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ADDITIONAL DFT INFORMATION

Density functional theory calculations were performed with
the full potential local orbital (FPLO) basis [S2] and a gen-
eralized gradient approximation (GGA) exchange correlation
functional [S3]. Strong electronic correlations on Cu 3d or-
bitals are taken into account by a DFT+U method [S4]. We
show the full result of the energy mapping procedure for
Na6Cu7BiO4(PO4)4Cl3 in Table S1. For every considered
value of the onsite interaction strength U , a total of 68 energies
were calculated with 4×4×4 k-point meshes. The line in bold
face is interpolated to yield the experimental Curie-Weiss tem-
perature θCW = −212K [S1]. As discussed in the main text,
only five of the thirteen determined exchange interactions are
substantial and are considered in the many-body calculations
for Na6Cu7BiO4(PO4)4Cl3. The only interlayer coupling J15
we determined is small enough that Na6Cu7BiO4(PO4)4Cl3
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FIG. S1. Quality of energy mapping in Na6Cu7BiO4(PO4)4Cl3. 68
calculated DFT energies are very precisely matched by the Heisen-
berg Hamiltonian with 13 exchange interactions.

can be treated as a 2D system.
In Fig. S1, we show that the energy mapping approach works
very well for Na6Cu7BiO4(PO4)4Cl3. In P1 symmetry, all 14
Cu2+ moments can be set independently, and for the 68 cho-
sen spin configurations, the comparison between DFT energy
and fit to the Heisenberg Hamiltonian is excellent.

LATTICE CONVENTION

Each layer of the compound Na6Cu7BiO4(PO4)4Cl3 is repre-
sented by a square-kagome lattice with an additional site at the
center of each shuriken (square surrounded by four triangles).
More precisely, we define the unit vectors

a1 = (1, 0), a2 = (0, 1), (S1)

and a unit cell consisting of seven sites, labelled from A to G
as shown in Fig. S2, whose relative coordinates are

δA = (0, 1/2), δB = (1/4, 3/4)

δC = (1/4, 1/4), δD = (3/4, 1/4)

δE = (3/4, 3/4), δF = (1/2, 1)

δG = (2/4, 2/4) (S2)

In this convention, all sites lie at rational fractions of the ba-
sis vectors, which ensures a finite extended Brillouin zone
over which the structure factor is periodic. The lattice for
this compound features three types of symmetry inequivalent
sites, namely those that lie on the vertices of each shuriken
(A,F ), the corners of each square (B,C,D,E) and the cen-
ter sites G [see Fig. S2]. Although, the geometry of the lat-
tice does not alter the physics (once the couplings are fixed),
for comparison with experiments, it is required to compute
Fourier-transformed quantities with respect to the lattice of
the original compound. As most numerical methods do not
explicitly employ real-space crystallographic coordinates but
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U (eV) J1 (K) J2 (K) J3 (K) J4 (K) J5 (K) J6 (K) J8 (K) J9 (K) J10 (K) J13 (K) J14 (K) J15 (K) J20 (K) θCW (K)
6.5 113.6(8) 191.5(7) 158.7(1.4) 48.1(4) 5.8(4) 0.6(4) -0.8(7) 3.4(8) 66.6(2) -2.2(6) 2.0(4) 0.3(4) -0.1(4) -218.7
6.66 109.1(8) 186.2(7) 155.3(1.4) 46.9(4) 5.3(4) 0.6(4) -1.1(7) 3.2(8) 64.6(2) -2.2(6) 1.9(4) 0.3(4) 0.0(4) -212

7 100.1(7) 175.5(6) 148.1(1.1) 44.6(4) 4.4(4) 0.5(3) -1.5(5) 2.9(7) 60.5(2) -2.1(5) 1.8(3) 0.2(4) 0.0(3) -198.6
7.5 88.2(6) 160.8(5) 137.8(9) 41.3(3) 3.2(3) 0.5(3) -1.9(4) 2.6(6) 54.9(2) -2.1(4) 1.6(3) 0.2(3) 0.0(2) -180.5
8 77.7(5) 147.3(4) 128.0(7) 38.2(2) 2.3(3) 0.4(2) -2.2(4) 2.2(5) 49.8(1) -2.0(3) 1.5(2) 0.2(2) 0.0(2) -164.1

8.5 68.3(4) 134.8(3) 118.6(6) 35.3(2) 1.6(2) 0.4(2) -2.4(3) 2.0(4) 45.3(1) -1.8(3) 1.4(2) 0.1(2) 0.0(2) -149.1
d (Å) 3.11405 3.27801 4.40394 5.0088 5.26566 5.33981 5.72746 5.76923 6.01815 6.55602 7.08351 7.71676 8.22822

TABLE S1. Exchange interactions of Na6Cu7BiO4(PO4)4Cl3 obtained by DFT energy mapping as described in the main text. The line in bold
face corresponds to the set of couplings that match the experimental Curie-Weiss temperature [S1].

G

B

A

E

C D

F

FIG. S2. Idealized square-kagome unit cell. Sites A and F corre-
spond to Cu(1) ions, sites B, C, D, E to Cu(2) ions and site G to the
Cu(3) ion in the unit cell of Na6Cu7BiO4(PO4)4Cl3.

rather the more abstract graph of sites and respective bonds,
this amounts to a choice in the post-processing of real-space
data. In the following, we outline this step in detail. We define
the Fourier transform of the spin susceptibility as

χ(q) =
1

N

∑
i,j

χ(ri, rj)e
iq·(ri−rj). (S3)

Here, the vectors q, ri are three-dimensional, accounting for
the true crystallographic coordinates, and allowing for distor-
tions outside of the square-kagome planes which occur in the
crystal structure. We must therefore map each pair of sites of
the true 3D lattice to a unique site in the idealized lattice.
Upon noting that the layers are decoupled (as we neglect the
tiny J15 exchange interaction) and correlations between two
sites from different layers are zero, we can immediately inter-
pret the summation to go over sites in a single layer only.
The mapping we need to perform can then be written as
f(n1, n2, 0, nb) = (n′

1, n
′
2, n

′
b), where we define ri = n1a1+

n2a2+bnb
. Since the unit cell of the three-dimensional lattice

can be enlarged compared to the idealized one, it may be cum-
bersome to find this mapping directly. A convenient strategy
is to work in Cartesian coordinates, mapping ri to a 2D point
(x, y) which lies on the idealized lattice. Then, the Cartesian
coordinates (x, y) can be transformed back into either a lat-
tice position (n1, n2, nb), or a site index i. This is shown in
Fig. S3.
To compare with powder samples, we compute the powder

FIG. S3. Mapping from 3D lattice to 2D lattice. To compute
Eq. (S3), sites are mapped to the idealized lattice convention. Vi-
sualization done using VESTA [S5].

averaged structure factor

S(Q) ≡ 1

4π

∫
dΩS(q), Q = |q| (S4)

and multiply by the form factor to account for nuclear scatter-
ing on Cu2+ ions [S6]

f(Q) = Ae−aQ2

4π +Be−bQ2

4π + C1e
−cQ2

4π +D1 (S5)
A = 0.0232, B = 0.4023

C1 = 0.5882, D1 = −0.0137

a = 34.969, b = 11.564, c = 3.843.

METHODS

Many-variable variational Monte Carlo (mVMC)

In this work, we employ the many-variable variational Monte
Carlo implementation presented in Refs. [S7, S8]. To apply
mVMC, spin operators are first mapped to pseudo-fermionic
bilinears through the Abrikosov representation

Ŝi =
1

2

∑
α,β=↓,↑

ĉ†i,ασα,β ĉi,β . (S6)

Inspired by Anderson’s resonating valence-bond wave func-
tion, the mVMC ansatz has the form

|ϕpair⟩ = P̂∞
G exp

∑
i,j

fi,j ĉ
†
i,↑ĉ

†
j↓

 |0⟩, (S7)
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FIG. S4. Momentum-resolved equal-time spin structure factor calculated from mVMC on the 6× 6× 6 lattice for different values of J10/J2.
The Fourier transform is performed with respect to the ideal lattice coordinates of Eq. (S2). The wave functions were obtained with the
symmetrization technique, enforcing the trivial representation. The solid and dashed lines denote the first and the extended Brillouin zones,
respectively. The corresponding energies of these wave functions are given in Table S2.

where a fermionic wave function is constrained to a space of
singly occupied sites by means of the Gutzwiller projector
P̂∞

G =
∏

i(ni,↑ − ni,↓)
2, where ni,σ = ĉ†i,σ ĉi,σ . The wave-

function value ⟨σ|ϕpair⟩ for a specific spin configuration |σ⟩
is evaluated using the Slater determinant of the matrix with
elements fi,j . The parameters fi,j are optimized using the
stochastic reconfiguration optimization technique [S9–S11].
We may force a wave function to transform as a specific irre-
ducible representation of the symmetry group. To this end, we
apply its generators until the symmetry orbit is exhausted

|Ψξ⟩ = P̂ |Ψ⟩ =
∑
n

ξnĜn|Ψ⟩, (S8)

where ξ is the desired projection quantum number and |Ψξ⟩
the resulting symmetrized state. In the mVMC package, the
projection onto the total spin S is performed by superposing
the SU(2)–rotated wave functions [S8].
In Fig. S4, we show the equal-time spin structure factor for
different values of J10/J2 measured within mVMC on the
6 × 6 lattice. The corresponding wave function energies are
given in Table S2. One may see that the frustration grows
until J10/J2 ≈ 0.3, which is manifested by growing energy
and progressively diffuse character of the structure factor, and
then rapidly decays with further increase in J10/J2.

Variational Monte Carlo (VMC)

Analogously to mVMC, the fermionic variational Monte
Carlo calculations of this work make use of a Gutzwiller-
projected wave function to approximate the ground state of
the spin Hamiltonian by minimization of the variational en-
ergy. The VMC trial state reads

|Ψ0⟩ = Ĵ P̂∞
G |Φ0⟩, (S9)

J10/J2 0.0 0.117 0.223 0.350 0.466 0.583
E/J2 −0.4128 −0.4128 −0.4080 −0.4305 −0.4436 −0.4687

TABLE S2. Ground state energy E/J2 per site obtained on the 6×6
lattice within mVMC for different ratios of J10/J2. The statistical
error is kept around δE/J2 = 10−4.

where P̂∞
G is the Gutzwiller projector, |Φ0⟩ is a fermionic

Slater determinant [in the Abrikosov fermion representation
of spins Eq. (S6)] and Ĵ is a spin-spin Jastrow factor. The
definition of the fermionic state |Φ0⟩ is done by the introduc-
tion of an auxiliary fermionic Hamiltonian

Ĥ0 =
∑
i,j,α

χij ĉ
†
i,αĉj,α, (S10)

whose hopping amplitudes, χij , play the role of variational
parameters. The presence of the spin-spin Jastrow factor

Ĵ = exp

∑
i,j

vi,jŜ
z
i Ŝ

z
j

 (S11)

can enhance/suppress spin-spin correlations between lattice
sites. We consider a long-range Jastrow factor with pseudopo-
tential parameters that depend on the distance between sites,
i.e., vi,j = v(∥ri − rj∥). The variational parameters defining
|Ψ0⟩ are optimized by means of the stochastic reconfiguration
method [S9, S10]. The VMC calculations are performed on
finite-size lattices with periodic boundary conditions. Specif-
ically, we employ two kinds of fully-symmetric clusters, one
defined by the translation vectors T1 = La1 and T2 = La2
(containing Ns = 7L2 sites), and the other defined by the
vectors T1 = L(a1 + a2) and T2 = L(a1 − a2) (containing
Ns = 14L2 sites). The biggest lattice employed in our VMC
calculations contains Ns = 700 spins.
The best variational energy is obtained by a parametrization
of the auxiliary Hamiltonian in which the translational sym-
metry is broken. In particular, in agreement with mVMC ob-
servations, the optimal hopping pattern requires a doubling of
the unit cell along a1 and a2 (2 × 2 periodicity). Concern-
ing point group symmetries, the VMC wave function turns
out to preserve the C4 rotational symmetry around the center
of the 2 × 2 supercell. The small C4 to C2 symmetry break-
ing found by mVMC calculations is not captured by the VMC
variational ansatz. The spin structure factor S(q) correspond-
ing to the best variational state for the Heisenberg Hamilto-
nian of Na6Cu7BiO4(PO4)4Cl3 is shown in Fig. S5. The ab-
solute maxima of S(q) are located at q = (7π/2, π/2) and
q = (π/2, 7π/2) (and symmetry related points). Compared
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FIG. S5. Equal-time spin structure factor S(q) from VMC for the
Hamiltonian of Na6Cu7BiO4(PO4)4Cl3. The results are obtained on
a cluster with Ns = 448 sites, defined by the translation vectors
T1 = 8a1 and T2 = 8a2, and plotted within the reciprocal space of
the idealized lattice. The solid and dashed lines denote the first and
the extended Brillouin zones, respectively.

to mVMC results, we find a larger intensity of the peaks of the
structure factor, which can be ascribed to the presence of the
Jastrow factor that enhances antiferromagnetic correlations.

PMFRG

The PMFRG formalism expresses spin operators by three dif-
ferent flavors (x, y, z) of Majorana fermions

Sx
i = −iηyi η

z
i , Sy

i = −iηzi η
x
i , Sz

i = −iηxi η
y
i .
(S12)

This representation has the advantage that no unphysical states
are introduced, allowing for quantitatively correct predictions
at finite temperature [S12, S13]. One of the key advantages of
PMFRG is its high momentum space resolution which allows
for an easy detection of incommensurate order. The only re-
striction is a cut-off of all correlations beyond a numerically
chosen maximum distance L. In a paramagnet, correlation
lengths are typically small and effectively zero beyond a char-
acteristic correlation length ξ, which makes this approxima-
tion virtually exact. When the correlation length diverges, for
instance at the critical point of a phase transition, a finite-size
scaling analysis may be performed to give accurate estimates
of the critical temperature [S13].
Figure S6 shows the equal-time spin structure factor at
low temperature, featuring soft maxima at wave-vectors
(qx, qy) ∼ (3π, π/2). We find the position of these maxima
to be temperature dependent. At high temperatures T ≫ J2,
the maxima reside at (4π, π) and symmetry related points,
while the position of the peak shifts as temperature is low-

FIG. S6. Evolution of the maxima of the equal-time spin structure
factor as a function of temperature obtained from PMFRG. The color
of the line corresponds to the temperature, i.e., the yellow part corre-
sponds to the highest simulated temperature (T = 2.5J2, while the
blue part indicates the lowest temperatures. The background shows
the low temperature structure factor as a reference.

ered. In addition to the spin susceptibility χ defined in
Eq. (S3), one may also define a sublattice-resolved suscep-
tibility χαβ , α, β = 1, 2, . . . NUC, where NUC = 7 such
that χ(k) = 1

NUC

∑
αβ χαβ(k). To study the influence of the

FIG. S7. From PMFRG, we show the evolution of the sublattice de-
pendent susceptibilities defined in Eq. (S13) as a function of J10.
The top panel shows the respective maxima in momentum space,
while the heat maps show the full momentum dependence. Note that
points are shown for three different maximal correlation lengths of
L = 14, 16, 18 nearest neighbor bonds, which all coincide, indicat-
ing absence of finite size effects.
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FIG. S8. Real space correlations ⟨Ŝi · Ŝj⟩ computed from PMFRG
by taking Cu(1) (left), Cu(2) (middle), and Cu(3) (right) as reference
sites i. The radii of the circle indicates the strength of correlations,
while the color red (blue) indicates a positive (negative) sign of the
correlations.

Cu(3) sites, Fig. S7 further displays the susceptibilities

χ12(k) ≡
1

NUC

∑
αβ ̸=Cu(3)

χαβ(k)

χ3(k) ≡ χ(k)− χ12(k). (S13)

Here, χ12 quantifies the correlations between all non-Cu(3)
sites, and χ3 the contribution to the susceptibility upon adding
the Cu(3) site. The correlations between the Cu(1) and Cu(2)
sites decrease upon strengthening the J10 bond while max-
ima of intensity become diffuse, indicating increased frustra-
tion. To see this, note that the conservation of spin magni-
tude dictates a sum rule within the extended BZ:

∑
i Ŝ

2
i =∑

q⟨Ŝ(−q)Ŝ(q⟩) = N 3
4 . As a consequence, the susceptibil-

ity χαβ(q) for non-interacting spins must be a non-zero con-
stant (see, e.g., χ3 in Fig. S7 at J10 = 0). Switching on the
couplings between sites, leaves the sum rule intact for each
sublattice but intensities may shift in reciprocal space and de-
velop features. Therefore, the observed decrease in the maxi-
mum of χ12 indicates a more uniform distribution of different
ordering wavevectors q within the system –a signature of the
effects of frustration.
While the correlations between Cu(3) sites and the rest of the
system naturally grow as they are increasingly coupled, order-
ing tendencies are absent as visible from the independence of
our data on the maximal correlation length L above the acces-
sible temperature range of T ≳ 0.3J2.
In Fig. S8, we also show the pattern of equal time spin-spin
correlations in real space for the system with J10 = 0 and
J10 ≈ 0.42J2. It is visible that adding the additional Cu(3)
site does not lead to increased correlations between the other
sites and, in fact, slightly decreases them. Overall, we find
good agreement to mVMC in Fig. 2 of the main text.
For comparison with experimental data, we compute the spin
structure factor with respect to the actual crystal lattice site
coordinates, i.e., allowing for atoms to be positioned out-

FIG. S9. Equal time structure factor S(q, t = 0) at T = 0.3J2 for
a cut at qz = 0 computed with respect to the true, three dimensional
crystallographic unit cell. Shown is the first BZ (solid), and the ap-
proximate extended BZ (dashed).

Q, [Å − 1]
0 1 2 3 4 5 6

0

0.1

0.2

0.3
|f(Q)|2 × S(Q,t = 0)

|f(Q)|2 × 𝜒(Q,i𝜈n = 0)

FIG. S10. Powder average of the equal time structure factor
S(Q, t = 0) and the static magnetic suscepibility χ(Q, iνn = 0)
at T = 0.1J2 obtainde from PMFRG. As in Fig. S9, the Fourier
transform is performed with respect to the actual crystal lattice site
coordinates.

side of a pure 2D layer. Figure S9 shows the correspond-
ing momentum resolved equal-time spin structure factor pro-
jected onto the qx − qy plane taking qz = 0. We note that
due to the irrational coordinates of the atoms within the unit
cell, the structure factor is no longer periodic within any ex-
tended Brillouin zone. The structure factor permits points of
high intensity away from qz = 0, although they will natu-
rally be broad, as length of correlations is limited in z direc-
tion due to the layered structure of the material. If we re-
strict ourselves to a finite box in momentum space between
|qx,y,z| < 8π/a, the maxima are positioned at incommensu-
rate positions k = (0.61, 6.95, 0)π/a. For experimental com-
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parison, in Fig. S10, we further provide the powder averaged
structure factor Eq. (S4).

SCHWINGER BOSON MEAN FIELD THEORY

As in the VMC section, it is possible to make a parton con-
struction of the spin by introducing Schwinger bosons instead
of Abrikosov fermions. We thus consider the decoupling:

Ŝi =
1

2

∑
α,β=↓,↑

b̂†i,ασα,β b̂i,β , (S14)

where b̂(+) are now bosonic operators. The advantage of deal-
ing with bosons as opposed to fermions is the possibility of
having Bose condensation and thus to easily access quantum
magnetic orders as well as (Z2) quantum spin liquids, which
are both treated on an equal footing. Here, we recall the main
lines of the approach noting that more details can be found in
[S14–S18]. In this approach, it is possible to write Heisenberg
terms as function of two SU(2) invariant operators Â and B̂

Âij =
1

2

[
b̂i↑b̂j↓ − b̂i↓b̂j↑

]
B̂ij =

1

2

[
b̂+i↑b̂j↑ + b̂+i↓b̂j↓

]
as

ŜiŜj = : B̂+
ijB̂ij : −Â+

ijÂij , (S15)

where :: denotes the normal ordering. At the mean field level,
the Hamiltonian then reads

HSB = =
∑
i,j

Jij

[
B̂+

ijBij + B̂ijB
∗
ij − Â+

ijAij − ÂijA
∗
ij

]
−

∑
i,j

Jij
[
|Bij |2 − |Aij |2

]
+
∑
i

λi(n̂i − 2S), (S16)

with the mean field parameters Aij = ⟨ϕ0|Âij |ϕ0⟩ and Bij =

⟨ϕ0|B̂ij |ϕ0⟩ computed in |ϕ0⟩ – the boson vacuum at T = 0
for each pair of interacting spins (i → j). Because the Hilbert
space is enlarged by the mapping, it is necessary to fulfill the
constraint n̂i = b̂+i↑b̂i↑ + b̂+i↓b̂i↓ = 2S for a spin S. Thus, we
have also introduced Lagrange multipliers λi to account for
this on average. Another advantage of the method is that S
can be treated as an external parameter and by reducing it, it is
possible to enhance quantum fluctuations. This is particularly
interesting if one wants to focus on phase transitions between
a magnetically ordered state and its quantum spin liquid par-
ent. Also, the flexibility of the method allows to compute the
dynamical structure factor

S(q, ω) =
1

ns

∑
i,j

eiq·(ri−rj)

∫ ∞

−∞
dte−iωt⟨Ŝi(t)Ŝj(0)⟩,

(S17)

and to extract relevant magnon features and study Bose con-
densations of specific branches. Here, ns is the total number

of sites given by nu × 2 × l × l, with nu the number of sites
per unit-cell (here 14 in the presence of the Cu(3) atoms), and
l is the linear size of the system. This allows for comparison
with neutron experiments.
In Fig. 4 of the main text, we show the dynamical structure
factor for two representative spin values S = 0.12, 0.15 at
which a quantum spin liquid (QSL) can be achieved, and for
various values of Cu(3) coupling J10 for a system size of
l = 12 with 4032 spins, showing the proximity of the phase
transition between a quantum spin liquid state and its Bose
condensate counterpart.
As seen in the fermion approaches, the effect of projecting the
wave function onto exact physical states increases the quan-
tum fluctuations and helps the system to remain disordered
even in the presence of the Cu(3) atoms. In the Schwinger
boson mean field theory, since magnetic orders are more com-
petitive by construction, they are favoured at S = 1/2. Thus,
in order to reach the QSL, one has to reduce the spin value.
In Fig. 4 of the main text, we can see that the Bose con-
densation arises on the Cu(3) spins while the others on the
square-kagome lattice remains mainly disordered. This is re-
flected by a clear gap in the lower panels between the con-
densed branches and the excitations in the continuum. To have
a better view of this feature, we have plotted in Fig. S11 the
real-space (equal-time) spin-spin correlations using three dif-
ferent reference sites on a Cu(3) spin (top panel), on a corner
of a triangle (middle panel) and on a corner of a square pla-
quette (bottom panel).
As one can see, a clear magnetic order appears on the Cu(3)
spins while the ones on the remaining square-kagome lattice
are disordered. This last feature is in good agreement with
the observations of increased correlations between the Cu(3)
sites in PMFRG, although no order could be detected in the
accessible temperature regime.
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