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Supplementary Figure 1. Magnetic susceptibility χ(T ) of
nabokoite from Ref. [S1], multiplied by temperature (sym-
bols) and fit by the ansatz of Eq. (S1).

Supplementary Note 1. RE-EVALUATING THE
EXPERIMENTAL SUSCEPTIBILITY

Nabokoite KCu7TeO4(SO4)5Cl is a highly frustrated
antiferromagnet, with ordering temperature TN = 3.2K
strongly suppressed below the energy scale of magnetic
interactions. We thus use a fitting ansatz developed re-
cently by Pohle and Jaubert [S2] for spin liquids:

χT
∣∣fit = 1 + b1 exp[c1/T ]

a+ b2 exp[c2/T ]

C =
1 + b1
a+ b2

, θCW =
b1c1
1 + b1

− b2c2
a+ b2

(S1)

The fit is shown in Supplementary Figure 1. It is ex-
cellent right down to the ordering temperature TN and
allows us to determine the Curie-Weiss temperature of
nabokoite to θCW = −153.6K. Note that a linear fit of
χ−1 is not feasible for this materials [S1].

Supplementary Note 2. ADDITIONAL DFT
DETAILS

In Supplementary Figure 2, we show a comparison be-
tween the DFT energies and the fit to the Heisenberg
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Supplementary Figure 2. DFT total energies per Cu for 31
distinct spin configurations (circles). The fit to the Heisenberg
Hamiltonian with 13 exchange interactions is excellent.

Hamiltonian with 13 exchange interactions. The agree-
ment is very good. Small deviations are reflected in the
statistical errors given in Supplementary Table 1 which
contains the full energy mapping results. Exchange paths
are identified by the Cu-Cu distances given in the last
line. The first six exchange interactions are shown graph-
ically in Fig. 1a of the main text. The bold line in the
table is the interpolated set of couplings which matches
the Curie-Weiss temperature of θCW = −153.6K. We
calculate θCW according to

θCW = −2

3
S(S + 1)

2

7

(
2J1 + 2J2 + 2J3 + J4 + 2J5 + 2J6

+ 2J8 + 2J9 + 2J9 + 2J11 + 2J12 + J16 + J18 + 2J20
)

(S2)
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Supplementary Table 1. Exchange interactions of nabokoite KCu7TeO4(SO4)5Cl obtained by DFT energy mapping as described
in the Methods section. The line in bold face corresponds to the set of couplings that match the experimental Curie-Weiss
temperature. The distances d given in the last line are the Cu-Cu distances that identify the exchange paths.

U eV J1 (K) J2 (K) J3 (K) J4 (K) J5 (K) J6 (K) J8 (K)
5 25.3(6.7) 212.3(4.3) 248.3(4.8) 255.5(4.9) 241.0(2.3) 43.2(2.7) -14.4(1.7)
5.5 19.4(5.3) 189.3(3.5) 229.7(3.9) 236.3(4.0) 222.8(1.9) 40.5(2.2) -13.2(1.3)
6 14.3(4.3) 168.8(2.8) 212.2(3.1) 218.4(3.2) 204.3(1.5) 37.9(1.7) -12.2(1.1)
7 5.4(2.8) 134.1(1.8) 179.9(2.1) 186.1(2.0) 170.1(1.0) 33.1(1.2) -10.6(0.7)
7.5 2.7(2.2) 119.8(1.5) 166.5(1.6) 171.8(1.7) 154.0(0.8) 30.7(0.9) -9.6(0.6)
7.55 2.4(1.8) 118.5(1.5) 165.2(1.6) 170.5(1.7) 152(0.8) 30.5(0.9) -9.5(0.6)
8 -0.5(1.8) 106.7(1.2) 152.8(1.3) 158.4(1.3) 140.0(0.7) 28.6(0.8) -9.0(0.5)

d (Å) 3.102 3.294 3.453 4.659 4.672 4.917 5.366

U eV J9 (K) J11 (K) J12 (K) J16 (K) J18 (K) J20 (K) θCW (K)
5 2.3(4.2) -17.6(4.7) -5.9(5.3) -2.4(4.1) 0.1(2.4) 11.2(3.4) -249
5.5 1.9(3.5) -15.2(3.7) -4.7(4.3) -2.4(3.3) 0.1(1.9) 8.9(2.8) -228
6 1.6(2.7) -13.2(3.0) -3.8(3.4) -2.2(2.6) 0.1(1.5) 7.2(2.2) -207
7 0.8(1.8) -9.8(2.0) -3.2(2.2) -1.9(1.7) 0.1(1.1) 4.9(1.4) -171
7.5 0.9(1.4) -9.0(1.6) -2.3(1.8) -1.8(1.4) 0.1(0.8) 3.9(1.2) -155
7.55 0.9(1.4) -8.9(1.6) -2.2(1.8) -1.8(1.4) 0.1(0.8) 3.9(1.2) -153.6
8 0.6(1.2) -7.8(1.3) -2.3(1.5) -1.6(1.1) 0.0(0.7) 3.4(0.9) -140

d (Å) 5.678 5.693 5.892 6.204 6.851 6.953

Supplementary Note 3. CLASSICAL MONTE
CARLO RESULTS ON THE 2D MODELS

The classical Monte Carlo (cMC) calculations are car-
ried out as explained in the Methods section of the
main article. For the 2D model, we use system sizes
of N = 7L2, where 7 is the number of sites in the unit
cell and L is the number of unit cells in the two Carte-
sian directions. In each independent run, the energy and
specific heat are calculated at every temperature by av-
eraging through the second half of the Monte Carlo steps
performed at each temperature. While the energy is cal-
culated by a simple average, e = ⟨e⟩, the specific heat is
calculated as

cv(T ) = N
⟨e2⟩ − ⟨e⟩2

T 2
(S3)

The results are then averaged over 10 independent runs.
The cv(T ) calculations (after averaging) are shown in
Supplementary Figure 3a, by the continuous lines for
different system sizes from L = 10 (N = 700 spins) to
L = 80 (N = 44800 spins).

Another alternative is to calculate cv(T ) as the deriva-
tive of e(T ) after averaging over independent runs. The
results of this method are shown by the dashed lines in
Supplementary Figure 3a, where an arbitrary 0.3 shift
has been chosen to distinguish from the previous results.
Although the two methods for obtaining cv(T ) should
be equivalent, one often encounters discrepancies. When
this happens, it is usually an indication that the system
is exhibiting problems in thermalizing. In this case, both
curves agree well down to the lowest temperatures, and
only differ slightly around the peak at T = 0.004 J4. This
peak is very faint and does not scale with system size, in-
dicating that it is not a phase transition. Furthermore,

it seems to vanish with increasing system size. And since
the continuous SU(2) symmetry cannot be broken at fi-
nite temperatures in 2D systems, a phase transition (if
there is such a transition) has to come from the break-
ing of an emergent discrete symmetry, none of which is
broken in the ground state.

The ground-state energy of the system can be obtained
as the continuation of a slow cooldown protocol to T = 0.
In Supplementary Figure 3b we show these results for
smaller lattices ranging from L = 2 to 10. The average
ground-state energy is shown by the blue squares, while
the orange dots show the minimum among the 10 inde-
pendent runs for each lattice size. It becomes evident
that all lattices with even L reach the same ground-state
energy, even for lattices as small as L = 2 (N = 28 spins).
On the other hand, the odd L lattices exhibit higher en-
ergies (L = 3 is out of scale), indicating that the periodic
boundary conditions are introducing frustration into the
system, while the even L lattices are unfrustrated.

As explained in the main text, this behaviour can be
tracked to the spin pattern of the ground state, which re-
quires 2 unit cells in each direction to repeat itself along
independent zigzag lines of J3 and J5. We show in Sup-
plementary Figure 4 two examples of ground-state con-
figurations for the L = 2 lattice. The arrows indicate
the (Sx, Sy) components of the spins, while the colour
determines Sz. For clarity, we rotate all the spins such
that the bottom left apex spin is S = (0, 0, 1); therefore
the green arrow with zero length. The direction of this
arrow, as well as the other apex arrows, should be disre-
garded since it is just selected by a small numerical error
in the (Sx, Sy) components. The important thing is that
they are all dark green and have almost zero length.

These states have already been described in the main
text, but it is nonetheless important to revisit it’s fea-
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Supplementary Figure 3. Classical Monte Carlo calculations
for the 2D model for several sizes L. a Specific heat is calcu-
lated in two different ways (see text), where the dashed data
is shifted by 0.3 to appreciate the difference. b Ground-state
energy average over 10 independent runs (blue squares) and
the lowest value among the runs (orange circle).

tures. All the base spins are slightly canted out of
the (Sx, Sy)-plane and have a small negative Sz compo-
nent, as can be seen by their yellowish-red colour. The
link spins are also canted, but with positive values of
Sz. Overall, base and link spins have only four differ-
ent directions in the (Sx, Sy)-plane. The base spins con-
nected by diagonal couplings J4 (orange) are antiferro-
magnetically ordered in (Sx, Sy), while they form π/2
angles with neighbouring spins connected by J2 (pur-
ple). The base spins are then defined by pointing op-
posite [in (Sx, Sy, Sz)] to their neighbours connected by
J3 (red coupling).

Altogether, this is the four-coloured solution presented
in the main text. The spins on zigzag lines (see main
text) composed of base and link spins connected by J4
and J3 (orange and red bonds) can be transformed ac-
cording to (Sx, Sy, Sz) → (−Sx,−Sy, Sz) while maintain-
ing the same energy, staying in the ground-state mani-
fold. This gives rise to the subextensive degeneracy since
there are 2L lines in which these moves can be applied
independently. When applying cMC to larger lattices,
as the temperature is lowered, the system gets trapped
into a particular state of the manifold which, however,
is spatially diverse in the sense that it does not contain
a repeated L = 2 cell. Therefore, large enough lattices

Supplementary Figure 4. Two classical Monte Carlo config-
urations for the 2D model at T = 0 for L = 2. The size
and direction of the arrows indicate the (Sx, Sy) component,
while the colour of the arrows indicates the Sz component.
All spins are rotated so that the appex spin in the bottom
left is (0, 0, 1).

represent the variety within the manifold well and give
rise to the needle-like features in the spin structure factor
(see main text).
As shown in the main article, the needle-like features

in the spin structure factor can be reproduced in an ef-
fective model in which 2/7 of the spins are missing and
J1 and J6 couplings are neglected while J3 changed sign
(from antiferromagnetic to ferromagnetic). The number
of sites for these systems is N = 5L2, because the unit
cell now contains only five sites (one pyramid). In Sup-
plementary Figure 5 we show the results for this effective
2D model. In this case, in contrast to the full 2D model,
there is no peak at finite temperatures. On the energy
side, we see again that even L always gets the same and
lowest ground-state energies. On the other hand, odd L
reaches higher energies for L = 3 and L = 5 but is indis-
tinguishable from even L for L ≥ 7. This implies that the
frustration induced by the periodic boundary conditions
is quickly released in larger system sizes.
While both models show the same key features in the

spin structure factor, their specific heats differ in the
presence or absence of a peak. The source of the differ-
ence becomes evident when looking at the ground-state
configuration, shown in Supplementary Figure 6. The
basic pattern is similar to the one in the full 2D model,
with all apex spins pointing in the Sz direction and the
base spins canted out of the (Sx, Sy)-plane by a small
negative value of Sz. The spins diagonal to each other,
connected by the orange bond J4, have also opposite val-
ues of (Sx, Sy). The only difference in the effective model
is that now all zigzag lines are independent, meaning that
the spins connected by the purple J2 bonds can form any
angle (and not π/2 as before); see in Supplementary Fig-
ure 6 that they form different angles in different squares.
This degeneracy is lifted in the full 2D model by the
bonds J1, J6, and the inclusion of the link sites. This
explains the peak observed in the specific heat, corre-
sponding to the temperature at which the angle is locked
to π/2 when the small couplings become relevant.
In conclusion, the effective model has an extra free-
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Supplementary Figure 5. Classical Monte Carlo calculations
for the 2D effective model for several sizes L. a Specific heat is
calculated in two different ways (see text), where the dashed
data is shifted by 0.3 to appreciate the difference. b Ground-
state energy average over 10 independent runs (blue squares)
and the lowest value among the runs (orange circle).

Supplementary Figure 6. Two classical Monte Carlo configu-
rations for the effective model at T = 0 for L = 2. The size
and direction of the arrows indicate the (Sx, Sy) component,
while the colour of the arrows indicates the Sz component.
All spins are rotated so that the apex spin in the bottom left
is (0, 0, 1).

dom, in which all the spins along a certain zigzag line
can be rotated by any angle around the Sz axis and not
only by an angle of π as in the full 2D model. This
means that the four colouring solutions are still contained
within the manifold in the effective model, but the space
is larger. However, both systems exhibit the character-
istic needle-like features in the spin structure factor be-
cause it only depends on the possibility of the system to
fluctuate freely along zigzag lines.

Supplementary Note 4. CLASSICAL MONTE
CARLO RESULTS ON THE 3D MODEL

To consider the 3D model that describes nabokoite,
we take into account the lattice distortions that affect
the structural periodicity. Because on each layer there
are pyramids pointing up and down, we take as the layer
unit cell an L = 2 piece of the 2D model. Furthermore,
consecutive layers have exchanged J1 and J3 couplings
due to the pyramids being slightly rotated clockwise or
counterclockwise. Therefore, we need to consider as the
unit cell of our 3D system two layers of L = 2 in the
language of the 2D model, equivalent to Nu = 7×23 = 56
spins. With this in mind, we make our calculations in
systems of N = 56L3 spins with up to L = 8 (28672
spins). The rest of the calculations are performed in the
same way as for the 2D models.
In Supplementary Figure 7a we show the results for

the specific heat calculated in two different ways. Both
methods agree in the sense that they exhibit a peak that
scales with increasing system size, showing a clear phase
transition. Furthermore, we also plot the specific heat
for the L = 40 2D model in a dot-dashed black line. It
becomes clear that the calculations for the 3D and 2D
models start to be different below T = 0.2 J4 when the
interlayer coupling J8 becomes relevant. In Supplemen-
tary Figure 7b we show the ground-state energies for
different sizes. In this case, all lattices with even L ex-
hibit lower ground-state energies and always the same
value as the L = 2 system (448 spins). On the other
hand, lattices with odd values of L have larger ground-
state energies, indicating that there is frustration due to
boundary conditions.

In Supplementary Figure 8 we show the spin configu-
ration for the L = 2 lattice using the 3D model. This
system contains four different layers, which can be seen
on the different panels. As shown in the main article,
the ground state of the 3D model is different from that
of the 2D model. The interlayer coupling J8, however
small, plays a key role at low temperatures driving a
phase transition to a more complicated state. The apex
spins are not all ferromagnetically ordered through the
system. However, there are some slices in which they
(the apex spins) order ferromagnetically (see for exam-
ple the top row on each layer). Some other slices oppose
these spins (see the third row from the top). The compli-
cated structure that minimizes the ground-state energy
at T = 0 certainly deserves further investigation, which
is out of the scope of this work in which we focus on the
properties of the 2D regime.

Supplementary Note 5. PMFRG RESULTS

The PMFRG method relies on writing the quan-
tum spin operators in the Majorana fermion represen-
tation [S3, S4]. This re-writing has the advantage of not
introducing any unphysical enlargement of the Hilbert
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Supplementary Figure 7. Classical Monte Carlo calculations
for the 3D model for several sizes L. a Specific heat is calcu-
lated in two different ways (see text), where the dashed data
is shifted by 0.5 to appreciate the difference. b Ground-state
energy average over 10 independent runs (blue squares) and
the lowest value among the runs (orange circle).

space, but a trivial degeneracy that can be easily con-
sidered. In particular, we use the recently developed
temperature-flow PMFRG [S5], in which the tempera-
ture T is used as the cutoff parameter which evolves from
T = ∞ down to lower temperatures. Essentially, the
method consists of solving an infinite set of coupled dif-
ferential equations, known as the flow equations, for the
corresponding fermionic vertex functions, from which the
spin-spin correlations can be obtained at a given T .
The PMFRG method preserves all symmetries of the

original Hamiltonian, and the lattice symmetries can be
implemented to reduce considerably the number of flow
equations. Within the method, ordering phase transi-
tions at finite temperatures can be detected via finite-
size scalings of the correlation length. The latter is ob-
tained directly from the peak in the spin structure factor
(or susceptibility). PMFRG has been shown to obtain
accurate results for the critical temperature when com-
pared against quasi-exact methods like quantum Monte
Carlo [S4, S5].

To solve the 3D model, we use the available atomic
positions found in the literature, for which the nearest-
neighbour distances are stated in Table 1. We take into
account couplings from J1 to J8, which correspond to
interatomic distances of 3.102 Å to 5.366 Å. We solve
the flow equations for all symmetry-inequivalent spin-

spin correlations contained within a sphere of radius R
from the three symmetry-inequivalent Cu sites. In other
words, we work on an infinite lattice where we take into
account all spin-spin correlations at distances ≤ R. From
these correlations, the spin structure factor can be cal-
culated and subsequently the susceptibility as the values
of S(q∗;T ), where q∗ is the wavevector for which the
maximum of S(q) can be found.
We show in Supplementary Figure 9 the susceptibility

in the 3D model as a function of the temperature for sev-
eral values of R from 6 Å to 20 Å. These imply taking
into account between 27 and 823 symmetry-inequivalent
correlation pairs. Firstly, no divergency is observed in
the temperature range down to T = 0.01 J4, indicating
the absence of a phase transition. Furthermore, results
are converged for all R ≥ 10, again indicating that the
correlation length does not diverge down to T = 0.01 J4.
This does not rule out the existence of a phase transition
at lower temperatures, which are not reliably accessible
within PMFRG. We also show in the inset the difference
between setting the interlayer coupling to zero, J8 = 0,
for R = 20 Å. The difference that J8 induces in the sus-
ceptibility or spin structure factor is only very small at
very small temperatures in the quantum case.

Supplementary Note 6. SINGLE CLASSICAL
PYRAMID

In this section, we focus on a single pyramid and ask
how the energy can be minimized in such a 5-spin system.
We consider the base spins connected with J2 along the
sides and J4 along the diagonals, while the apex spin
is connected by J5 to the base (the same as in all of our
models). Even though every spin in the pyramid interacts
with the remaining ones, because of the difference in the
couplings J2 ̸= J4, the corresponding 5-spin Hamiltonian
cannot be rewritten as a complete square.

First, let us think about the four Cu(1) spins connected
in a square with J2 on the sides and J4 on the diagonals,
disregarding the apex site and the J5 coupling. This
square has two possible solutions depending on the ra-
tio of antiferromagnetic J2 and J4. On one hand, if the
diagonal coupling J4 is smaller than J2, the spins mini-
mize the energy by forming a colinear Néel state in the
square. On the other, if J4 > J2 as in the present case,
the energy is minimized by a coplanar state in which each
diagonal has opposing spins, but the angle between spins
in different diagonals is completely free.

Let us assume that the coplanar state on the square is
on the xy plane, and let us couple the apex spin point-
ing in the z direction to the square by increasing J5.
For J5 → 0, the state on the square will remain copla-
nar. When J5 increases, the spins on the square will start
canting outside the plane, leading to a total net ferrimag-
netic moment. The out-of-plane canting angle is shown in
Supplementary Figure 10 as a function of J5 and J4. The
red star marks the ratio of parameters from the Hamil-
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Supplementary Figure 8. Classical Monte Carlo configuration for the 3D model at T = 0 for L = 2. The layers 1 to 4 are shown
in panels a to d, respectively. The size and direction of the arrows indicate the (Sx, Sy) component, while the colour of the
arrows indicates the Sz component. All spins are rotated so that the apex spin in the bottom left of the first layer is (0, 0, 1).

tonian, and the black contour lines indicate three angles
close to it. The dashed black line separates the two states
described above, also depicted by the squares and spins
in Supplementary Figure 10. As J5 → ∞, both states
become the same: the centre spin pointing up and all the
rest pointing down.

Supplementary Note 7. FROM THE 2D TO THE
3D SPIN STRUCTURE FACTOR

Here we illustrate how the spin structure factor ob-
served in the simple 2D model without lattice distortions
looks like when considering different layers with opposite
chirality in the 3D model as well as lattice distortions.
In Supplementary Figure 11 we show cMC results for
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Supplementary Figure 9. PMFRG temperature flows for the
3D model for different values of R (in Å). For each case, q∗

corresponds to the point in reciprocal space for which the
highest value of the spin structure factor is observed. The
inset shows the difference between the 3D model and taking
J8 = 0 for R = 20.

Supplementary Figure 10. Canting angle as a function of J4

and J5 for a single classical pyramid. The lattices at each side
of the dashed line depict the states. The red star indicates
the values for the KCu7TeO4(SO4)5Cl compound.

the spin structure factor at two different temperatures,
T = 0.5 J4 and T = 0.1 J4, in two different rows. The
first column contains the same results shown in the main
article for the 2D model, where the lattice is simplified
with respect to the structure of the KCu7TeO4(SO4)5Cl
compound. This is done to work with a periodic spin
structure factor and with square sublattices in the struc-
ture, which in time allows us to interpret more easily the
results.

In the second column (panels b and f), we show the
result of symmetrizing the spin structure factor to take
into account different layers with opposing chirality of
couplings (exchanging J1 and J3 triangular couplings).

Another interpretation is that this is the structure fac-
tor that would be observed if the layers are completely
decoupled or if J8 = 0. In the third column (panels c
and g) we show the actual calculations on the 3D model,
which make evident that J8 is not playing any role at
these temperatures and the spin structure factors are the
same as in the 2D model. In other words, there is a two-
dimensionalization effect led by the temperature. Finally,
in the last column, we show the spin structure factor of
the 3D model taking into account the atomic positions of
the Cu atoms. This shifts the weight in the spin struc-
ture factor and makes it non-periodic (as can be seen in
the main article). It can be seen that the change in the
positions within the unit cell redistributes the weight on
the rings, transforming them into the horseshoe features
shown in the main article. However, we stress that the
atomic positions only change the appearance of the spin
structure factor and not the spin-spin correlations them-
selves, which only depend on the Hamiltonian (that is
unchanged).
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Supplementary Figure 11. Spin structure factor obtained with cMC for two different temperatures, T = 0.5 J4 (a-d) and
T = 0.1 J4 (e-h). The first column (a,e) corresponds to the 2D model, and the second (b-f) also corresponds to the 2D model
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without taking into account the real positions of the spins in KCu7TeO4(SO4)5Cl. The last column (d,h) considers the atomic
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