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I. SAMPLE PREPARATION,
CHARACTERIZATION, AND CRYSTAL

STRUCTURE

Single crystals of CrGeTe3 were grown by using GeTe
flux with a mixture of high purity powder of Cr, Ge,
and Te at a molar ratio of 2:6:36, as described in detail
in Refs. [1, 2]. The rhombohedral crystal structure of
CrGeTe3 with space group R3̄ is depicted in Fig. S1. It
consists of layers of a honeycomb network of edge sharing
octahedra formed by a central Cr atom bonded to six Te
atoms [1, 3].

Previous studies have explained ferromagnetism in
CrGeTe3 in terms of ferromagnetic superexchange me-
diated via the angle of the Cr-Te-Cr bonds that is close
to 90 degrees [4, 5]. We show the pressure dependence of
this angle in Fig. S2. The angle slightly increases with
pressure, which could potentially lead to a weakening of
ferromagnetic superexchange, as observed in the pres-
sure range before the insulator-to-metal transition [2].
This weakening is not observed in our previous theoret-
ical study [6], since DFT energy mapping takes into ac-
count all possible exchange paths, not just one. Ferro-
magnetic superexchange in a metal may, however, behave
in a more complex way than a single leading-order term,
as used in Ref. [2].

II. LOW-TEMPERATURE HIGH-PRESSURE
INFRARED REFLECTIVITY MEASUREMENTS

High-pressure reflectance measurements during cool-
ing down from 295 to 6 K were performed for pres-
sures between 1.6 and 6.3 GPa and in the energy range
from 0.0248 to 2.48 eV (200 to 20000 cm−1). The mea-
surements were carried out using an infrared microscope
(Bruker Hyperion), equipped with a 15× Cassegrain ob-
jective, coupled to a Bruker Vertex 80v FT-IR spec-
trometer. A diamond anvil cell (DAC) from EasyLab
company equipped with type IIA diamonds, which are
suitable for infrared measurements, was utilized for pres-
sure generation. For cooling, a Lake Shore continuous
flow cryostat has been used. A freshly cleaved single

crystal of CrGeTe3, with the size of ∼ 160 × 150 ×
40 µm3, was loaded into the hole of a CuBe gasket inside
the DAC. For ensuring the well-defined sample-diamond
interface throughout the experiment, finely ground CsI
powder was used as quasihydrostatic pressure transmit-
ting medium. The pressure was determined in situ in-
side the cryostat using the ruby luminescence method
[7, 8]. The pressure-dependent reflectivity spectra at
the sample diamond interface Rs−d in the energy range
0.0248 to 1.116 eV (200 to 9000 cm−1), were determined
according to Rs-d(ω)=Rgasket-dia(ω)×(Is(ω)/Igasket(ω)),
where Is(ω) is the intensity of the radiation reflected
at the interface between the sample and the diamond
anvil, Igasket(ω) the intensity reflected from the CuBe
gasket-diamond interface, and Rgasket-dia(ω) is the reflec-
tivity of the gasket material for the diamond interface.
While the Rs−d spectra in the energy range 1.116 to
2.248 eV (9000–20000 cm−1) were calculated according
to Rs-d(ω)=Rdia×(Is(ω)/Idia(ω)), where Rdia = 0.167 is
the reflectivity of diamond, which was assumed to be
pressure independent [9] and Idia(ω) is the intensity re-
flected from the inner diamond-air interface of the empty
DAC.

III. ANALYSIS OF REFLECTIVITY AND
OPTICAL CONDUCTIVITY SPECTRA

To obtain the complex optical conductivity σ(ω)=
σ1(ω) + iσ2(ω), the Kramers-Kronig relations were ap-
plied to transform the reflectivity spectra Rs−d to the
various optical functions, taking the sample-diamond in-
terface into account. The extrapolations of the Rs−d

spectra were done in a manner similar to our previous
publications [10–12]. To this end, Drude-Lorentz fitting
procedures were applied for extrapolating the reflectivity
data to zero frequency and interpolation in the frequency
range 1800-2700 cm−1, which is affected by multiphonon
absorptions in the diamond anvils and not completely
corrected by the normalization procedure. Above 2.5 eV,
we used the high-energy extrapolation of the ambient-
pressure reflectivity spectrum obtained by x-ray atomic
scattering functions [13] after adjustment for the sample-
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FIG. S1. Rhombohedral crystal structure of CrGeTe3 with space group R3̄ consisting of honeycomb layers with edge-sharing
octahedra formed by a central Cr atom bonded to six Te atoms [1, 3].
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FIG. S2. Pressure evolution of the Cr-Te-Cr angle which cor-
responds to the nearest-neighbour exchange path J1. Struc-
tures were interpolated as in Ref. [6].

diamond interface. Furthermore, Rs−d and the optical
conductivity were simultaneously fitted with the Drude-
Lorentz model for decomposition of the σ1 spectrum.
Within the Drude-Lorentz model the complex dielec-

tric function ϵ(ω)= ϵ1(ω) + iϵ2(ω) is given as

ϵ(ω) = ϵ∞ −
ω2
p,Drude

ω2 + iω/τDrude
+
∑
j

Ω2
j

ω2
0,j − ω2 − iωγj

,

(1)
where ϵ∞ is the high-energy contribution to ϵ1. ωp,Drude

FIG. S3. Linear extrapolation of the absorption edge in the σ1

spectrum at 25 K and 5.8 GPa as an example, for determining
the charge-transfer gap size ∆CT.

and 1/τDrude are the plasma frequency and scattering
rate of itinerant charge carriers, respectively. ω0,j , Ωj ,
and γj are the eigenfrequency, oscillator strength, and
width of the jth Lorentz oscillator, respectively. The de-
composition of the σ1 spectra into Drude and Lorentz
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contributions as a function of pressure and temperature
is given in Section X.

The charge-transfer gap size ∆CT was estimated by a
linear extrapolation of the absorption edge in the σ1 spec-
trum, which is an accepted way in the literature [14–17].
We illustrate the procedure in Fig. S3 for the conductiv-
ity spectrum at 25 K and 5.8 GPa.
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FIG. S4. Orbital-resolved density of states of CrGeTe3 at
ambient pressure (P = 0 GPa) in the ferromagnetic state cal-
culated using DFT.

IV. DENSITY FUNCTIONAL THEORY
CALCULATIONS

For the interpretation of the observed excitations in the
optical conductivity spectra, we perform density func-
tional theory (DFT) calculations within the full potential
local orbital (FPLO) method [18] in generalized gradient
approximation (GGA) [19] for the exchange-correlation
functional. We used experimental crystal structures for
CrGeTe3 under pressure from Ref. [20], which we interpo-
lated smoothly as explained in Ref. [6]. All calculations
were performed in ferromagnetic spin configuration.

We calculated the partial density of states (DOS) in
the ferromagnetic state at ambient pressure (P = 0 GPa)
from FPLO using a 50×50×50 k-point grid. The results
are shown in Fig. S4. The density of states is dominated
by Cr 3d and Te 5p orbitals, with additional contributions
from Ge 4s and 4p states. Te and Ge states are present for
both the majority and minority spins. The Cr 3d orbitals
are spin split and mostly occupied for the majority spin,
while being mostly unoccupied for the minority spin.

The optical conductivity in the main text was calcu-
lated using the FPLO density functional theory code
on a 50 × 50 × 50 k-point grid. For the figures in the
supplemental material, we modified the FPLO code to
obtain the interband contribution to the symmetric (in
band indices) band-resolved optical conductivity tensor
[σ±

xx(ω)]ij , where i and j are band indices, which run over
all bands in the FPLO basis, and +/− stands for the
majority/minority spin. The band-resolved optical con-
ductivity tensor was calculated on a coarser 20× 20× 20
k-point grid (for performance reasons). We verified that
a sum over the band indices of this tensor reproduces the
result of the unmodified code. Alternatively, we could
have calculated the orbital-resolved optical conductivity
tensor, which would have required extensive changes to
the FPLO DFT code and caused further numerical effort.
Therefore, we chose not to pursue this route.

FIG. S5. Spin contributions to the σxx component of the
optical conductivity of CrGeTe3 at P = 0 GPa in the ferro-
magnetic state calculated using DFT. We relate the shaded
energy windows to the observed features A, B and C of the
measured optical conductivity.

We calculated the spin-resolved optical conductivity
σ±
xx(ω) at ambient pressure (P = 0 GPa) using the FPLO

method, with ab-initio interband transition matrix el-
ements. The total optical conductivity is defined as
the sum of the majority and minority spin component:
σxx(ω) = σ+

xx(ω) + σ−
xx(ω). The results are shown in

Fig. S5. We shaded the energy regions in which we ob-
serve three distinct features that are similar to the ex-
perimentally observed optical conductivity. These are
feature A in the energy region [1.4 : 1.6] eV, feature B
in the energy region [1.6 : 1.9] eV and feature C in the
energy region [1.9 : 2.5] eV. Under pressure, these fea-
tures are shifted very slightly, but the qualitative picture
remains unchanged. The calculated optical conductivity
is in good agreement with experimental data.
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FIG. S6. Energy scheme of CrGeTe3 for (a) majority and (b) minority spin. The vertical arrows mark the possible electronic
transitions, which explain the three interband excitations A, B and C. (c) Comparison between the experimental and theoretical
interband conductivity σ1, interband at 2.2 and 5.8 GPa and at 25 K, i.e., within the ferromagnetic phase, together with the fit
contributions L4, L5, and L6 at 2.2 GPa.

FIG. S7. DFT-calculated spin-resolved electronic band struc-
ture of CrGeTe3 at P = 0 GPa in the ferromagnetic state
with orbital weights multiplied by the relative contributions
of each band to the optical conductivity in the energy window
[1.4:1.6] eV (feature A).

The experimental optical conductivity at 25 K con-
tains three prominent features (see Fig. 2(d) in main text)
at around 1.3 eV (A), 1.6 eV (B) and 2.1 eV (C). Un-
der pressure, an additional absorption band arises below
200 meV. The main three features A, B, and C can be
explained based on our DFT calculations (see Fig. S5).
Feature A is dominated by transitions between Cr 3d and
Te 5p states with majority spin. Features B and C are
explained by transitions between Cr 3d and Te 5p states
with both majority and minority spin. The dip in the

FIG. S8. DFT-calculated spin-resolved electronic band struc-
ture of CrGeTe3 at P = 0 GPa in the ferromagnetic state
with orbital weights multiplied by the relative contributions
of each band to the optical conductivity in the energy window
[1.6:1.9] eV (feature B).

calculated optical conductivity between features B and
C follows from a gap between minority spin Cr 3d states
above the Fermi level. These transitions are indicated in
the schematic DOS in Fig. S6. A previous DFT study of
ambient pressure CrGeTe3 predicted similar features in
the optical conductivity, but at energies above 2 eV [21].

In the following, we visualize the contributions of each
band to the optical conductivity in the specific energy

regions. In addition to the standard band weights b±ij(k⃗),
which represent the weight of orbital j to band i at
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FIG. S9. DFT-calculated spin-resolved electronic band struc-
ture of CrGeTe3 at P = 0 GPa in the ferromagnetic state
with orbital weights multiplied by the relative contributions
of each band to the optical conductivity in the energy window
[1.9:2.5] eV (feature C).

FIG. S10. Full-relativistic electronic band structure of
CrGeTe3 in the ferromagnetic state calculated from DFT at
a pressure of 5 GPa. The chosen k-path differs from other
band structure plots, so that both hole and electron pockets
are easily recognizable.

a k-point k⃗, we calculate multiplicative band weights
c±i (ωmin, ωmax) ∈ [0, 1] for each band i and energy in-
terval ω ∈ [ωmin, ωmax] of the optical conductivity. For
this, we integrate over the frequency parameter of the
optical conductivity tensor:

[σ±
xx]ij(ωmin, ωmax) =

ωmax∫
ωmin

dω [σ±
xx(ω)]ij . (2)

The raw weight of each band is then given by the sum
over one of the band indices of the tensor:

c̃±i (ωmin, ωmax) =
∑
j

[σ±
xx]ij(ωmin, ωmax)

=
∑
j

ωmax∫
ωmin

dω [σ±
xx(ω)]ij .

(3)

For convenience of visualization, we normalize these raw
weights so that they faithfully represent the relative con-
tribution of each band to the optical conductivity in the
energy region of interest:

c±i (ωmin, ωmax) =
c̃±i (ωmin, ωmax)

max
(
c̃+i (ωmin, ωmax), c̃

−
i (ωmin, ωmax)

) .
(4)

The band weights a±ij(k⃗, ωmin, ωmax) we visualize in the
following are given by the product of the standard orbital

weight b±ij(k⃗) and our custom weight c±i (ωmin, ωmax):

a±ij(k⃗, ωmin, ωmax) = b±ij(k⃗) · c
±
i (ωmin, ωmax) . (5)

Here, i is the band index, while j is the orbital index.
Since the weights c±i (ωmin, ωmax) are zero for any bands
which do not contribute to the optical conductivity in the
energy window [ωmin, ωmax], this multiplication filters out
bands which are irrelevant for the optical conductivity in
the respective energy window. Important bands will be
represented by weights proportional to their contribution
to the optical conductivity as defined above. Our results
for the three energy windows identified in Fig. S5 are
shown in Figs. S7, S8 and S9.
Our analysis clearly differentiates the contributions of

majority and minority spin electrons and also allows us
to analyze the region of active bands for the optical con-
ductivity, as well as the contribution of each orbital to
these bands. In Figs. S7-S9, we only show orbital weights
for Cr 3d and Te 5p orbitals. Ge 4s and 4p and any other
weights on the relevant bands are relatively small, as can
be seen by comparing the band structure to the orbital-
resolved density of states (see Fig. S4 and also Fig. S6).
As explained in the main text, the calculated optical

conductivity does not change dramatically with pressure,
even though the material becomes metallic. At ambi-
ent pressure, CrGeTe3 has an indirect band gap. Under
pressure, the system becomes metallic, but the band gap
closes only indirectly (see Fig. S10). Since optical tran-
sitions do not transfer momentum, i.e. they occur ver-
tically in our electronic band structure diagrams, the in-
terband contribution to the optical conductivity remains
zero at low excitation energies due to the vertical gap
between highest occupied and lowest unoccupied band
at each k-point.

V. DENSITY FUNCTIONAL THEORY +
DYNAMICAL MEAN-FIELD THEORY

CALCULATIONS

We performed DFT + dynamical mean-field theory
(DFT+DMFT) calculations within DCORE [22] for the
electronic structure of CrGeTe3, as explained in Ref. [6].
The one-body Hamiltonian extracted from DFT via pro-
jective Wannier functions [23] in FPLO [18] is a 36-band
model. These bands include states from two formula
units of CrGeTe3, comprising 10 Cr 3d, 18 Te 5p, 2 Ge
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4s and 6 Ge 4p orbitals. The resulting energy window
ranges from −9.5 eV to +4.5 eV.
We use the hybridization expansion continuous-time

quantum Monte Carlo (CT-QMC) method to solve the
DMFT impurity problem [24, 25]. The Hartree-Fock ap-
proximation is used to estimate the double-counting cor-
rection based on the bare Green’s function. We use a
slight reduction of the double-counting correction by 4%,
as for CeB6 [26]. We consider correlations only between
electrons on the Cr 3d orbitals so that the local self-
energy has non-zero matrix elements only on the diago-
nals that represent the 3d orbitals on each Cr atom.

In the single-impurity Anderson model, we only con-
sider density-density terms in the Kanamori-type inter-
action, which is given by

Hint =U
∑
α

nα↑nα↓ + U ′
∑
σ

n1σn2σ̄

+ (U ′ − JH)
∑
σ

n1σn2σ ,
(6)

where σ̄ stands for the spin component opposite to σ.
The inter-orbital Coulomb interaction U ′ is determined
from U and J by U ′ = U − 2JH. The intra-orbital
Coulomb interaction U and the Hund’s rule coupling JH
are fixed at U = 2 eV and JH = 0.72 eV.
We performed the DMFT self-consistency calculations

using DCORE [22] implemented on the TRIQS library [27].
The single-impurity problem was solved using an imple-
mentation [28] of the hybridization-expansion CT-QMC
method [24, 25] integrated into DCORE. Summations over
k and ωn are performed with nk = 203 points and niw =
9000 points (for positive frequencies) at T = 100K.
Our previous analysis of the DFT+DMFT spectral

function in the ferromagnetic state at T = 100 K and
P = 5 GPa (see Fig. 5d and 5e in Ref. [6]) shows a fea-
ture at around +200 meV for the minority spin electrons
that is almost flat in momentum space. A correspond-
ing feature appears in the majority spin spectral function
around -200 meV (see Fig. 5e and 5f in Ref. [6]).

We performed additional analysis of the electronic
self-energy of CrGeTe3 to explain these features of the
spectral function. We can clearly identify the peaks at
±200 meV in the DFT+DMFT spectral function with
peaks in the DFT+DMFT electronic self-energy for the
Cr 3dz2 orbital (Fig. S11). The imaginary part of the
self-energy resembles a doped Mott-insulator [29–32], al-
though the energy difference between the two features
suggests that these are not Hubbard bands. The spin-
spliting is induced by the ferromagnetism and resembles
previous theoretical results [33].

Therefore, the peaks in the spectral function at
±200 meV can be interpreted as correlation-induced fea-
tures of the Cr 3dz2 orbital. We conjecture that the for-
mation of these features in the spectral function is related
to minority spins subject to unfavorable Hund’s rule in-
teraction, which in turn stabilizes the double-exchange
mechanism (see below). Certainly, we can identify the
mid-infrared (MIR) feature of the optical conductivity
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FIG. S11. DFT+DMFT self-energy on the real frequency axis
Σ(ω) for the majority- and minority-spin Cr 3dz2 orbital of
CrGeTe3 at T = 100 K and P = 5 GPa in the ferromagnetic
state. Results are shown for the Padé analytic continuation
method. a) shows the real part of the self-energy ReΣ(ω). b)
shows the imaginary part of the self-energy −ImΣ(ω).

as a transition of minority-spin electrons from below the
Fermi level to this correlation-induced peak of the Cr
3dz2 spectral function above the Fermi level.

The discussion above applies to a pressure of P =
5 GPa. At lower pressures, CrGeTe3 is an insulator.
Pressure induces a transition from an insulator to a cor-
related ferromagnetic metal due to the creation of holes
in the majority-spin states and electrons in the minority-
spin states of chromium, as well as an overall increase in
Cr 3d occupancy (see Fig. 12 in Ref. [6]). Therefore, we
believe that the inherent occupation imbalance of major-
ity and minority spin Cr 3d states under pressure helps
to avoid an insulating state.

We verified that the feature in the self-energy at an en-
ergy of about +200 meV is not an artifact of the analytic
continuation procedure, which is employed when work-
ing with CT-QMC impurity solvers. In Ref. [6] we used
the Padé method for analytic continuation [34], which
is known to capture well at least the features close to
the Fermi level. Here, we additionally used the recently
developed sparse modeling (SpM) analytic continuation
method [35], which may improve the accuracy at higher
energies.

As expected, the electronic self-energy of the minor-
ity spin Cr 3dz2 orbital is similar in both methods (see
Fig. S12). While the Padé result shows only one ma-
jor feature in both the real and imaginary part of the
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TABLE S1. DFT+DMFT quasiparticle weights for CrGeTe3 and other compounds. In case two values are given for the
quasiparticle weight, these represent the values for the majority/minority spin states. For references containing temperature-
dependent values for the quasiparticle weight, we take the value corresponding to the lowest available temperature. For orbitals
not listed in our table, the cited references did not contain any values for the quasiparticle weight.

compound CrGeTe3 (P = 5 GPa) [6] VSe2 [36] CoS2 [37] NiSe2 [38]

weakly correlated orbitals Cr 3dxy, dx2−y2 , dxz, dyz V 3dxz, dyz Co 3dxy, dxz, dyz Ni 3dxy, dxz, dyz

quasiparticle weight ∼ 0.8 ∼ 0.65 1.0 1.0

strongly correlated orbitals Cr 3dz2 V 3dz2 , dxy, dx2−y2 Co 3dz2 , dx2−y2 Ni 3dz2 , dx2−y2

quasiparticle weight ∼ 0.6 / ∼ 0.45 ∼ 0.4 0.83 / 0.59 ∼ 0.5

compound SrNiO2 [39] LaNiO2 [39] NdNiO2 [40] CrI3 monolayer [41]

weakly correlated orbitals Ni 3dz2 , dxy, dxz, dyz Ni 3dz2 , dxy, dxz, dyz Ni 3dz2 Cr 3dxy, dxz, dyz

quasiparticle weight ∼ 0.66 ∼ 0.81 ∼ 0.77 ∼ 0.5 / ∼ 0.42

strongly correlated orbitals Ni 3dx2−y2 Ni 3dx2−y2 Ni 3dx2−y2 Cr 3dz2 , dx2−y2

quasiparticle weight 0.53 0.36 ∼ 0.34 ∼ 0.58 / ∼ 0.25
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FIG. S12. DFT+DMFT self-energy on the real frequency
axis Σ(ω) for the minority-spin Cr 3dz2 orbital of CrGeTe3
at T = 100 K and P = 5 GPa in the ferromagnetic state.
Results are shown for both Padé and sparse modeling (SpM)
analytic continuation methods. a) shows the real part of the
self-energy ReΣ(ω). b) shows the imaginary part of the self-
energy −ImΣ(ω).

self-energy, the SpM result contains additional minor fea-
tures.

Therefore, the spectral function of the minority spin
Cr 3dz2 orbital is very similar in both methods (see
Fig. S13). As expected, the low-energy region of the
spectral function is almost identical. The hump in the
k-integrated spectral function around +200 meV, which
we believe is observed in the experimental optical con-
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DO
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FIG. S13. DFT+DMFT spectral function for the minority-
spin Cr 3dz2 orbital of CrGeTe3 at T = 100 K and P = 5
GPa in the ferromagnetic state. Results are shown for both
Padé and sparse modeling (SpM) analytic continuation meth-
ods. The inset shows the low-energy feature, which persists
independently of the continuation method.

ductivity under pressure, is present irrespective of the
analytic continuation method. Minor differences only ap-
pear at energies higher than about +0.5 eV, which the
Padé method often does not capture in all detail. This
does not affect any of the conclusions of our previous
calculations for CrGeTe3 (see Ref. [6]).

To estimate the correlation strength in CrGeTe3 at
5 GPa in our DFT+DMFT calculations, we calculate the
quasiparticle-weight zmσ , where σ denotes the spin and m
denotes the orbital index, from the electronic self-energy
Σm

σ at the lowest positive Matsubara frequency ω0 [42].
The quasiparticle weight is also the inverse of the mass
enhancement over a pure DFT calculation due to corre-
lations, i.e. the effective mass m∗ divided by the DFT
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FIG. S14. Schematic depiction of exchange processes relevant
for minority spin Cr 3dz2 electrons. (a) Hopping of a minority
spin electron into a majority spin dz2 hole. (b) Hopping of
a minority spin electron onto an occupied majority spin dz2
site.

band mass mDFT:

(zmσ )
−1

= 1− ImΣm
σ (ω0)

ω0
=

m∗

mDFT
. (7)

Effects of electronic correlations among the Cr 3d or-
bitals in CrGeTe3 are strongly orbital-selective [6]. The
minority spin a1g (dz2) electrons are strongly correlated
under pressure, as demonstrated by a decreased quasi-
particle weight of about 0.45, which leads to a substan-
tial mass enhancement. The majority spin a1g orbital
is slightly less correlated, with a quasiparticle weight of
about 0.6. The eπg (dxy, dx2−y2) and eσg (dxz, dyz) or-
bitals are weakly correlated with a quasiparticle weight

of about 0.8. This hierarchy of correlations reflects the
trigonal crystal field of CrGeTe3, where a1g (dz2) elec-
trons are closest to the Fermi level for a nominal Cr3+

configuration. The strength of electronic correlations in
CrGeTe3 under pressure, as measured by the quasiparti-
cle weight, is similar to theoretical results for transition
metal dichalcogenides [36–38] and nickelates [39, 40, 43],
while monolayers of transition metal trihalides appear to
be more strongly correlated [41] (see Table S1).
We note here that our microscopic picture of majority

spin holes and minority spin electrons combined with lo-
cal interactions also explains the strong differentiation of
effective masses by orbitals and spins in CrGeTe3. Since
the Cr 3dz2 orbital is closest to half filling and fully
polarized, its electrons are most impeded by electron-
electron correlations. The creation of holes in the major-
ity spin Cr 3dz2 orbital not only mobilizes the majority
spin electrons, but also increasingly localizes the minor-
ity spin Cr 3dz2 electrons in the vicinity of these holes,
since they can lower their energy by hopping into a hole,
where they are only subject to Hund’s rule coupling (see
Fig. S14(a)), but avoid the Coulomb repulsion of a doubly
occupied site (see Fig. S14(b)). Since the energy cost of
spin misalignment with respect to Hund’s rule coupling
JH (see Fig. S14(a)) is roughly equal to the distance of
both peaks in the spectral function (at ±200 meV), it
seems possible that Hund’s rule coupling is responsible
for these low-energy features of the electronic self-energy
(see Fig. S11(b)).

VI. ANALYSIS OF THE LINEAR MODEL FOR
CURIE TEMPERATURE VERSUS PLASMA

FREQUENCY

Mean-field analysis [44] of the Anderson and Hasegawa
double-exchange Hamiltonian [45] yields a linear rela-
tionship between the Curie temperature and the squared
plasma frequency ω2

p. As shown in the main text, a lin-

ear function TC(ω
2
p) = a ·ω2

p+ b is clearly consistent with
our data. Due to the small number of data points and
large temperature error bars, naturally we can not ex-
clude that other relations between TC and ω2

p may fit the
data equally well or even better.
As an alternative to the linear relationship, we tested a

power law TC(ω
2
p) = a · (ω2

p)
k+b. We added the constant

term b to account for other contributions, such as from
superexchange. For each value of exponent k, we nu-
merically optimized the coefficients a and b to minimize
the mean squared deviation between the model and our
experimental data. We used all our experimental data
points with non-zero plasma frequency. The fit error was
calculated both with equal weights and weighted by the
inverse of the error of the Curie temperature. These two
approaches yield only minor differences. Subsequently,
we calculated the standard coefficient of determination
R2, which is close to one if a model is consistent with the
data.
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FIG. S15. Coefficient of determination R2 as a function of
the exponent k in the power law TC(ω

2
p) = a · (ω2

p)
k + b. An

R2 value close to one means that the model is consistent with
the data. Coefficients a and b were determined to optimally
fit the experimental TC based on the experimental squared
plasma frequency ω2

p.

Our results in Fig. S15 show that there is a whole range
of such power law models which is consistent with our
data. If we require that R2 ≥ 0.95, we find that good
models, for which the quality of fit is nearly indistin-
guishable, have an exponent k in the range from 0.9 to
about 1.7. The weighting with the inverse of the errors of
TC gives a slightly smaller range, shifted a little to larger
exponents. To narrow the range of acceptable exponents
down, we would need to conduct additional experiments
at various pressures in the metallic phase, also requiring
smaller error bars for the Curie temperature. Neverthe-
less, we can say that the linear model (k = 1) is in very
good agreement with our data.

In Fig. 4(c) in the main text, the double-exchange
model, which is a linear function of the plasma frequency,
picks up a slight nonlinearity when plotted as a function
of physical pressure. This is because the squared plasma-
frequency and pressure are not connected by a linear re-
lation. This is most easily seen by plotting both pres-
sure and Curie temperature as a function of the squared
plasma frequency. From the results in Fig. S16 it is clear
that a nonlinearity can be expected in a plot of Curie
temperature versus pressure.

VII. DECREASING CHARGE-TRANSFER GAP
AS AN ALTERNATIVE EXPLANATION FOR
THE ENHANCED CURIE TEMPERATURE

As an alternative to the double-exchange model that
we have put forward, an enhancement of the Curie tem-

0 4 8 12
2
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Pa
)
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120

140

160

180
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)

FIG. S16. Pressure P (left axis) and Curie temperature TC

(right axis, from Ref. [2]) versus squared plasma frequency
ω2
p. While our data are consistent with a linear relation be-

tween Curie temperature and plasma frequency, the pressure
and squared plasma frequency are not related in a linear way.
This creates a nonlinearity when mapping the modeled Curie
temperature back to the physical pressure axis.

perature due to enhanced superexchange interaction JSE
upon decrease of the charge-transfer gap ∆ has been sug-
gested in the literature [2].
Based on our measurements of the charge-transfer gap,

we can give an estimate of the enhancement factor. The
superexchange interaction can be written in terms of the
p-d hoppings t, the Hund’s rule coupling JTe

H on the Te
site, the Coulomb repulsion Up on the Te site and the
charge-transfer gap ∆ [2]:

JSE ∝
t2pdt

2
p′d′JTe

H

∆2(2∆ + Up)2
. (8)

As the Curie temperature in the insulating regime stays
almost constant around 50 K under pressure, where the
charge-transfer gap is almost constant, we conclude that
the hoppings, Hund’s rule coupling and Coulomb repul-
sion must be almost constant under pressure, unless there
is some unlikely cancellation of trends at play.
If we now assume that all parameters except the

charge-transfer gap ∆ are constant as a function of pres-
sure, we may estimate the enhancement η of the superex-
change interaction, when the gap decreases from ∆ to a
smaller value ∆′:

η =
J ′
SE

JSE
=

(
∆

∆′
2∆ + Up

2∆′ + Up

)2

. (9)

For example, we calculated the enhancement factor from
a pressure of about 3 GPa, where the charge-transfer gap
is close to ∆ = 0.65 eV to a pressure of about 6 GPa,
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FIG. S17. Hypothetical enhancement η of the superexchange
interaction JSE due to the decreasing charge-transfer gap as
a function of the Coulomb repulsion Up on the Te site.

where the charge-transfer gap is close to ∆′ = 0.4 eV. As
we do not know exactly the value of the Coulomb repul-
sion on the Te site, we estimated the enhancement for
Up in the range from 2 eV to 8 eV, which seem plausible
values.

Our results in Fig. S17 show that an enhancement of
the superexchange interaction and hence the Curie tem-
perature of more than threefold can be expected. We now
use our measured values of the charge-transfer gap from
Fig. 1(d) in the main text to estimate the enhancement
factor for the superexchange interaction as a function
of pressure. Our results for the enhancement factor in
Fig. S18 show a strong pressure dependence. While the
end point of this curve at high pressures fits the exper-
imentally confirmed enhancement of the Curie temper-
ature by a factor of roughly three in the same pressure
range quite well, it is not yet clear whether the pressure
dependence for the Curie temperature is reproduced well.

To verify the pressure dependence we use the previ-
ously calculated enhancement factors (at Up = 7 eV) as
a function of pressure and multiply them by a base Curie
temperature of 55 K. Subsequently, we plot these values
together with the experimental values and the double-
exchange model. The results are shown in Fig. S19.

Although the superexchange (SE) model delivers the
correct order of magnitude for the Curie temperature at
high pressures, several aspects speak against explaining
the increased TC in terms of superexchange: (i) the quan-
titative fit of the experimental data is way worse than
for the DE model, (ii) the SE model should describe TC

across the insulator-to-metal transition, but especially
the region close to the transition is where deviations are
largest; (iii) the model is based on a single exchange path,
while the known magnetic Hamiltonian for CrGeTe3 also
contains long-range couplings [6]. All of these points call
the validity of the simple superexchange model into ques-
tion.

2 3 4 5 6
P (GPa)

1.0

1.5

2.0

2.5

3.0

3.5

(U
p)

Up = 3 eV
Up = 5 eV
Up = 7 eV

FIG. S18. Hypothetical enhancement η of the superexchange
interation JSE due to the decreasing charge-transfer gap as a
function of pressure for various values of the Coulomb repul-
sion Up on the Te site.

0 1 2 3 4 5 6 7
P (GPa)

0
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 (K

)

Bhoi et al.
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FIG. S19. Experimental Curie temperature as a function of
pressure from Ref. [2] along with theoretical estimates from
the (linear in ω2

p) double-exchange (DE) model and the sug-
gested superexchange (SE) model at Up = 7 eV, which de-
pends on the inverse of the optical gap.

While the superexchange model cannot be discarded
completely due to its roughly correct enhancement factor
for TC, we believe in conclusion that the double-exchange
model currently delivers the best explanation of the en-
hanced Curie temperature in metallic CrGeTe3 under
pressure.
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FIG. S20. High-energy reflectivity spectrum Rs−d of CrGeTe3 at 1.7 GPa (a) and at 5.8 GPa (c) together with the corresponding
first derivative dRs−d/dν at 1.7 GPa (b) and at 5.8 GPa (d).

VIII. EXPERIMENTAL ESTIMATE OF MASS
ENHANCEMENT

We can furthermore trace the strength of electronic
correlations based on the experimental optical conduc-
tivity spectrum. The extraction of the electronic corre-
lation strength from optical conductivity spectra is an
established procedure applied to various quantum ma-
terials [46–48]. The optical conductivity spectrum of
CrGeTe3 in the high-pressure (either paramagnetic or fer-
romagnetic) metallic phase contains an MIR absorption
band, which, according to our theoretical calculations, is
attributed to electronic correlation effects. The spectral
weights of the MIR band and the Drude term can serve
as a measure for the electronic correlation strength, as
explained below. This gives us the unique possiblity to
trace the correlation strength as a function of pressure in
a 2D vdW material.

The Drude spectral weight ω2
p serves as an estimate of

the optical kinetic energy Kopt of the quasiparticles, and
its reduction as compared to its value Kband obtained
from non-interacting band theory calculations is a mea-

sure of the electronic correlation strength [46–48]. The
ratio Kopt/Kband can be estimated from the experimen-
tal plasma frequency ωp of the Drude term and the oscil-
lator strength ΩMIR of the MIR band according to [47]

ratiocorr =
Kopt

Kband
≈

ω2
p

ω2
p +Ω2

MIR

. (10)

The value of ratiocorr ranges between 0 (Mott insulator)
and 1 (uncorrelated metal). It corresponds to the quasi-
particle weight calculated in Section IV.
In case of CrGeTe3, the so-obtained value of ratiocorr

as a function of pressure at 25 K is shown in Fig. 1(d)
in the main text. At Pc, ratiocorr rises sharply and
saturates at the value 0.7 above 4.6 GPa Accordingly,
CrGeTe3 in its metallic phase is moderately correlated,
similar to the square-net nodal-line semimetal ZrSiSe and
slightly less correlated than the ferromagnetic kagome
metal Co3Sn2S2 [46]. In comparison, for strongly corre-
lated metals such as cuprates and the vanadium oxide
V2O3 a value ratiocorr ∼ 0.2 would be expected [48] (see
also Table S1 for a comparison with other vdW materi-
als).
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FIG. S21. Ferromagnetic ordering temperature TC of
CrGeTe3 as a function of pressure as obtained from the opti-
cal data.

IX. ESTIMATE OF THE CURIE
TEMPERATURE FROM OPTICAL DATA

When entering the ferromagnetic state during cool-
ing, significant changes occur in the high-energy reflec-
tivity spectrum Rs−d, as illustrated in Figs. S20(a) and
(c) for P=1.7 GPa and P=5.8 GPa, respectively. These
temperature-induced changes appear even more clearly in
the first derivative of the reflectivity with respect to fre-
quency dRs−d/dν [see Figs. S20(b) and (d)]. For exam-
ple, at 1.7 GPa a clear dip feature develops in dRs−d/dν
at ∼10800 cm−1 between 100 and 70 K [Fig. S20(b)].
Accordingly, magnetic order sets in below 100 K, and we
can estimate the Curie temperature TC=85 K ± 15 K at
1.7 GPa. Applying this criterion to all measured pres-
sures, we obtained the pressure dependence of the mag-
netic ordering temperature TC as depicted in Fig. S21.

X. DECOMPOSITIONS OF THE σ1 SPECTRA
AS A FUNCTION OF PRESSURE AND

TEMPERATURE

The decompositions of the σ1 spectra as a function of
pressure and temperature are shown in Figs. S22, S23,
S24, and S25.
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FIG. S22. Decompositions of the σ1 spectra as a function of pressure at room temperature.
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FIG. S23. Decompositions of the σ1 spectra as a function of pressure at 25 K.
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FIG. S24. Decompositions of the σ1 spectra as a function of temperature at ∼1.7 GPa.
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FIG. S25. Decompositions of the σ1 spectra as a function of temperature at ∼5.8 GPa.
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