a), while σ̂z is a reflection in the xy

plane. To unfold, we can choose one of the Ĉi operations and
then induce the irreducible representations ofS = T ∪ TĈi . In
accordance with Ref. [12], we callS the glide-reflection group.
Since the factor group is of index 2, two one-dimensional
irreducible representations will be induced in the kz = 0 plane
of the Brillouin zone. Because the electronic dispersion in FeSe
is weaker along the kz axis, we can expect that irreducible
representations induced in the kz = 0 plane will give adequate
unfolding across the rest of the Brillouin zone.

In these two irreducible representations, the glide-reflection
operation will have the same representation as did the
fractional translation in Eq. (14). However, what differentiates
the case of the glide-reflection unfolding from the purely
translational unfolding is the orbitally selective action of
the matrices Ŵ (Ĉi) in Eq. (7). Namely, in the case of
translational unfolding, matrices Ŵ (Ĉi) act equally on all
orbitals, while in the case of glide-reflection unfolding they act
differently, depending on whether the orbitals are symmetric or
antisymmetric with respect to the reflections in the xy plane.

FIG. 5. (Color online) Unfolding of Ca(FeAs0.875P0.125)2 band structure. (a) Band structure of the Ca(FeAs0.875P0.125)2 supercell. (b) The
unfolded band structure obtained from �(k,0).

195121-7
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FIG. 6. (Color online) Unfolding of the 16-band tight-binding model of FeSe with the help of glide-reflection operations. The 16-band
result is shown with dots, the two 8-band results with lines. (a) Band structure along the path in the kz = 0 plane of the one-iron equivalent
Brillouin zone. (b) Band structure along the path parallel to the path shown in (a), but shifted along the kz axis by π/2c. (c) Fermi surface cut
at the kz = 0 plane of the one-iron equivalent Brillouin zone of FeSe. The solid gray line shows the boundary of the two-iron Brillouin zone.
(d) Fermi surface cut at the kz = π/2c plane of the one-iron equivalent Brillouin zone of FeSe. (e) Fermi surface cut at the ky = 0 plane of the
one-iron equivalent Brillouin zone of FeSe. The dashed gray line shows the location of kz = π/2c.

For example, the 3dz2 orbital will stay invariant, while 3dxz

will pick up a minus sign under the action of σ̂z.
We have used Eq. (10) to create the two sets of hopping ener-

gies, corresponding to two induced irreducible representations.
These two sets correspond to the same 8-band tight-binding
model, up to the unitary transformation. The band structure
calculated from the 16-band and two 8-band tight-binding
models along the path in the kz = 0 plane of the Brillouin zone
is shown in Fig. 6(a). The corresponding Fermi surface slice
in the kz = 0 plane is shown in Fig. 6(c). In accordance with
Eq. (6) and the electronic structure shown in Fig. 6, the folding
vector is k01

f = (π,π,0) with respect to the one-iron Brillouin
zone (as a convention, we will always specify folding vectors
with respect to the unfolded Brillouin zone). It is evident that
the unfolding to the 8-band model is perfect in the kz = 0
plane. Since the kz = ±π/c planes are also the high-symmetry
planes for the reflections in the xy plane, the unfolding will
be perfect there, too. We can thus expect the largest deviations
from the perfect unfolding around the kz = ±π/2c plane. This
can be seen in the band structure shown in Fig. 6(b), taken
along the path shown in Fig. 6(a) shifted by (0,0,π/2c). The

deviations of the unfolded bands are evident. However, the
deviations of the top ten bands, which are the bands dominated
by the 3d orbital character, are much smaller than in the bands
dominated by the 4p orbital character. This is a consequence
of the crystal structure; the iron atoms are stationary under the
action of σ̂z, while the selenium atoms are not. Due to this
property, the Fermi surface can be unfolded almost exactly
across the entire Brillouin zone. The Fermi surface slice in
the kz = π/2c is shown in Fig. 6(d), while the vertical slice
in the ky = 0 plane is shown in Fig. 6(e). It is remarkable that
the full three-dimensional structure of the innermost Fermi
surface pocket, centered at �, is retained with high accuracy
in the unfolded model, despite the fact that the underlying
unfolding symmetry is purely two-dimensional.

D. Unfolding the band structure of CaFe2As2 to the one-iron
equivalent Brillouin zone

Finally, we would like to point out that the glide-reflection
group can also be used to unfold the band structures of
iron-based superconductors with a centered unit cell, described
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FIG. 7. (Color online) Unfolding of CaFe2As2 band structure to the one-iron equivalent Brillouin zone. (a) Band structure of CaFe2As2

in the two-iron Brillouin zone. (b) The unfolded band structure obtained from �(k,0) in the one-iron equivalent Brillouin zone. (c) kz = 0 cut
of the CaFe2As2 Fermi surface cut in the two-iron Brillouin zone. (d) and (e) Projection of the Fermi surface obtained from �(k,0) and �(k,1),
respectively. Labels enclosed in brackets in panel (e) pertain to the kz = π cut of the Fermi surface.

by symmorphic space groups. In this particular example, we
use the ambient pressure structure of CaFe2As2 measured
at a temperature T = 250 K and described by the body-
centered space group I 4/mmm [22]. CaFe2As2 was selected
because it features additional electron Fermi surface pockets
that make the one-iron Fermi surface determination more
complicated.

The glide-reflection operations as well as the irreducible
representations are identical to the case of FeSe. The main
difference here is that the resulting folding vector is (π,π,π ),
corresponding to the unfolding onto the simple tetragonal one-
iron unit cell. This result is not immediately obvious, since we
are only using the symmetry of the iron-arsenic layer, and it is
to be expected, in the naive picture, that the resulting unfolding
would result in the one-iron body-centered unit cell and the
(π,π,0) folding vector. However, due to the body-centered
symmetry, the (π,π,0) folding vector relates � and Z points,
as shown in Fig. 8. In addition, unlike (π,π,π ), the (π,π,0)
folding vector does not satisfy the folding relations, Eq. (6),
which is a nice example underlining their usefulness.

Figure 7(a) shows the band structure in the two-iron
equivalent Brillouin zone, while Fig. 7(b) shows the unfolded
band structure in the one-iron equivalent Brillouin zone
obtained by extending �(k,0). Evidently, the unfolding remains

perfect in the kz = 0 plane. However, this is no longer the
case across the entire Brillouin zone. For instance, along the
�-Z path, weak traces of bands from �(k,1) can be observed.

FIG. 8. (Color online) One- and two-iron Brillouin zones for the
I4/mmm space group. Two adjacent Brillouin zones corresponding
to the two-iron primitive cell of the I4/mmm space group are shown
in blue. The simple tetragonal unit cell corresponding to the one-iron
unit cell is shown in red.
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TOMIĆ, JESCHKE, AND VALENTÍ PHYSICAL REVIEW B 90, 195121 (2014)

In comparison to FeSe, in the vicinity of the Fermi level,
the CaFe2As2 band structure features more orbital weight
of arsenic 4p and some calcium 3d character, which makes
unfolding outside of the high-symmetry plane less accurate.
Nevertheless, we have enough information to clearly discern
the topology of the unfolded Fermi surface. Figures 7(c)–7(e)
show the kz = 0 cut of the CaFe2As2 Fermi surface. Because of
the body-centered arrangement of the Brillouin zones shown
in Fig. 8, this is also the kz = π cut of the Fermi surface,
offset by (π,π,0), and as a result the connectivity of the
Fermi surface elements can be deduced between the kz = 0
and kz = π planes.

IV. DISCUSSION

A. One-iron versus two-iron picture

The above results have important implications for the one-
iron versus two-iron discussion in the iron pnictide literature
[13]. Since simulations of some processes, such as multiorbital
pairing, scale as the sixth power [30] of the number of orbitals
involved, it is important to keep the models as simple as
possible. In addition, careful consideration of symmetry has
very important consequences for the superconducting state
[31–33]. For this reason, one needs to understand the exact
conditions and the symmetry context in which the one-iron
model can be used.

When the unfolding is considered as a projection onto
the irreducible subspace of the glide-reflection group, some
potentially important subtleties arise in comparison to the
conclusions drawn in Ref. [13]. As long as the electronic
structure in the energy range of interest is dominated by the
iron orbitals and all dynamics under consideration involve
at least approximate glide-reflection symmetry, a one-iron
tight-binding model can be used without significant impact
on the overall accuracy of the calculation. Furthermore, even
in the cases in which the glide-reflection symmetry is not so
favorable, a controlled one-iron approximation can be made
since the off-diagonal blocks in the decomposition onto irre-
ducible subspaces can provide an error estimate. In addition,
this shows that only the glide-reflection group can provide
criteria that unambiguously resolve Fermi surface elements in
the process of unfolding to the one-iron Brillouin zone.

Furthermore, our discussion of the effects of high-
symmetry regions of the Brillouin zone on the interpretation of
ARPES data shows that under certain conditions it is possible
to observe the spectral function consistent with the one-iron
picture in the kz = 0 or kz = π planes. This is corroborated
by recent observations [34] in CsFe2As2, whose electronic
structure is weakly dispersive in the kz direction, and the
glide-reflection unfolding can be accurately extended across
the entire Brillouin zone.

The unfolding process also offers a simple answer to the
question of why the neutron scattering intensities seem to
indicate a scenario consistent with the one-iron picture [35,36].
This can be naturally interpreted as a consequence of the
fact that neutron scattering intensities are momentum-resolved
in the high-symmetry plane, and transitions between states
belonging to different irreducible subspaces are suppressed
there.

V. SUMMARY

In summary, we have demonstrated with a group-theoretical
treatment of the band structure that unfolding can be un-
derstood as a projection onto induced irreducible represen-
tations of the supergroup of the original translation group.
The unfolded Brillouin zone arises as a consequence of
the fact that different induced irreducible representations
become identical when shifted by an appropriate vector in
the Brillouin zone. Due to the projective definition, the
unfolding procedure can be generalized for arbitrary quan-
tities in reciprocal space. Also, the unfolding artifacts in
the cases in which the unfolding is inexact arise because
bands have nonzero projections onto multiple irreducible
representations.

When point group operations are used, the unfolding is
exact only in the high-symmetry k points of the Brillouin zone.
It is nonetheless possible to extend the unfolding to the entire
Brillouin zone as long as the band structure is dominantly
dispersive only along the corresponding high-symmetry lines
or planes in the Brillouin zone. By making sure this constraint
is satisfied, it is possible to formulate tight-binding models
of reduced dimensionality without loss of accuracy. In the
cases in which this is not completely possible, the unfolding
framework provides a systematic way to make controlled
approximations by projecting the relevant quantities into
appropriate irreducible subspaces.

For FeSe under pressure, we have shown how an 8-band
tight-binding model can be constructed by unfolding the
16-band tight-binding model with the help of glide-reflection
operations. The resulting unfolded model produces the almost
exactly unfolded Fermi surface. This results from the fact that
the Fermi surface in FeSe is dominated by the iron orbital
character. This is in fact the most important requirement that
needs to be fulfilled for the one-iron model to be an accurate
representation of the physics of iron-based superconductors.
An additional requirement stems from the fact that the one-iron
picture is formulated as an irreducible representation, and
as such for any realistic computation using the one-iron
model, the off-diagonal elements of the involved observables
connecting the two irreducible representations of the glide-
reflection group need to be small compared to the diagonal
elements.

And finally, we show that careful interpretation of ARPES
data in cases in which a direct comparison with density
functional theory calculations is not immediately obvious
requires consideration of possible effects of high-symmetry
regions of the Brillouin zone as well as comparison with all
irreducible representations arising from the unfolding process.
An implementation of the translational unfolding procedure
for the VASP code is available online [37].
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[31] V. Cvetković and O. Vafek, Phys. Rev. B 88, 134510 (2013).
[32] M. Casula and S. Sorella, Phys. Rev. B 88, 155125 (2013).
[33] C.-H. Lin, C.-P. Chou, W.-G. Yin, and W. Ku, arXiv:1403.3687.
[34] S. Kong, D. Y. Liu, S. T. Cui, S. L. Ju, A. F. Wang, X. G. Luo, L.

J. Zou, X. H. Chen, G. B. Zhang, and Z. Sun, arXiv:1409.2300.
[35] M. D. Lumsden, A. D. Christianson, E. A. Goremychkin, S. E.

Nagler, H. A. Mook, M. B. Stone, D. L. Abernathy, T. Guidi,
G. J. MacDougall, C. de la Cruz, A. S. Sefat, M. A. McGuire,
B. C. Sales, and D. Mandrus, Nat. Phys. 6, 182 (2010).

[36] J. T. Park, D. S. Inosov, A. Yaresko, S. Graser, D. L. Sun, Ph.
Bourges, Y. Sidis, Y. Li, J.-H. Kim, D. Haug, A. Ivanov, K.
Hradil, A. Schneidewind, P. Link, E. Faulhaber, I. Glavatskyy,
C. T. Lin, B. Keimer, and V. Hinkov, Phys. Rev. B 82, 134503
(2010).

[37] http://github.com/tomkeus/vasp_unfold.

195121-11

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1103/PhysRevB.71.115215
http://dx.doi.org/10.1103/PhysRevB.71.115215
http://dx.doi.org/10.1103/PhysRevB.71.115215
http://dx.doi.org/10.1103/PhysRevB.71.115215
http://dx.doi.org/10.1103/PhysRevB.76.035310
http://dx.doi.org/10.1103/PhysRevB.76.035310
http://dx.doi.org/10.1103/PhysRevB.76.035310
http://dx.doi.org/10.1103/PhysRevB.76.035310
http://dx.doi.org/10.1088/0953-8984/19/3/036203
http://dx.doi.org/10.1088/0953-8984/19/3/036203
http://dx.doi.org/10.1088/0953-8984/19/3/036203
http://dx.doi.org/10.1088/0953-8984/19/3/036203
http://dx.doi.org/10.1103/PhysRevLett.104.216401
http://dx.doi.org/10.1103/PhysRevLett.104.216401
http://dx.doi.org/10.1103/PhysRevLett.104.216401
http://dx.doi.org/10.1103/PhysRevLett.104.216401
http://dx.doi.org/10.1103/PhysRevB.85.085201
http://dx.doi.org/10.1103/PhysRevB.85.085201
http://dx.doi.org/10.1103/PhysRevB.85.085201
http://dx.doi.org/10.1103/PhysRevB.85.085201
http://dx.doi.org/10.1103/PhysRevB.89.041407
http://dx.doi.org/10.1103/PhysRevB.89.041407
http://dx.doi.org/10.1103/PhysRevB.89.041407
http://dx.doi.org/10.1103/PhysRevB.89.041407
http://dx.doi.org/10.1088/1367-2630/16/3/033034
http://dx.doi.org/10.1088/1367-2630/16/3/033034
http://dx.doi.org/10.1088/1367-2630/16/3/033034
http://dx.doi.org/10.1088/1367-2630/16/3/033034
http://dx.doi.org/10.1021/nl502107v
http://dx.doi.org/10.1021/nl502107v
http://dx.doi.org/10.1021/nl502107v
http://dx.doi.org/10.1021/nl502107v
http://dx.doi.org/10.1002/andp.201000149
http://dx.doi.org/10.1002/andp.201000149
http://dx.doi.org/10.1002/andp.201000149
http://dx.doi.org/10.1002/andp.201000149
http://dx.doi.org/10.1103/PhysRevLett.107.257001
http://dx.doi.org/10.1103/PhysRevLett.107.257001
http://dx.doi.org/10.1103/PhysRevLett.107.257001
http://dx.doi.org/10.1103/PhysRevLett.107.257001
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1238/Physica.Topical.109a00061
http://dx.doi.org/10.1238/Physica.Topical.109a00061
http://dx.doi.org/10.1238/Physica.Topical.109a00061
http://dx.doi.org/10.1238/Physica.Topical.109a00061
http://dx.doi.org/10.1103/PhysRevB.81.220502
http://dx.doi.org/10.1103/PhysRevB.81.220502
http://dx.doi.org/10.1103/PhysRevB.81.220502
http://dx.doi.org/10.1103/PhysRevB.81.220502
http://dx.doi.org/10.1007/BF00616497
http://dx.doi.org/10.1007/BF00616497
http://dx.doi.org/10.1007/BF00616497
http://dx.doi.org/10.1007/BF00616497
http://dx.doi.org/10.1088/0031-8949/41/4/050
http://dx.doi.org/10.1088/0031-8949/41/4/050
http://dx.doi.org/10.1088/0031-8949/41/4/050
http://dx.doi.org/10.1088/0031-8949/41/4/050
http://dx.doi.org/10.1103/PhysRevLett.101.057006
http://dx.doi.org/10.1103/PhysRevLett.101.057006
http://dx.doi.org/10.1103/PhysRevLett.101.057006
http://dx.doi.org/10.1103/PhysRevLett.101.057006
http://dx.doi.org/10.1103/PhysRevB.78.184517
http://dx.doi.org/10.1103/PhysRevB.78.184517
http://dx.doi.org/10.1103/PhysRevB.78.184517
http://dx.doi.org/10.1103/PhysRevB.78.184517
http://dx.doi.org/10.1103/PhysRevB.80.094530
http://dx.doi.org/10.1103/PhysRevB.80.094530
http://dx.doi.org/10.1103/PhysRevB.80.094530
http://dx.doi.org/10.1103/PhysRevB.80.094530
http://dx.doi.org/10.1103/PhysRevB.85.094105
http://dx.doi.org/10.1103/PhysRevB.85.094105
http://dx.doi.org/10.1103/PhysRevB.85.094105
http://dx.doi.org/10.1103/PhysRevB.85.094105
http://dx.doi.org/10.1103/PhysRevB.87.174503
http://dx.doi.org/10.1103/PhysRevB.87.174503
http://dx.doi.org/10.1103/PhysRevB.87.174503
http://dx.doi.org/10.1103/PhysRevB.87.174503
http://dx.doi.org/10.1103/PhysRevB.89.020511
http://dx.doi.org/10.1103/PhysRevB.89.020511
http://dx.doi.org/10.1103/PhysRevB.89.020511
http://dx.doi.org/10.1103/PhysRevB.89.020511
http://dx.doi.org/10.1103/PhysRevLett.112.186401
http://dx.doi.org/10.1103/PhysRevLett.112.186401
http://dx.doi.org/10.1103/PhysRevLett.112.186401
http://dx.doi.org/10.1103/PhysRevLett.112.186401
http://dx.doi.org/10.1103/PhysRevB.83.060505
http://dx.doi.org/10.1103/PhysRevB.83.060505
http://dx.doi.org/10.1103/PhysRevB.83.060505
http://dx.doi.org/10.1103/PhysRevB.83.060505
http://dx.doi.org/10.1103/PhysRevB.59.1743
http://dx.doi.org/10.1103/PhysRevB.59.1743
http://dx.doi.org/10.1103/PhysRevB.59.1743
http://dx.doi.org/10.1103/PhysRevB.59.1743
http://dx.doi.org/10.1088/1367-2630/11/2/025016
http://dx.doi.org/10.1088/1367-2630/11/2/025016
http://dx.doi.org/10.1088/1367-2630/11/2/025016
http://dx.doi.org/10.1088/1367-2630/11/2/025016
http://dx.doi.org/10.1103/PhysRevB.88.134510
http://dx.doi.org/10.1103/PhysRevB.88.134510
http://dx.doi.org/10.1103/PhysRevB.88.134510
http://dx.doi.org/10.1103/PhysRevB.88.134510
http://dx.doi.org/10.1103/PhysRevB.88.155125
http://dx.doi.org/10.1103/PhysRevB.88.155125
http://dx.doi.org/10.1103/PhysRevB.88.155125
http://dx.doi.org/10.1103/PhysRevB.88.155125
http://arxiv.org/abs/arXiv:1403.3687
http://arxiv.org/abs/arXiv:1409.2300
http://dx.doi.org/10.1038/nphys1512
http://dx.doi.org/10.1038/nphys1512
http://dx.doi.org/10.1038/nphys1512
http://dx.doi.org/10.1038/nphys1512
http://dx.doi.org/10.1103/PhysRevB.82.134503
http://dx.doi.org/10.1103/PhysRevB.82.134503
http://dx.doi.org/10.1103/PhysRevB.82.134503
http://dx.doi.org/10.1103/PhysRevB.82.134503
http://github.com/tomkeus/vasp_unfold



