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The square-kagome lattice Heisenberg antiferromagnet is a highly frustrated Hamiltonian whose material
realizations have been scarce. We theoretically investigate the recently synthesized Na6Cu7BiO4(PO)4)4Cl3

where a Cu2+ spin-1/2 square-kagome lattice (with a six site unit cell) is decorated by a seventh magnetic
site alternatingly above and below the layers. The material does not show any sign of long-range magnetic
order down to 50 mK despite a Curie-Weiss temperature of −212 K indicating a quantum paramagnetic phase.
Our DFT energy mapping elicits a purely antiferromagnetic Hamiltonian that features longer range exchange
interactions beyond the pure square-kagome model and, importantly, we find the seventh site to be strongly
coupled to the plane. We combine two variational Monte Carlo approaches, pseudofermion/Majorana functional
renormalization group and Schwinger-Boson mean field calculations to show that the complex Hamiltonian of
Na6Cu7BiO4(PO)4)4Cl3 still features a nonmagnetic ground state. We explain how the seventh Cu2+ site actually
aids the stabilization of the disordered state. We predict static and dynamic spin structure factors to guide future
neutron scattering experiments.

DOI: 10.1103/PhysRevB.108.L241117

Introduction. Magnetic ions forming the kagome lattice,
a corner sharing network of triangles, have been the focus
of several decades of highly frustrated magnetism research
[1]. Kagome lattice antiferromagnets provide some of the
most promising examples of highly correlated nonmagnetic
ground states [2,3], and are therefore subject of intense ex-
perimental efforts while inspiring a wealth of theoretical
developments [4,5]. Interestingly, the square-kagome lattice
as a differently connected lattice of corner sharing triangles
[6] can also support a quantum paramagnetic ground state
[7–12]. The precise nature of the ground state is under de-
bate, with proposals spanning a pinwheel valence bond crystal
(VBC) [13,14], length six loop VBC [15,16], and (lattice)
nematic quantum spin liquid [17]. The field of frustrated
quantum magnetism is currently poised with the arrival of
new materials based on the square-kagome lattice geometry
promising to host exotic nonmagnetic phases at low tem-
peratures [18–21]. In the most prominently studied example
KCu6AlBiO4(SO4)5Cl, the Cu2+ S = 1/2 moments do not

*These authors contributed equally to this work.

show any sign of long-range dipolar magnetic order down
to 50 mK despite Curie-Weiss temperatures of −237 K, with
indications of gapless quantum spin liquid behavior [22].
Recently, Na6Cu7BiO4(PO4)4[Cl, (OH)]3, a novel sodium
bismuth oxo-cuprate phosphate chloride containing square-
kagome layers of Cu2+ ions was synthesized [18]. It contains,
besides the six magnetic sites making up the square-kagome
lattice, a seventh decorating site which is placed either above
or below the square in checkerboard fashion. A study of
specific heat indicates that the compound does not order
magnetically down to 50 mK [19] despite a large negative
Curie-Weiss temperature of −212 K. The scenario in both
these compounds is then strikingly similar to the kagome
lattice based candidate quantum spin liquid material Herbert-
smithite [1].

In this work, we will establish the Hamiltonian of
Na6Cu7BiO4(PO)4)4Cl3 by density functional theory based
energy mapping. As it is highly nontrivial to work out the
ground state and excited state properties of this complex
lattice with three symmetry inequivalent magnetic sites, we
apply two types of variational Monte Carlo (VMC), two fla-
vors of functional renormalization group (FRG) calculations
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FIG. 1. (a) Heisenberg Hamiltonian parameters of Na6Cu7BiO4(PO)4)4Cl3 determined by DFT energy mapping as function of onsite
interaction strength U (negligible couplings are not shown). The vertical line indicates the U value where the exchange couplings match
the experimental [18] Curie-Weiss temperature. The resulting nonnegligible exchange couplings are J1 = 109.1(8) K, J2 = 186.2(7) K,
J3 = 155.3(1.4) K, J4 = 46.9(4) K, and J10 = 64.6(2) K. (b) Relevant exchange paths of Na6Cu7BiO4(PO)4)4Cl3. (c) Finite-size scaling
of the maxima of the equal-time structure factor S(Q)/Ns from many-variable VMC (mVMC), VMC, pseudofermion FRG (PFFRG),
pseudo-Majorana FRG (PMFRG) (at T = 0.2J2), and the Schwinger-Boson mean-field theory method. Note that, compared to the other
methods, PFFRG and PMFRG use a different definition of the system size Ns, which counts the number of correlated sites around a reference
site, likely explaining the quantitative differences of our results. Furthermore, PMFRG results are obtained at a finite temperature T = 0.2J2.

and the Schwinger boson (SB) formalism. We establish that
the Hamiltonian of Na6Cu7BiO4(PO)4)4Cl3 indeed realizes
a nonmagnetic ground state, and provide evidence that the
seventh magnetic site decorating the square-kagome lattice
plays an important role in enhancing the degree of frustration,
thus aiding the formation of a magnetically disordered phase
in this material. This phase is shown to be a gapped VBC
breaking translation symmetry, with a dimer pattern that is
periodic in a 2 × 2 enlarged unit cell. We present its spectro-
scopic signatures to compare with future neutron scattering
experiments.

Heisenberg Hamiltonian. We determined the magnetic
interactions of Na6Cu7BiO4(PO)4)4Cl3 using all electron
density functional theory calculations. We use the crystal
structure determined in Ref. [18] but simplify it slightly by
choosing the majority Na(2) position and by removing O(5)
from the Cl(3) position. All 14 Cu2+ ions in the primitive
unit cell of the tetragonal structure are in square planar co-
ordination with oxygen. The network they form is shown
in Fig. 1(b), with the three symmetry inequivalent Cu(1),
Cu(2), and Cu(3) shown in different colors. Cu(1) and Cu(2)
form a square-kagome lattice, and Cu(3) is decorating this
lattice above and below. Spin-polarized calculations show that
the Cu2+ ions have S = 1

2 moments, and at U = 6.5 eV the
system is insulating with a gap of Eg = 1.7 eV. We use the
energy mapping technique that has yielded very good results
in other copper based magnets [23,24] to extract the Heisen-
berg Hamiltonian parameters. Figure 1(a) shows the result
of these calculations. Exchange couplings evolve smoothly
with the on-site Coulomb repulsion U , and the Hamiltonian
reproduces the experimental Curie-Weiss temperature at U =
6.66 eV (vertical line). Some couplings that are less than 3%
of the largest coupling J2 are not shown in the plot. Among

the couplings we resolve, there is only one, negligibly small,
interlayer coupling (see Ref. [25]); as there is a full Na and Cl
layer separating the magnetic layers, we expect the deviations
from magnetic two-dimensionality to be small and beyond the
scope of the present study. The two couplings making up the
square-kagome lattice, J1 = 0.59J2 and J2, are the third largest
and largest coupling, respectively. The diagonal in the squares,
J3 = 0.83J2, is the second largest coupling. One second near-
est neighbor of the square-kagome lattice, J4 = 0.25J2, is also
substantial. Furthermore, the J10 = 0.35J2 interaction, which
couples the square-kagome site Cu(2) to the magnetic decorat-
ing sites Cu(3) is found to be important. Strong buckling of the
square-kagome lattice means that this coupling is the closest
connection between Cu(3) and Cu(2) sites. It has a reasonable
superexchange path through a phosphate group. On the other
hand, the closer connection of a Cu(3) site to a Cu(1) site turns
out to be negligible (J5 = 0.03J2).

The space group P4/nmm of Na6Cu7BiO4(PO)4)4Cl3 dic-
tates that the J1 (light blue) square and the J2 (purple) triangle
couplings are symmetry inequivalent as for the ideal lat-
tice. The isotropic J1 = J2 Heisenberg antiferromagnet is host
to a VBC ground state with a finite spin gap � ∼ 0.04J1

[15], whose precise nature is still under debate [13–16].
For J2/J1 � 2, classically the system is host to a long-range
ferrimagnetically ordered ground state (up-up-down) [10],
however, for S = 1/2, exact diagonalization studies on N =
24, 30, 36 site clusters [10,26,27] find that the system enters
the ferrimagnetic ground state for J2/J1 � 1.65. The DFT es-
timated material couplings with J2/J1 ∼ 1.7 thus precariously
places the system in the vicinity of the nonmagnetic-magnetic
phase boundary. It is then likely that the significant J3 diagonal
couplings (J3/J1 ∼ 1.45) within the squares generate the nec-
essary frustration to tip the balance in favor of a nonmagnetic
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(a) Cu(1) (triangle site) (b) Cu(2) (square site) (c) Cu(3) (decorating site) (d)

FIG. 2. (a)–(c) The pattern of real space (equal-time) spin-spin correlations 〈Ŝi · Ŝ j〉 from mVMC measured with respect to the three
symmetry inequivalent sites. The radius of the circle is proportional to the magnitude of the correlator, and blue (red) denotes antiferromagnetic
(ferromagnetic) correlations. The largest red circle corresponds to i = j. (d) The pattern of 〈Ŝi · Ŝ j〉 within a 2 × 2 unit cell showing the
pattern of strong/weak bonds in the VBC ground state. The thickness is proportional to |〈Ŝi · Ŝ j〉| and blue (red) denotes antiferromagnetic
(ferromagnetic) bonds, while the dashed lines denote the J10 bonds. Note that the idealized 2D unit cell shown here is rotated by 45◦ with
respect to Fig. 1(b).

ground state. If so, the precise nature of the nonmagnetic
state, in the presence of further neighbor coupling J4 and the
coupling J10 to the decorating Cu(3) site, needs to be carefully
investigated by probing the delicate energetic competition be-
tween various quantum spin liquid and VBC ansätze.

Results. We begin our analysis by addressing the issue of
the existence of long-range magnetic order in the ground state
of the DFT Hamiltonian. Employing state-of-the-art numer-
ical approaches of mVMC [28,29], fermionic VMC [30,31],
PFFRG [32–34], PMFRG [35,36], and SB analysis [17,37–
40], we compute the static (equal-time) spin structure factor

S(q) = 1

Ns

∑
0�i, j<Ns

〈Ŝi · Ŝ j〉eiq·(ri−r j ), (1)

where Ns is the number of sites in the lattice, q is a momentum
inside the extended Brillouin zone, and ri denotes the site
positions (accounting for sublattice displacements), following
the convention outlined in the Supplemental Material [25].
Long-range dipolar magnetic order sets in when the maximum
of S(q) at q = Q scales as S(Q) ∝ Ns for large Ns [41]. The
size scaling of S(Q)/Ns [see Fig. 1(c)], yields the magneti-
zation m2 ∝ limNs→∞S(Q)/Ns, which we consistently find to
be zero (within error bars) from different approaches. This
provides evidence for a nonmagnetic ground state which is
corroborated by the rapid decay of the real space spin-spin
correlations seen in Figs. 2(a)–2(c) (see Ref. [25] for results
from fermionic VMC and Schwinger boson approaches).

To further elucidate the nature of the nonmagnetic ground
state, we perform mVMC simulations with ansätze of dif-
ferent unit cell sizes. Table I shows variational ground

TABLE I. mVMC energies E/J2 on the 4 × 4, 6 × 6, and 8 × 8
lattices with a 1 × 1 and 2 × 2 unit cell after symmetrization.

Unit cell 4 × 4 6 × 6 8 × 8

1 × 1 −0.4256(1) −0.4205(1) −0.4172(1)
}

With Cu(3)
2 × 2 −0.4426(1) −0.4304(1) −0.4277(1)

1 × 1 −0.4729(1) −0.4783(1) −0.4698(2)
}

Without Cu(3)
2 × 2 −0.4857(1) −0.4816(1) −0.4811(2)

state energies for the Na6Cu7BiO4(PO)4)4Cl3 Hamiltonian
on three different clusters after symmetrization. The ener-
gies without the J10 coupling to Cu(3) sites are also given.
Independent of the system size, the energies for 2 × 2 en-
larged, i.e., 24-site unit cells are slightly (about 2%) lower
compared to translation invariant states, i.e., either quantum
spin liquids or lattice nematic. Other independent approaches
reach similar conclusions, lending support for a translation
symmetry broken ground state. These include a fermionic
VMC analysis guided by different ansätze, a self-consistent
fermionic mean-field analysis of different U(1) and Z2 spin
liquids [42], as well as a Schwinger-Boson mean-field study.
The pattern of real space (equal-time) spin-spin correlations
is shown in Fig. 2(d), which points to its VBC nature.
Here, one observes a checkerboard pattern, whereby the J1

bonds featuring ferromagnetic (antiferromagnetic) correla-
tions are always complemented by J2 bonds hosting strong
(weak) antiferromagnetic correlations thus forming a stag-
gered horizontal/vertical pattern. The frustrating diagonal
bonds inside the squares (J3) show the strongest (antiferro-
magnetic) correlations, while the Cu(2) and Cu(3) sites are
also found to be strongly correlated via J10 bonds, the latter
highlighting the decorated nature of the lattice geometry. The
VBC pattern possesses only C2 symmetry.

Interestingly, we notice that the inclusion of J10 inter-
actions in the Hamiltonian increases the frustration thereby
enhancing the disordering tendency. This is reflected in an
increase of the ground state energy per site [see Table I] and
decreasing correlations between Cu(1) and Cu(2) sites in favor
of bonds containing a Cu(3) site (see Fig. S7 in Ref. [25]). In
particular, the ratio of J10/J2 ∼ 0.34 places the material in the
vicinity of the high point of frustration (largest ground state
energy) (Table S2 in Ref. [25]). In mVMC calculations, the
effect of increasing J10 is to induce the rotation and reflection
symmetry breaking, and broadening of the maxima in S(q)
leading to a more diffuse signal (see Fig. S4 in Ref. [25]).
Thus, an important aspect of this result is that despite an
appreciable magnetic coupling of the decorated Cu(3) ions
with the square-kagome layers, it does not result in mag-
netic ordering. Quite the contrary, we show that the presence
of these strongly correlated interlayer Cu2+ ions aids the
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FIG. 3. (a) Static (equal-time) structure factor from mVMC
[Eq. (1)] obtained w.r.t. true crystal lattice site positions [25] obtained
on a 8 × 8 × 7 site cluster [Note: the (Sq) is not periodic, and the
Brillouin zones and high-symmetry points of the ideal geometrical
lattice are only drawn for illustrative purposes]. (b) The correspond-
ing powder average after accounting for the form factor.

stabilization of a magnetically disordered ground state—thus
settling the question raised by specific heat measurements
[19]. It is interesting to note that in a related square-kagome
material nabokoite KCu7TeO4(SO4)5Cl which similarly fea-
tures decorating Cu sites, signatures of long-range ordering
have recently been reported [20].

The symmetry breaking manifests itself in the static
spin structure factor which is likewise C2 symmetric [see
Fig. 3(a)], as obtained from mVMC. The maxima are lo-
cated at q = ±2π (3.75, 2.25) with the follow-up maxima at
q = ±2π (1.75, 0.25). The powder average structure factor is
presented in Fig. 3(b) in order to facilitate comparison with
potential neutron scattering studies.

The flexibility of the SBMFT method allows to efficiently
compute the dynamical structure factor,

S(q, ω) = 1

Ns

∑
i, j

eiq·(ri−r j )
∫ ∞

−∞
dte−iωt 〈Ŝi(t )Ŝ j (0)〉, (2)

and to extract interesting magnon features with information
on the Bose condensations of specific branches. Here, Ns is
the total number of sites given by nu × 2 × l × l , where nu is
the number of sites per unit cell [here, 14 in the presence of

FIG. 4. Dynamical structure factors as function of S and J10.
The other parameters are as given in the caption of Fig. 1. As J10

increases and/or S decreases, a gap opens and a quantum paramagnet
is stabilized. The Bose condensations appear at incommensurate q
vectors. In the condensed state, the Cu(3) spins are ordered but the
other spins in the square-kagome lattice remain very weakly ordered.
This is reflected by the gap between the lower branch excitations and
the continuum in the lower panels.

the Cu(3) atoms], and l is the linear size of the system. This
quantity can be compared with with neutron scattering ex-
periments. Within this approach one can artificially tune S to
lower values in order to enhance quantum fluctuations [40,43].
Thus, in Fig. 4, we show the dynamical structure factor for
two representative spin values S = 0.12, 0.15 for which a
quantum paramagnetic ground state can be stabilized, and also
for various values of Cu(3) coupling, J10, for a system size of
l = 12 with 4032 spins. This figure displays several features:
(i) decreasing J10 or increasing S favors Bose condensation
of the Cu(3) atom spins, (ii) they appear at incommensurate
values of the BZ, (iii) the rotational symmetry breaking is
evident from asymmetric excitation spectra around the K1 and
K2 points, see Fig. 3(a), and (iv) the gap closes at the extracted
parameters, but a secondary gap between the lower branch
and the continuum appears, reflecting ordered Cu(3) spins,
while the others remain weakly ordered. This allows us to
reveal the proximity to a phase transition between a quantum
paramagnetic state and its Bose condensate counterpart.

As seen in the fermion approaches, the effect of projecting
the wave function on exact physical states increases the quan-
tum fluctuations and helps the system to remain disordered
even in the presence of the Cu(3) atoms. In the SBMFT, since
magnetic orders are more competitive by construction, they
are favored at S = 1/2. Thus, in order to reach the quantum
paramagnet, one has to reduce the spin value.

We can see that the Bose condensation arises on the Cu(3)
spins while the others on the square-kagome lattice remain
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disordered. This is reflected in Fig. 4 in a clear gap in the lower
panels between the condensed branches and the excitations in
the continuum (see Fig. S11 of the Supplemental Material [25]
for real space spin correlation profiles). As one can see, a clear
magnetic order appears on the Cu(3) spins while the spins on
the square-kagome lattice are disordered.

Conclusions. We have determined a Heisenberg Hamilto-
nian for Na6Cu7BiO4(PO)4)4Cl3 with five significant antifer-
romagnetic exchange interactions. While triangle couplings
in the square-kagome lattice dominate at about twice the
size of the square couplings, the diagonals in the squares
are the second largest interaction. The Cu(3) sites deco-
rating the square kagome lattice in Na6Cu7BiO4(PO)4)4Cl3

turn out to be substantially coupled to the square sites. Our
five numerical techniques all corroborate that the Hamil-
tonian has a nonmagnetic ground state, in agreement with
the fact that experimentally no order was found down to
50 mK. We find the nature of this ground state to be a
VBC which breaks translational symmetry. We predict static
as well as dynamical structure factors to motivate studies of
Na6Cu7BiO4(PO)4)4Cl3 with inelastic neutron scattering.
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