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In-plane uniaxial stress effects on the structural and electronic properties of BaFe2As2 and CaFe2As2
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Starting from the orthorhombic magnetically ordered phase, we investigate the effects of uniaxial tensile and
compressive stresses along a, b, and the diagonal a + b directions in BaFe2As2 and CaFe2As2 in the framework
of ab initio density functional theory (DFT) and a phenomonological Ginzburg-Landau model. While—contrary
to the application of hydrostatic or c-axis uniaxial pressure—both systems remain in the orthorhombic phase
with a pressure-dependent nonzero magnetic moment, we observe a sign-changing jump in the orthorhombicity
at a critical uniaxial pressure, accompanied by a reversal of the orbital occupancy and a switch between the
ferromagnetic and antiferromagnetic directions. Our Ginzburg-Landau analysis reveals that this behavior is a
direct consequence of the competition between the intrinsic magneto-elastic coupling of the system and the
applied compressive stress, which helps the system to overcome the energy barrier between the two possible
magneto-elastic ground states. Our results shed light on the mechanisms involved in the detwinning process of an
orthorhombic iron-pnictide crystal and on the changes in the magnetic properties of a system under uniaxial stress.
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I. INTRODUCTION

Since the discovery of high-Tc superconductivity in Fe-
based materials in 2008,1 an enormous amount of effort
has been invested to understand the microscopic behavior
of these systems. Iron pnictides and chalcogenides become
superconductors either by hole or electron doping the systems,
by application of external pressure or by a combination
of both. In particular, uniaxial pressure is currently being
intensively discussed as a possible route towards modifying
the structural, magnetic, and even superconducting properties
of these systems. A regular sample below its magnetic and
structural transition temperatures displays an equal number
of opposite twin orthorhombic domains, effectively canceling
out its anisotropic properties. To circumvent this issue and
obtain a single orthorhombic domain sample, uniaxial tensile
stress has been widely employed to detwin iron pnictides such
as BaFe2As2 and CaFe2As2

2–8 and unveil their anisotropic
properties, which have been argued to originate from electronic
nematic degrees of freedom.9–11 Theoretically, although it is
clear that in the tetragonal phase the applied uniaxial pressure
acts as a conjugate field to the orthorhombic order parameter,
condensing a single domain,12 the nature of the detwinning
process deep inside the orthorhombic phase remains an open
question, since different mechanisms might be at play, such as
twin boundary motion or reversal of the order parameter inside
the domains.8,13

Besides promoting detwinning, uniaxial strain has also been
shown to affect the thermodynamic properties of the iron
pnictides. Recent neutron scattering experiments on BaFe2As2

under compressive stress along the in-plane b direction
reported a progressive shift to higher temperatures of the mag-
netic transition6—a behavior also seen in BaFe2(As1−xPx)2 by
thermodynamic measurements14—and an apparent reduction
of the magnetic moment.6 Moreover, Blomberg et al. observed
a significant uniaxial structural distortion in BaFe2As2 under
tensile stress, suggesting an enhanced response to external
strain.7 More recently, it was found that epitaxially strained
thin films of FeSe on a SrTiO3 substrate show an increase in

critical superconducting temperatures up to 65 K, the highest
reported Tc so far.15 Clearly, crystal lattice strain plays a key
role for the magnetic,16 structural, and superconducting prop-
erties in Fe-based superconductors, and a better understanding
of the microscopic origin of such behavior is desirable.

In this work we combine density functional theory (DFT)
calculations and Ginzburg-Landau phenomenology to analyze
the effects of uniaxial compressive stress as well as uniaxial
tensile stress on the magnetic, electronic and structural prop-
erties of BaFe2As2 and CaFe2As2 at low temperatures, deep
inside the ordered phase. Stress is measured in terms of equiv-
alent hydrostatic pressure, P = Tr(σ̂ )/3, where σ̂ is the stress
tensor matrix and positive and negative pressures correspond
to applying compressive and tensile stresses respectively.
Our ab initio-derived estimates for the elastic constants in
the orthorhombic phase agree well with experimental values.
While no sign of a true structural or magnetic phase transition
is observed in the range of pressures between −2 and 2 GPa, at
a critical pressure we observe a reversal of the magnetization,
i.e., exchange of ferromagnetic (FM) and antiferromagnetic
(AFM) directions, simultaneous to a discontinuous change in
the orthorhombic order parameter a − b, which also changes
sign. This behavior has important consequences on the orbital
dxz and dyz occupancies and is also related to the shift of the
magnetic ordering temperature, as we argue below.

Furthermore, by employing a phenomenological Ginzburg-
Landau model, we show that this behavior is intimately con-
nected to the magneto-elastic coupling of the system, which
by itself acts as an intrinsic conjugate field to the orthorhombic
order parameter. As the applied compressive stress is enhanced
towards a critical value, it eventually overcomes the effects
of the magneto-elastic coupling, rendering the zero-pressure
state energetically unstable and resulting in a simultaneous
reversal of the magnetization and the orthorhombic order
parameter. Comparison of the DFT-derived critical uniaxial
pressures for CaFe2As2 and BaFe2As2, combined with the
Ginzburg-Landau result that the critical pressure is propor-
tional to the magneto-elastic coupling, suggests that the latter
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is larger in CaFe2As2 than in BaFe2As2. We also propose
low-temperature detwinning measurements to compare the
experimental critical pressure with our ab initio estimates
in order to clarify the dominant mechanism behind the
detwinning process of orthorhombic iron pnictide crystals.

The paper is organized as follows: in Sec. II we summarize
our computational methods, and in Sec. III we present our DFT
results. Section IV is devoted to the Ginzburg-Landau analysis
and comparison with DFT calculations. Section V contains
the discussions and concluding remarks. Details about the ab
initio method are presented in the Appendix.

II. COMPUTATIONAL METHODS

Electronic structure calculations were performed within
DFT with the Vienna Ab initio Simulations Package (VASP)17

with the projector augmented wave (PAW) basis18 in the
generalized gradient approximation (GGA). All our structural
relaxations were performed under constant stress using the
Fast Inertial Relaxation Engine (FIRE).19,20 For this purpose,
we had to modify the algorithm accordingly (see Appendix).
Every 10 steps, we cycled through nonmagnetic, ferromag-
netic, antiferromagnetic-checkerboard, stripe-type antiferro-
magnetic (along unit cell axis a), and stripe-type antiferro-
magnetic (along unit cell axis b) spin configurations, and
then we continued the relaxation with the lowest energy spin
configuration. As a final converged magnetic configuration in
the orthorhombic phase we always found stripe-type antiferro-
magnetic order either along a or along b, as discussed below.

The energy cutoff in the calculations was set to 300 eV
and a Monkhorst-Pack uniform grid of (6 × 6 × 6) points was
used for the integration of the irreducible Brillouin zone (BZ).

III. RESULTS AND DISCUSSION

A. BaFe2As2

Starting from the low-temperature orthorhombic structure
with stripe magnetic order, we performed structure relaxations
under applied uniaxial tensile and compressive stresses along
a (AFM direction), b (FM direction), and the plane-diagonal
a + b direction for both BaFe2As2 and CaFe2As2 [see inset
of Fig. 1(a)]. We measure stress in units of the equivalent
hydrostatic pressure, P = Tr(σ̂ )/3, with σ̂ denoting the stress
tensor matrix. We simulated pressures in the range between
−3 and 3 GPa. In the tensile stress range, below −2.7 GPa
we observe in both systems that, for stress along a, a sudden
expansion in a and contraction in b and c axes occurs. A similar
situation arises when pulling apart along b. This feature signals
the extreme case of absence of bonding within the material,
and for this reason this pressure range will be excluded from
further discussion.

Figure 1 shows the evolution of lattice parameters for
BaFe2As2 as a function of uniaxial stress along a, b and
a + b. We consider both compressive stress (positive pressure)
and tensile stress (negative pressure). At P = 0 GPa, we
have a (AFM direction) > b (FM direction). BaFe2As2

remains in the orthorhombic phase with nonzero increasing
magnetic moment for large tensile stress (negative pressure).
Pulling apart (i.e., P < 0) along the (longer) AFM direction
a [Fig. 1(a)] the system expands along a, strongly compresses
along c, and shows almost no changes along b; similarly,
pulling apart along the (shorter) FM direction b [Fig. 1(b)]
b expands, c compresses and a shows almost no changes
except at the pressure P = −0.22 GPa [Fig. 1(e)]. At this
point, BaFe2As2 shows a sudden jump in the orthorhombicity
where a becomes the shorter axis and b becomes the longer
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FIG. 1. (Color online) Evolution of the unit cell parameters in BaFe2As2 under application of uniaxial stress in the equivalent hydrostatic
pressure range [−2 GPa,2 GPa] (a) along a, (b) along b, and (c) along a + b. Panels (d)–(f) show the corresponding zoom of the pressure
dependence of the lattice parameters in the range [−0.3 GPa,0.3 GPa]. Negative pressures correspond to tensile stress while positive pressures
correspond to compressive stress. Note, that the relationship between axes and iron moments shown in the inset in (a) is valid for P ‖ a <

0.22 GPa, and in (b) for P ‖ b > −0.22 GPa. For a discussion of the reversal of AFM order, see the text.
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FIG. 2. (Color online) (a) Evolution of the magnetic moments
of iron, (c) of the unit cell volume, and (e) of the pnictogen height
under uniaxial pressure in the range [−2 GPa,2 GPa]. Panels (b), (d),
and (e) show the corresponding zoom of the pressure dependence of
these quantities in the range [−0.3 GPa,0.3 GPa]. Negative pressures
correspond to tensile stress while positive pressures correspond to
compressive stress.

axis. This interchange happens with a rotation of the magnetic
order by 90 degrees, i.e., the FM direction becomes parallel
to the a axis while the AFM direction becomes parallel to
the b axis. We will discuss this feature further below. Note
that tensile stress along a + b acts similarly on both a and
b directions, which expand, while the c direction strongly
compresses [Figs. 1(c) and 1(f)].

Under application of compressive stress (positive pressure),
we observe in all three cases a strong expansion along c and
a compression along the direction of applied stress (a, b, or
a + b). For the cases where pressure is applied along a or b,
we observe almost no changes or a slight expansion along b
and a, respectively. Since a > b at zero stress, we observe
the inversion of axes followed by a jump in orthorhombicity
and a 90 degree rotation of the magnetization when stress is
applied along a at P = 0.22 GPa [Figs. 1(a) and 1(d)]. This
inversion of axes, with b > a for all higher compressive stress
values means that the spin configuration shown in the inset of
Fig. 1(a) should now be turned by 90 degrees, with b pointing
along the AFM direction. Such an inversion is also observed
for compressive stress along a + b at much larger pressures of
P = 2 GPa.

Figure 2 shows the evolution of magnetic moment,
volume and As height in BaFe2As2 as a function
of stress. The three quantities show a clearly mono-
tonic behavior independent of the applied stress di-
rection except for small jumps at the pressures P =
−0.22 GPa (for stress along a) and P = 0.22 GPa (for stress

along b) where the tetragonal condition is almost fulfilled
(a ≈ b) [Figs. 2(b), 2(d), and 2(f)]. We also note here how
magnetic moments in BaFe2As2 respond to different direction
of pressure application. The highest rate of suppression, of
roughly 0.1μB/GPa is achieved when pressure is applied
within the ab plane, while application of pressure along
the c axis actually results in magnetic moment increase by
0.03μB/GPa.20 Even though DFT calculations overestimate
the value of the ordered Fe magnetic moment at P = 0
GPa, it is to be expected that the relative changes in
magnetic moment should provide a reliable description of the
situation of BaFe2As2 under pressure as shown in previous
studies.20–23

Except for the pressures P = −0.22 GPa (for stress along a)
and P = 0.22 GPa (for stress along b), stress always enforces
a certain degree of orthorhombicity and the system remains
magnetically ordered with a decreasing ordered moment as a
function of compressive stress [Fig. 2(a)]. Moreover, since the
c axis continually expands from negative to positive pressures,
hAs increases accordingly as a function of stress [Fig. 2(e)].
These features have a direct consequence on the electronic
properties of the system.

As an illustration, we show in Fig. 3 the (nonspin polarized)
Fermi surface of BaFe2As2 under application of uniaxial stress
P = −0.07 GPa and P = 1.7 GPa applied along a in the
1 Fe/unit cell equivalent Brillouin zone. We would like to
note that correlation effects beyond DFT as implemented
in DFT + DMFT (dynamical mean field theory), which are
known to give a good agreement between the calculated Fermi
surfaces and angle-resolved photoemission measurements in
the Fe pnictides,24–29 have not been included here. Modest
tensile stress of 0.07 GPa leads to the disappearance of the
3dxy hole pocket around �̄ in the kz = 0 plane [see Fig. 5(a)
in Ref. 20]. On the other hand, when compressive stress is
applied, the hole pockets around �̄ significantly change in
size, and additionally at a pressure of 1.7 GPa, small electron
pockets, of majority 3dxy and 3dz2 character, appear along the
�̄-M̄ directions of the BZ [Figs. 3(c) and 3(e)]. The increase
of the 3dxy hole pocket size with increasing uniaxial stress
can be explained by the reduction of Fe-Fe distances along
the a axis, leading to an increased contribution of 3dxy-3dxy

bonding. In fact, the effects of tensile and compressive
stress on the electronic structure shown for the example of
stress along a can be seen also in our calculations for both
stress along b and along a + b.

In Fig. 4 we analyze the orbitally-resolved density of
states at the Fermi level N (EF). Applying stress both along
a and b has the same effect on the total density of states of
both BaFe2As2 and CaFe2As2, but there is a selective orbital
order as shown in Fig. 4. N (EF) is predominantly of 3dxz

character when a > b and of 3dyz character when a < b.
This means that the dominant character switches from 3dyz to
3dxz at P ‖ a ≈ 0.22 GPa, and from 3dxz to 3dyz at P ‖ b ≈
−0.22 GPa as expected.

B. CaFe2As2

The lattice parameters of CaFe2As2 under application of
compressive stress along a, b and a + b directions show a
similar overall behavior compared to BaFe2As2 (see Fig. 5)
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FIG. 3. (Color online) Fermi surface of BaFe2As2 for two pressure values of uniaxial stress applied along the a axis shown in the 1 Fe/unit
cell equivalent BZ (see Ref. 34 for the BZ path definition). Panels (a) and (b) show kz = 0 cuts of the Fermi surface at pressures of −0.07 and
1.7 GPa respectively, while panels (c) and (d) show vertical cuts along the diagonal of the BZ for pressures of −0.07 and 1.7 GPa. Grey lines
on panels (a) and (b) denote boundaries of the 2 Fe/unit cell BZ.

except for some important shifts of the pressures at which
the system exchanges the FM and AFM directions. When
stress is applied along the a direction, we observe at P =
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FIG. 4. (Color online) Evolution of the orbital resolved density
of states of BaFe2As2 at the Fermi level N (EF) with stress (a) applied
along a, and (b) along b. Lines joining the calculated points are a
guide for the eye.

0.67 GPa a jump in the orthorhombic order parameter, with
a sign change, accompanied by a reversal of the magnetic
AFM and FM directions. However, analogously to the case
of BaFe2As2, this is not followed by a suppression of the
magnetic moments of iron. In fact, the c axis expands with
applied stress and at P = 0.67 GPa the c lattice parameter
in CaFe2As2 is too large for the formation of an interlayer
As-As covalent bond, necessary for a transition to a collapsed
tetragonal phase and suppression of magnetic moments as
observed under hydrostatic or c-axis uniaxial pressure.20–22,30

For tensile stress along the (shorter) b direction, the reversal of
AFM and FM directions happens at P = −0.33 GPa followed
by a jump in the orthorhombicity. The magnetic response of
CaFe2As2 is highly anisotropic as well, but contrary to the
case of BaFe2As2, the magnetic moments in CaFe2As2 are
most effectively suppressed when pressure is applied along
c. We measure a rate of about 0.1μB/GPa.20 Application of
pressure within the ab plane results in a suppression of the
magnetic moment at a rate of 0.02μB/GPa.

In order to investigate the possibility of a structural and/or
magnetic phase transition at higher pressures, we concentrate
now on compressive stress along the diagonal of the ab plane.
We find that orthorhombicity is preserved up to 7.7 GPa, where
a sharp transition to a tetragonal phase appears. This transition
is of first-order type, like the orthorhombic to collapsed
tetragonal phase transition under application of hydrostatic
or uniaxial pressure along the c axis20 but in this case, changes
of magnetic and structural properties take opposite directions;
the c axis undergoes a sudden expansion of about 9.5%, and
a and b axes contract while the iron magnetic moments order
ferromagnetically and sharply increase in value by around
25%. Interestingly though, contrary to the application of
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FIG. 5. (Color online) Evolution of the unit cell parameters in CaFe2As2 under the application of uniaxial stress in the range [−2 GPa,2 GPa]
(a) along a, (b) along b, and (c) along a + b. Negative pressures correspond to tensile stress while positive pressures correspond to compressive
stress. Note that the relationship between axes and iron moments shown in the inset in (a) is valid for P ||a < 1 GPa, and in (b) for P ||b > −0.6
GPa.

hydrostatic and uniaxial pressure along c axis, the volume
change here is significantly smaller, namely an expansion by
about 0.9%. These features are not observed in BaFe2As2 when
we compress along the diagonal of the ab plane up to pressures
of 10 GPa.

C. Elastic constants in the orthorhombic phase

Using data for the response to the uniaxial stress along a, b,
and c20 axes we can directly evaluate the elastic constants Cij

in BaFe2As2 and CaFe2As2 corresponding to the orthorhombic
deformations. We define elastic constants to be such that

σi =
∑

j

Cijuj ,

where σi and uj are stress and strain tensor components
respectively, and indices i and j can be xx,yy,zz. Strains
are defined to be uxx = (a − a0)/a0, uyy = (b − b0)/b0, and
uzz = (c − c0)/c0, where a0, b0, and c0 are equilibrium unit
cell dimensions (P = 0 GPa). We first directly obtain Sij =
[C−1]ij by performing linear fits to ui(σj ) and C is then
obtained by inverting the resulting matrix. For BaFe2As2, the
elastic constant matrix is

C =

⎡
⎢⎣

95.2 ± 4.3 20.4 ± 3.4 40.8 ± 4.5

27.3 ± 4.8 130.8 ± 6.1 64.0 ± 7.0

43.7 ± 4.5 47.7 ± 4.6 81.0 ± 5.6

⎤
⎥⎦ GPa. (1)

Utilizing Voigt and Reuss averages,31 defined as

BVoigt = 1
9 [C11 + C22 + C33 + 2(C12 + C13 + C23)],

BReuss = [S11 + S22 + S33 + 2(S12 + S13 + S13)]−1,

it is possible to estimate the bulk modulus. Voigt and Reuss
averages yield 61.9 ± 5.1 and 69.3 ± 7.5 GPa, respectively,
which is in good agreement with our previous estimate20 and
the experimental value of 59 ± 2 GPa.32 For CaFe2As2, the
elastic constant matrix is given by

C =

⎡
⎢⎣

148.7 ± 18.5 45.6 ± 12.3 55.5 ± 12.7

63.9 ± 21.4 182.4 ± 18.4 81.2 ± 17.5

61.4 ± 14.7 63.1 ± 11.4 68.8 ± 11.3

⎤
⎥⎦ GPa,

(2)

which results in bulk moduli of 84.3 ± 14.8 and 77.7 ±
17.2 GPa using Voigt and Reuss averages, respectively. Both
values are in good agreement with experimentally determined
values of 82.9 ± 1.4 GPa33 and the estimate based on fits to
the Birch-Murnaghan equation of state.20

IV. PHENOMENOLOGICAL GINZBURG-LANDAU MODEL

To aid the interpretation of the ab initio results, we develop
a phenomenological magneto-elastic Ginzburg-Landau model
to capture the physics of the simultaneous sign-changing jump
of the orthorhombicity and reversal of the AFM and FM
directions. As pointed out by Refs. 9, 11 and 35, the magnetic
structure of the iron pnictides consists of two interpenetrating
Néel sublattices, with magnetizations M1 and M2 of equal
amplitude that can point either parallel or antiparallel to each
other (see Fig. 6).

FIG. 6. (Color online) Magnetic structure of the iron pnictides
consisting of two interpenetrating Néel sublattices, with magnetiza-
tions M1 and M2.
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By including also the orthorhombic order parameter δ =
(a − b)/(a + b), we obtain the Ginzburg-Landau free energy,

F = am

4

(
M2

1 + M2
2

) + um

16

(
M2

1 + M2
2

)2 − gm

4
(M1 · M2)2

+ as

2
δ2 + us

4
δ4 + λ

2
δ(M1 · M2) + σδ. (3)

Here, am ∝ T − TN , as ∝ T − Ts , um,us > 0, and gm > 0.
The last condition ensures that the ground state is the striped
magnetic configuration (i.e., collinear M1 and M2). We also
must have um > gm in order for the magnetic free energy to be
bounded. λ > 0 is the magneto-elastic coupling and σ is the
stress field conjugate to the orthorhombic order parameter. The
sign of λ is set to describe the experimental observation that
ferromagnetic bonds are shorter than antiferromagnetic bonds.
Although this model does not take into account the physics
of the magnetically driven structural transition, which comes
from fluctuations beyond the Ginzburg-Landau analysis we
perform below,11 it captures the main features of the ab initio
results.

The magnetic ground state is completely determined by the
magnitude M = |M1| = |M2| and the relative angle θ between
M1 and M2. Then, minimization of the free energy leads to
three coupled equations for M , θ , and δ:

∂F

∂M
= (am + λδ cos θ )M + (um − gm cos2 θ )M3 = 0, (4)

∂F

∂δ
= asδ + usδ

3 + λ

2
M2 cos θ + σ = 0, (5)

∂F

∂θ
= gm

4
M4 sin 2θ − λ

2
M2δ sin θ = 0. (6)

The last equation allows three possible solutions: θ = 0, θ =
π , and cos θ = λδ/(gmM2). We focus only on the θ = 0,π

solutions, since they are the energy minimum at zero stress.
In the ordered phase, where am,as < 0, we obtain the self-
consistent equation for δ:

−
(

|as | + λ2

2(um − gm)

)
δ + usδ

3 = − λ|am| cos θ

2(um − gm)
− σ (7)

For σ = 0, the mean-field equations and the free energy are
invariant upon changing δ → −δ and θ → θ + π . Thus, we
have two degenerate solutions: δ > 0 and antiparallel M1 and
M2, θ = π (denoted hereafter δ+), or δ < 0 and parallel M1

and M2, θ = 0 (denoted hereafter δ−). The presence of a finite
strain σ lifts this degeneracy. After defining

δ0 =
√

|as |
us

+ λ2

2us(um − gm)
,

h+ = 1

usδ
3
0

(
λ|am|

2(um − gm)
− σ

)
, (8)

h− = 1

usδ
3
0

(
λ|am|

2(um − gm)
+ σ

)
,

the self-consistent equations for the two solutions δ+ and δ−
become simply

−
(

δ±
δ0

)
+

(
δ±
δ0

)3

= ±h±, (9)

and we obtain analytic expressions for the two possible
solutions:

δ±(h±) = ±δ0

[(
h±
2

+
√

h2±
4

− 1

27

) 1
3

+
(

h±
2

−
√

h2±
4

− 1

27

) 1
3
]
. (10)

The interplay between the external stress field σ and the
magneto-elastic coupling λ becomes evident in Eqs. (8)–(10).
For σ = 0, λ acts as an external field of the same magnitude for
both the δ+ and δ− solutions, i.e., it gives rise to nonzero h+ =
h− in the equations of state (9), making these two solutions
degenerate. Now, consider that for σ = 0 the system chooses
the minimum δ+ (i.e., δ > 0 and θ = π ). By increasing the
external stress to a small value σ > 0, the effective field h+
is suppressed, whereas the field h− is enhanced. Although the
solution δ− (i.e., δ < 0 and θ = 0) has a lower energy, the
solution δ+ is still a local minimum, since the effective field
h+ is still finite. This situation persists until σ increases to the
point where the field h+ becomes negative and large enough
to make the δ+ solution not a local minimum.

In particular, to determine when the δ+ solution ceases to
be a local minimum, we analyze when one of the eigenvalues
of the Hessian matrix (∂2F/∂qi∂qj ) becomes negative (with
generalized coordinates qi = M, δ, θ ). The three eigenvalues
μi are given by

μ± = 1

2
[as + 3usδ

2 + 2M2(um − gm)]

±1

2

√
[as + 3usδ2 − 2M2(um − gm)]2 + 4λ2M2,

μ0 = M2

2
(gmM2 − λδ cos θ ). (11)

For the δ+ (δ > 0, θ = π ) solution, the only eigenvalue that
can become negative with increasing σ is μ−. We find that this
happens when the condition δ+

δ0
= − 3

2h+ is met, corresponding

to an effective field h+ = − 2
3
√

3
, i.e., to the critical stress

σc = λ|am|
2(um − gm)

+ 2us

3
√

3

( |as |
us

+ λ2

2us(um − gm)

)3/2

.

(12)

At σ = σc, the solution δ > 0, θ = π is not a local minimum
any longer and the system jumps to the new minimum with
δ < 0, θ = 0, where not only the sign of the orthorhombicity
is reversed, but also the angle between the magnetizations of
the two sublattices (i.e., the AFM and FM directions). This
behavior is shown in Fig. 7 for a particular set of parameters.

To compare with the DFT results, we performed a slight
modification with respect to the calculations presented in the
previous section. To ensure that the external stress couples
mainly to the orthorhombic mode δ and not to the longitudinal
elastic mode ε, such that it does not change the volume of
the system, we simultaneously applied positive (compressive)
pressure along a and equal-amplitude negative (tensile) pres-
sure along b. By doing this, we avoid terms such as M2ε in the
free energy, rendering the comparison between the ab initio
and the Ginzburg-Landau results more meaningful.
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FIG. 7. (Color online) (a) Orthorhombic order parameter δ = a−b

a+b

(in units of δ0 =
√

|as |
us

+ λ2

2us (um−gm) ) as a function of the applied

stress σ (in units of σ0 = λ|am|
2(um−gm) ). We used parameters such that

λ|am|
2(um−gm)us δ

3
0

= 2. The jump happens when the δ > 0 solution is no

longer a local minimum, and is accompanied by a reversal of the
angle between the two sublattice magnetizations M1 and M2, i.e.,
a reversal of the AFM and FM directions. (b) DFT results for the
strain-dependent orthorhombic order parameter δ ≡ a−b

a+b
. The blue

curve is for BaFe2As2 and the red curve, for CaFe2As2.

The ab initio obtained behavior of δ as a function of σ ,
defined in the way described above, is shown also in Fig. 7.
We find a qualitative agreement with the Ginzburg-Landau
results, showing that the external stress indeed competes
with the magneto-elastic coupling, helping the system to
overcome the energy barrier between the δ+ (δ > 0, θ = π )
and δ− (δ < 0, θ = 0) solutions. A quantitative comparison
becomes difficult because the DFT calculations are performed
deep in the ordered phase, where higher order terms in
the Ginzburg-Landau expansion become more important.
Furthermore, it is also possible that some of the magnetic
parameters (am, um, and gm) have themselves some implicit
pressure dependence in this regime. Nevertheless, we can
use Eq. (12) as a benchmark to discuss differences in the
BaFe2As2 and CaFe2As2 compounds. Clearly, Eq. (12) shows
that σc increases with increasing magneto-elastic coupling.
Therefore, the fact that σc is three times larger for CaFe2As2

than for BaFe2As2 suggests that, all other parameters being
equal, the magneto-elastic coupling is larger in CaFe2As2

than in BaFe2As2. This may have important impact on the
coupled magnetic and structural transitions displayed by these

compounds, as discussed in Refs. 11,35 and 36, and as such
deserves further investigation in the future.

V. DISCUSSION AND CONCLUSIONS

In this paper, we analyzed the effects of tensile and
compressive stress along a, b, and a + b on BaFe2As2 and
CaFe2As2 by means of DFT calculations under constant stress
conditions with the help of the FIRE algorithm, combined
with a phenomenological Ginzburg-Landau model. Starting
from the low-temperature magnetically ordered orthorhombic
phase, we found in the pressure range between −2 and 2 GPa
no real structural phase transitions in both systems except
for a pronounced orthorhombicity jump accompanied by a 90
degree rotation of the magnetic order. FM and AFM directions
are interchanged, as are the orbital occupations dxz and dyz.
This inversion of axes is a direct consequence of the interplay
between the intrinsic magneto-elastic coupling and the applied
stress, as revealed by our Ginzburg-Landau analysis. The
proportionality between the critical stress where this inversion
happens and the value of the magneto-elastic coupling suggests
that in CaFe2As2 the magnetic and structural degrees of
freedom are more strongly coupled than in BaFe2As2, which
may be related to the differences observed in their magnetic
and structural transitions.36 We also point out that the estimates
for the bulk moduli of BaFe2As2 and CaFe2As2 derived
from our ab initio results are in good agreement with the
experimental measurements.

Our calculations also provide important insight on the
impact of uniaxial stress on the magnetic properties of the
pnictides. Figure 2 shows that the magnetic moment at zero
temperature always decreases (increases) with compressive
(tensile) stress, regardless of the axis that is perturbed. Unlike
the jump in the orthorhombicity and the reversal of the
FM and AFM directions, this is a consequence not of the
magneto-elastic coupling, but of the changes in the pnictogen
height promoted by the uniaxial stress. This is an important
prediction of our first-principle calculations that can be
tested experimentally. Interestingly, recent neutron diffraction
experiments6 on BaFe2As2 observed that upon application of
compressive stress along the b axis, the magnetic moment is
suppressed from 1.04μB to 0.87μB . Given the small values
of applied pressure, it could be that this suppression is due
to a reduction of the volume fraction of the domains whose
moments are oriented out of the scattering plane, as pointed out
by the authors of Ref. 6. Nevertheless, in view of our current
results, it would be interesting to either apply higher pressures
to completely detwin the samples at low temperatures or
to apply tensile stress to make a comparison with the case
of compressive stress. We note that Ref. 6 also found an
enhancement of the magnetic transition temperature TN in
the same detwinned samples. Phenomenological models14,35,37

attribute this effect to changes in the magnetic fluctuation
spectrum of the paramagnetic phase promoted by the uniaxial
stress. In this regard, it would be interesting in future ab initio
studies to systematically investigate the changes in the nesting
feature of the Fermi surface (Fig. 3) as function of the uniaxial
stress—specifically, changes in the (π,π ) susceptibility peak.

Finally, we comment on the impact of our results to
the understanding of the detwinning mechanism of iron
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pnictide compounds. In the tetragonal phase, rather small
uniaxial stress P < 10 MPa is enough to completely detwin
the sample, giving rise to a single domain.6,8,13 This can
be understood as fluctuations above the structural transition
temperature giving rise to long-range order in the presence
of a symmetry-breaking field.11 The situation is however very
different deep in the orthorhombic phase, where twin domains
are already formed. Experimentally, it is known that larger
pressures are necessary to completely detwin the system in
this case,8,13 although specific values have not been reported,
to our knowledge. One possible detwinning mechanism is the
reversal of the orthorhombicity of one domain type, while the
domain walls remain pinned. This corresponds precisely to the
situation studied here, where the orthorhombicity jumps at a
certain critical uniaxial pressure. Our ab initio results show
that such a critical pressure for BaFe2As2 would be around
200 MPa—one order of magnitude larger than the pressure
values necessary to detwin the sample in the tetragonal
phase.

Of course, other mechanisms can also give rise to de-
twinning in the ordered phase, such as domain wall motion.
Therefore, we propose controlled detwinning experiments at
low temperatures in BaFe2As2 to measure the critical pressure
necessary to form a single domain. Values comparable to the
ones discussed here would be a strong indication for reversal of
the order parameter inside fixed domains. Which mechanism is
at play in the iron pnictides may have important consequences
for the understanding of the impact of the external stress on
the anisotropic properties measured in detwinned samples—
particularly the in-plane resistivity anisotropy,7,8,11 which is
likely affected by domain wall scattering.38
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APPENDIX: MODIFICATION OF THE FIRE ALGORITHM

Within the FIRE19 algorithm, the energy minimization is
achieved by moving the system’s position r according to the
following equation of motion:

v̇(t) = F(t)

m
− γ (t)|v(t)| [ev(t) − eF(t)

]
, (A1)

where ex denotes the unit vector along x, with x = v(t),F(t),
t is time, and γ (t) is a time-dependent friction parameter
which assures that the system is moving down the energy
hypersurface in an optimal manner as long as the power
P (t) = F(t) · v(t) is positive. If P (t) becomes negative, the
procedure is stopped and relaxation is reinitialized in the
direction of the steepest descent.

In order to use FIRE for the relaxation of periodic systems,
we change from the configuration space of 3N atomic Carte-
sian coordinates rα , α = 1, . . . ,N , to an extended system of
3N + 9 coordinates r̃α = (sα,ĥ), consisting of lattice vectors
which are contained in columns of the 3 × 3 matrix ĥ = (hij ),
and fractional atomic positions sα within the unit cell, where
Cartesian and fractional positions are related by rα = ĥsα .

When (A1) is rewritten in terms of coordinates r̃α , one just
needs to find the appropriate expression for forces F̃

α
, that is,

derivatives of energy with respect to the coordinates r̃α . Since
stress and strain tensors, σ̂ and û, can be defined through

σ̂ = − 1

V

∂E

∂û
, Ĥ = (Î + û)ĥ,

where Î is the identity matrix and Ĥ is the lattice matrix after
an infinitesimal deformation, it is easy to show that

∂E

∂sα
=

∑
β

∂E

∂ rβ

∂ rβ

∂sα
= ∂E

∂ rα
ĥ

T = Fαĥ
T
,

(A2)
∂E

∂ĥ
= ∂E

∂û
∂û

∂ĥ
= ∂E

∂û
(ĥ

T
)−1 = −V σ̂ (ĥ

T
)−1,

so that forces in the extended coordinates are given by

F̃
α = [Fαĥ

T
, − V σ̂ (ĥ

T
)−1]. (A3)

Forces Fα and stresses σ̂ are obtained from the electronic
structure code, and are inserted directly into Eq. (A3), taking
into account that σ̂ = σ̂ ext − σ̂ int, that is, total stress is the sum
of internal and external stresses applied to the surface of the
unit cell.
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18P. E. Blöchl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D.
Joubert, ibid. 59, 1758 (1999).

19E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,
Phys. Rev. Lett. 97, 170201 (2006).
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