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Field-induced spin liquid in the decorated
square-kagome antiferromagnet
nabokoite KCu7TeO4ðSO4Þ5Cl
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Quantum antiferromagnets based on the square-kagome lattice are proving to be a fertile platform for
realizing nontrivial phenomena in frustrated magnetism. Recently, several decorated square-kagome
compounds of the nabokoite family have been synthesized, allowing for experimental exploration of
model Hamiltonians. Here, we carry out a theoretical analysis of KCu7TeO4ðSO4Þ5Cl nabokoite using a
Heisenberg Hamiltonian derived from density functional theory energy mapping. We employ classical
MonteCarlo simulations to explain the two transitions experimentally observed in the low-temperature
magnetization curve. Interestingly, the intermediate-field phase is also found in a purely two-
dimensional model and is described by a spin liquid featuring subextensive degeneracy with a
ferrimagnetic component.Weshow that this phasecanbeapproximatedbyacheckerboard lattice in a
magnetic field. Finally, we assess the effects of quantum fluctuations in zero fields using the pseudo-
Majorana functional renormalization group method.

Antiferromagnetic spin systems on highly frustrated lattices like kagome,
hyperkagome or pyrochlore are known to host emergent many-body
phenomena such as classical and quantum spin liquids characterized by
non-trivial correlations1. Besides these traditional examples of geometrically
frustrated antiferromagnets, other lattices become classical or quantumspin
liquids due to a combination of geometric and/or parametric frustration2,3.
Examples are the honeycomb lattice where a second neighbor coupling or
Kitaev interactions can trigger spin liquid states4,5, the diamond latticewhere
competing interactions can lead to a spiral spin liquid6–9, the maple leaf
lattice with combinations of antiferromagnetic and ferromagnetic
interactions10–14 or the trillium lattice which can host a dynamically fluc-
tuating liquid state due to the formation of an effective tetra-trillium
lattice15,16.

Here,we consider the square-kagome lattice, which has been suggested
theoretically as a variant of the highly frustrated kagome lattice17. Several
theoretical studies have established that this lattice is of high intrinsic
interest18–21 even ifmaterial realizationswere only a future hope.Using exact
diagonalisation and other approaches, Rousochatzakis et al. established a
complex phase diagram in amagnetic field and as a function of the ratios of
the exchange interactions22. In the idealized case of a single anti-
ferromagnetic nearest-neighbor coupling, a valence bond crystal ground
state is expected23,24. The theory predictions have provided ample

motivation to identify material realizations of the square-kagome Hamil-
tonian. The first success in this respect is the synthesis of Al-atlasovite
KCu6AlBiO4ðSO4Þ5Cl by Fujihara et al. where nonmagnetic Al is replaced
for the magnetic Fe of the mineral atlasovite KCu6FeBiO4ðSO4Þ5Cl25,26.
While the synthesis has beenrepeated and thehighly frustratednature ofAl-
atlasovite has been confirmed27, the nature of the Hamiltonian is still
unclear. A fully synthetic square-kagome material Na6Cu7BiO4ðPO4Þ4Cl3
was realized by Yakubovich et al.28 and, even though it has an additional
magnetic site, analysis of the Hamiltonian29 leads to the conclusion that the
decorated square-kagome lattice can support a quantum paramagnetic
ground state.

In this work, we focus on amaterial whichmay be a case where “a spin
liquid exists in a long-forgotten drawer of a museum”, in the words of
Broholm et al.1. Nabokoite KCu7TeO4ðSO4Þ5Cl is a mineral that was first
described over three decades ago26,30. Very recently, Murtazoev et al.31

managed to synthesize not only nabokoite but also several variants like Na-
nabokoite NaCu7TeO4ðSO4Þ5Cl, Rb-nabokoite RbCu7TeO4ðSO4Þ5Cl and
Cs-nabokoite CsCu7TeO4ðSO4Þ5Cl, establishing a whole family of com-
pounds where fine-tuning of magnetic properties is feasible. All nabokoite
variants so far feature a seventh Cu site decorating the six-site square-
kagome unit cell, but it is still unclear how this impacts the magnetic
behavior. The magnetic characterization of nabokoite by Markina et al.32
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establishes it as a highly frustrated compound with a Néel temperature of
only TN = 3.2 K compared with a Curie-Weiss temperature of
θCW=−153.6 K. It also features a highly unusual magnetization curve at
low temperatures which exhibits two phase transitions. To date, the
appropriate Hamiltonian that accurately captures the properties of nabo-
koite remains unidentified.

In the following, we will first establish the relevant Hamiltonian for
nabokoite. It features a set of strong antiferromagnetic Heisenberg cou-
plings, and interestingly, one of the triangle couplings of the square-kagome
lattice is negligible. This calls for establishing themagnetic properties of this
Hamiltonian on an effectively new lattice which has hitherto not been
investigated. The first insights are obtained from classical Monte Carlo
simulations. We demonstrate that the Hamiltonian can fully explain the
intricate magnetization curve and two finite-temperature phase transitions
ascribed to a weak inter-layer coupling. We find that the 2D regime of the
Hamiltonian could be accessed experimentally by applying afinitemagnetic
field, which then motivates us to investigate the properties of a single
decorated square-kagome layer. We show that there is subtle cooperation
between the three magnetic sublattices which is responsible for inducing
spin liquid behavior. To highlight this interplay and the associated spec-
troscopic signatures, we propose a simplifiedmodel. Finally, we employ the
pseudo-Majorana functional renormalization group approach to assess the
impact of quantum fluctuations and make predictions for future inelastic
neutron scattering experiments.

Results
Nabokoite Hamiltonian
We begin by extracting the Heisenberg Hamiltonian parameters for
nabokoite using density functional theory (DFT)-based energy mapping
(see Methods for technical details). This approach has been applied suc-
cessfully to many highly frustrated Cu magnets33–38. We base our calcula-
tions on the structure determined by Pertlik and Zemann30. We determine
the parameters of the Heisenberg Hamiltonian

H ¼
X

i<j

J ijSi � Sj ð1Þ

which we define without double-counting the exchange paths. Figure 1a
shows the result of this calculation for six values of the on-site Coulomb
interaction strengthU.Wefix the energy scale of theHamiltonianby relying
on the information about the Curie-Weiss temperature contained in the
experimental susceptibility χ(T) of nabokoite. While ref. 32 points out the
difficulty in performing a linear fit of χ−1(T), we apply themethod proposed
recently by Pohle and Jaubert39 and obtain θCW =−153.6 K (see
SupplementaryNote 1). The exchange interactions forwhich the theoretical
θCW estimate matches this value is marked by a vertical line in Fig. 1a. The
values of the six dominant couplings are listed in Table 1, and the network
they form is illustrated in Fig. 1b. While we use the θCW to obtain
information about the approximate energy scales of interactions in
nabokoite, we would like to point out that a rather large range of U values
leads to similar sets of exchange interactions (see Fig. 1a) so that the
conclusions of our investigation do not strongly depend on the precise value
of θCW. Note that the value of the on-site interactionU = 7.55 eV we find to
describe themagnetismof nabokoite well is verymuch in linewith typicalU
values for Cu2+ ions (see for example Refs. 35,36). We also determine some
longer range exchange couplings in the square-kagome plane but their
strength is atmost 5% of the strongest coupling J4. Furthermore, we find the
interlayer coupling J8 to be J8 =−0.053J4; the way this connects the square-
kagome layers along c is shown in Fig. 1c. It is interesting that the nearest
neighbor coupling comesout extremely small. Such abehavior is usually due
to some cancellation between contributions from different exchange paths,
and finding this behavior attests to the lack of bias in the DFT energy
mapping approach. Note that a similar situation is found in
K2Ni2ðSO4Þ315,16 where theHamiltonian has strong support due to excellent
comparison with experiments.

Magnetization process
The experimentally measured magnetization curve for nabokoite
KCu7TeO4ðSO4Þ5Cl exhibits two transitions at finite temperatures. In the
data taken from ref. 32 (Fig. 2c), there is an initial small slope at small fields
which then grows and decreases again, defining three different regimes at
finite temperatures. To evaluate this theoretically, we perform classical
Monte Carlo (cMC) calculations on two different lattices. As a first
approach, we disregard the inter-layer coupling J8 which is ferromagnetic
and only ~5% of the largest coupling. The model then consists of a single
layer and we, henceforth, refer to it as the two-dimensional (2D) model. In
contrast, when considering the full Hamiltonian with inter-layer coupling
we will speak of the three-dimensional (3D) model. While continuous spin
symmetries cannot be broken at finite temperatures in two-dimensional
lattices due toMermin andWagner’s theorem40, it is not uncommon to find
finite-temperature phase transitions associated with broken discrete
symmetries41–44. In this case, we observe a small peak at very low tempera-
tures that does not scalewith system size and is therefore not associatedwith
a phase transition (see Supplementary Fig. 3).

Themagnetizationprocess for the 2Dmodel under amagneticfieldh is
shown in Fig. 2e. The sublattice magnetizations (corresponding to each
symmetry inequivalent site) are shown in Fig. 2a for two different tem-
peratures T = 0 and T = 0.503 J4 in light and dark color, respectively. The
total magnetization at T = 0, shown by the black line, hints that the ground
state has a finitemagnetization in the h→ 0 limit, indicating a ferrimagnetic
behavior for the 2D model. From the sublattice magnetization, we can see
that the ground state has all decorating spins at the pyramid apices aligned
ferromagnetically, amounting to 1/7 of the total magnetization. We could
have expected then that the total non-zero magnetization originates from
these spins. However, the contribution of the pyramids to the total mag-
netization at low temperatures is very small compared to the total magne-
tization itself (black curve), since the light-blue and light-green lines almost
cancel each other at low fields and temperatures. This happens because the
spins in the base of the pyramid oppose and cancel the pyramid’s ferri-
magnetic magnetization almost perfectly. It is then the link sites connecting
the pyramids that are responsible for the total non-zero magnetization, as
can be seen by the low-field agreement between the orange dotted line and
the black curve.

The high slope observed experimentally for the intermediate phase at
finite temperature can be related to the non-zero value of M at h = 0 and
T = 0, for which the connecting sites are responsible. In other words, the
non-zero value ofM atT=0 softens into a sharp increase ofM at smallfields
as the temperature increases (see red curve inFig. 2e).Ontheotherhand, the
smaller slope at higher fields comes from the spins at the base of the pyr-
amid. These spins, which at small fields are pointing against the apex spins
and themagnetic field, start aligning slowlywith themagneticfield as can be
seen by comparing the black curve to the light-blue one. Experimentally, the
extrapolated magnetization from the high-field slope to T = 0 is
M = 0.043Msat (where Msat is the magnetization of the fully saturated
state)32. This extrapolation is performed at higherfields than the ones shown
in Fig. 2c, where the behavior is linear32. In our case, extrapolating the total
magnetization to h = 0 and T = 0 leads to M = 0.055Msat which is sur-
prisingly close to the experimental value of 0.043Msat, denoted by a star in
Fig. 2a. However, the precision could be accidental since there is a priori no
reason for the classical S = ∞ simulations to quantitatively reproduce the
results for a S = 1/2 compound at zero field and temperature. We note that
our calculations for the 2D model miss capturing the low-field phase with
the small slope of themagnetization curve—wewill subsequently show that
the inclusion of the inter-layer coupling is crucial for capturing this subtle
phase transition.

We first analyze the spin configuration at low temperatures and fields,
which is shown in Fig. 2b. There, we plot a spin configuration at h = 0.02 J4
and T = 0 using polar coordinates of the ∣S∣ = 1 spins, where θ is the angle
with the z axis andϕ is the angle in the xy-plane.The greendots around θ=0
indicate that all the apices of the pyramids are pointing nearly in the z
direction. Then, the pyramid’s base presents spins in 4 directions slightly
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canted down from the xy plane as shown by the values of θ higher than π/2.
This locking of the spins in four directions is what causes the peak we
observe in the specific heat at very low temperatures (Supplementary Fig. 3).
We can also observe that spins connected by the diagonal coupling J4 are
mixed (blue and gray on the one hand, and light blue and dark blue on the
other), meaning that they are exchanged in different unit cells. The reason
will become clear from the ground state of the single pyramid discussed
below. Finally, the sites linking the pyramids (red and orange) are slightly
canted towards the magnetic field, in the same direction as the pyramid
apices. These spins are also aligned in terms of ϕ with the base of the
pyramids and can be separated into two groups (orange and red symbols do
not mix).

The effect of the interlayer ferromagnetic coupling J8, even though
being only ~5% of the largest coupling, is far from trivial. Firstly, the 3D
model exhibits a finite-temperature phase transition for h = 0 at
Tc = 0.0095 J4 (see Supplementary Fig. 7), which is the same order of
magnitude as the experimental value 0.019 J4

32. Even though the states above
the phase transition are similar to those of the 2D model, we find that the
ground states of both models completely differ at h = 0. This can be seen in
the (ϕ, θ) plot in Fig. 2d, where a configuration for T = 0 and h = 0.001 J4 is
shown.The smallfielddoesnot change the state butmakes thepattern easier
to see (see Supplementary Notes 3 and 4 for more details on the spin
configurations).

Since the 2D model failed to capture the low-field phase transition
observed experimentally, it is to be expected that themagnetization process
of the 3DHamiltonianwill exhibit a newphase transition from the low-field
regime where the interlayer coupling J8 selects the ground state to a high-
field regime where the system neglects this small coupling. This becomes
clear in the magnetization curve of Fig. 2c, which shows the experimental

results for KCu7TeO4ðSO4Þ5Cl at T = 2 K taken from ref. 32 along with the
two phase transitions they determined (shown in red dashed lines). The
value of the magnetization M is shown as a fraction of the saturation
magnetizationMsat, and the magnetic field is converted to units of J4. Our
cMC results are presented in Fig. 2e, where the blue magnetization curve is
calculated for the 3DHamiltonian at the temperature of the experiments on
KCu7TeO4ðSO4Þ5Cl and exhibits an impressive agreement (especially
considering that we are comparing S = 1/2 and S = ∞).

Most importantly, our calculations capture the key aspect of three
different regimes separated by two transitions. At very low magnetic fields,
there is an initial regime in which the magnetization grows slowly. This is
succeeded by an increase in the slope (susceptibility) where the magneti-
zation grows fast, and then itflattens again reaching a similar situation to the
one observed in the two-dimensional model (red curve). These features of
the 3D model are enhanced at low temperatures (green curve), where it
becomes evident that the low-temperature regime is particular to the 3D
model (red versus green curves). As anticipated, this is caused by the dif-
ference in the ground state: whereas in 2D there is a finite value of the total
magnetization that leads to a ferrimagnetic behavior, in 3D this does not
happen. The good agreement between our 3Dmodel calculations in Fig. 2e
atT=0.0114J4 (blue curve) and the experimentallymeasuredmagnetization
curve in Fig. 2c allows us to conjecture that KCu7TeO4ðSO4Þ5Cl does not
have a ferrimagnetic behavior at T = 0 and h = 0; a small magnetic field is
needed to enter the ferrimagnetic phase.

These results not only validate theHamiltonianwederived usingDFT-
based energy mapping, which provides the small ferromagnetic interlayer
coupling that is needed to reproduce the experimental results; it also allows
us to make some relevant predictions for future experiments. We find here
that the two-dimensional regime can be accessed at finite fields in the 3D
model; this implies that the spin liquidpropertiesof the2Dmodelwediscuss
below are experimentally accessible. This is further supported if we look at
the spin configurations of the states in the low-field and high-field regimes,
Fig. 2d and f, respectively. The low-field configuration close to the ground
state at zero field has the pyramid apex spin pointing mostly in-plane while
the rest of the spins form complicated patterns around them. Eventually,
when the magnetic field is increased, we observe a transition to the states of
Fig. 2fwhich resemble thoseofFig. 2b for the2DHamiltonian.Weshowthis
effect forh = 0.1 J4which corresponds to about 25T, but similar states canbe
accessed at lower fields.

Spin-liquid features in the 2D model
We proceed to analyze the properties of the 2D model for nabokoite
KCu7TeO4ðSO4Þ5Cl in more depth. Even though the ground state differs
from that of the 3D model, at finite temperatures the states are similar.

Table 1 | Exchange coupling values for nabokoite

Exchange in K in J4

J1 2(3) 0.012

J2 118(2) 0.694

J3 165(2) 0.971

J4 170(2) 1.000

J5 152(2) 0.894

J6 31(2) 0.182

J8 −9(1) −0.053

Couplings obtainedwithDFTenergymapping (see the text for details), in units of K andof the largest
coupling J4.
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Fig. 1 | DFT energy mapping and exchange pathways for nabokoite. a Values of
the first six exchange interactions as a function of on-site interaction strengthU. The
vertical line marks the set of couplings that matches the experimental Curie-Weiss
temperature θCW = 153.6 K (see the text for details). b Exchange network defined by

the six dominant exchange interactions in the decorated square-kagome plane. c 3D
connectivity established by the non-zero interlayer coupling J8. Every Cu(2) is
connected to four Cu(3) via J8.

https://doi.org/10.1038/s43246-025-00806-2 Article

Communications Materials |            (2025) 6:96 3

www.nature.com/commsmat


Furthermore, we showed in the previous section that the ground state of the
2D model can be reached in the 3D model—in other words, in an experi-
ment—under a small magnetic field. Therefore the 2D model is not only
interesting theoretically, but also experimentally accessible. With cMC, the
ground-state energy can be obtained as a continuation of the cool-down
protocol till T = 0. By doing so, we find that lattices with even L reach lower
ground-state energies compared to those with odd L, indicating that the
latter are frustrated by the periodic boundary conditions (see Supplemen-
tary Fig. 3). It is also important to note that lattices with even L are not
frustrated by the boundary conditions because they all reach the same
ground-state energy, given by the one on the L = 2 cluster. We will show
below that this property is not related to a doubling of themagnetic unit cell
with respect to the structural unit cell, butwithafluctuationmechanism that
necessitates the even periodicity of the lattice.

To analyze the spin correlations we calculate the equal-time spin
structure factor, defined by

SðqÞ ¼ 1
N

X

i;j

hSi � Sji eiq�rij ð2Þ

where rij = ri− rj is the distance vector between spins at positions ri and rj.
Apart from calculating the spin structure factor from the whole lattice, it is
informative to also calculate it for the different sublattices in the system,
especially when there are symmetry-inequivalent sites. Therefore, we also

calculate S(q) for the three sublattices formed by the three different types of
sites (see Fig. 1). To analyze the spin structure factor it is convenient to
simplify the structure by setting all the spins in the same plane and
eliminating the twisting distortions of the pyramids (see Fig. 4a). The results
for three different temperatures are shown in Fig. 3: T = 0.5 J4 in Fig. 3a–d,
T=0.1 J4 inFig. 3e toh, andT=0.01 J4 inFig. 3i to l. The spin structure factor
for the whole lattice is shown in Fig. 3a, e and i, while S(q) for the three
sublattices is shown in the three subsequent columns of Fig. 3. Insets in
Fig. 3b, c and d indicate the shown sublattice by black circles. Dashed lines
show the first Brillouin zones for the sublattices.

At intermediate temperatures (T=0.5 J4), the total spin structure factor
exhibits a continuum of peaks along rings centered around q = (±4π, 0) and
(0, ±4π). Even though these are not perfectly homogeneous, the variation of
the intensity along the ring is about 5% of the maximum, indicating the
presence of a spiral liquid-like regime8. The chirality (or the breaking of the
reflection symmetries qx, qy→−qx, qy and qx, qy→ qx,−qy) is given by the
difference between J1 and J3, the two bonds that connect the pyramids to the
Cu(3) spins. This chirality is also reflected in the structure factor of theCu(1)
sublattice (Fig. 3b), in which the peaks are centered in the corners of the first
Brillouin zone of the pyramid base sublattice, showing a tendency towards
antiparallel nearest neighbors orNéel order. However, these peaks spread in
four directions resembling a twisted windmill. The spin structure factor of
the Cu(2) sites at the pyramid apex (Fig. 3c) is practically featureless at
T = 0.5 J4, indicating that it behaves mostly as an uncorrelated paramagnet.

Fig. 2 | Magnetization curves. aMagnetization process for the 3 sublattices on the
2D model at two different temperatures, T = 0 and T = 0.5J4 indicated by two
different colors (light and dark colors, respectively). The black line shows the total
magnetization at T = 0. The star corresponds to the KCu7TeO4ðSO4Þ5Cl data from
ref. 32. b Configuration in polar coordinates for h = 0.02 J4 at T = 0 in the 2Dmodel.
Each point indicates a spin, and colors denote the site within the unit cell: Cu(1)

(pyramid base), Cu(2) (apex), Cu(3) (link). cMagnetization curve from ref. 32
corresponding to T = 0.0118 J4 (T = 2 K). d Spin configuration at T = 0 for the 3D
model where the magnetic field is h = 0.001 J4. eMagnetization curve for the 2D and
3Ddimensionalmodels at different temperatures, where the gray star corresponds to
the h→ 0 extrapolation made from higher fields in ref. 32. f Spin configuration at
T = 0 for the 3D model for h = 0.1 J4.
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Finally, the Cu(3) spins that link the pyramids are shown in Fig. 3d and also
exhibit peaks in the corners of their respective Brillouin zone corresponding
to a Néel ordering tendency.

Lowering the temperature to T = 0.1 J4 and T = 0.01 J4 leads to inter-
esting changes in the spin structure factor (Fig. 3e–hand i–l, respectively). In
the total S(q), the spiral rings start to decompose and peaks start to form at
q= (±π, ±3π) and (±3π, ±π). At the lowest temperature, these peaks have the
particular characteristic of forming needles along very specific Cartesian
directions. The needles indicate that the systemhas the freedom to fluctuate
in specific linear directions, and are also evident in the spin structure factor
of the Cu(1) sublattice, formed by the spins of the pyramid base. For this
sublattice (Fig. 3f), thewindmills start to spread out and the peaks disappear
from the corners of the Brillouin zone, leading to the needles observed in
Fig. 3j. Below, we will use an effective model to show that these needles are
related to a subextensive degeneracy given by zero modes which involve
exchanging all base spins across a zig-zag line that crosses the system in one
Cartesian direction. A similar behavior occurs in the breathing pyrochlore
lattice, where planes can be flipped in a certain range of parameters leading
to square rings in the spin structure factor45.

Continuing with the pyramid apex site (Fig. 3g, k), the spin structure
factor presents an unusual behavior. When the temperature is lowered, the
weak high-temperature maximum around q = (0, 0) (Fig. 3c) spreads and
evenly distributes over the entire Brillouin zone except for the wave-vectors
belonging to the zone boundary which lose intensity. At the lowest tem-
perature of T = 0.01 J4 (Fig. 3k), there is a constant intensity with a square
shape outlined by S(q) minima. This property will also be analyzed below
using the effective model and is related to the freedom of the apex spins to
fluctuate because they are only connected to the system by J5. Finally, the
Cu(3) sublattice (Fig. 3h, l) exhibits a shift of the peaks from the corners of
theBrillouin zone towards themid-point of theBrillouin zone edge. Peaks at

this high symmetry point are typically associatedwith stripe-likepatterns. In
this case, both stripe directions coexist and the spin structure factor at
T = 0.01 J4 (Fig. 3l) exhibits intensity along the lines that connect the high
symmetry points, indicating again that the system can fluctuate in specific
directions.

Proximity to an exact classical spin liquid
We have shown that the two-dimensional model for the nabokoite com-
pound KCu7TeO4ðSO4Þ5Cl exhibits interesting features in the classical
limit, such as needles in the low-temperature spin structure factor. To
understand the physical processes better, we introduce a simplified effective
model that retains the key features of the 2D model. The first and obvious
step is to neglect J1. Even though it is the nearest-neighbor interaction in the
material, the DFTHamiltonian reveals that its value is only about 1% of the
largest coupling J4. The next coupling that can be disregarded is J6, which
connects the Cu(3) spins into a square lattice (see Fig. 4a). It takes values of
about 18% of J4, which is not so small. However, since this coupling tends to
order the Cu(3) sublattice into a Néel state and the corners of the Brillouin
zone present the lowest signal in S(q) at low temperatures (see Fig. 3l), we
canargue that it does not play a key role in the low-temperaturephysics.Our
results below will also justify the simplification a posteriori. Eliminating J1
and J6 leads to a lattice of pyramids coupled to nearest-neighbor pyramids
only by a combination of two J3 couplings and a Cu(3) spin. The bonds
J3−S3−J3 connecting neighboring pyramids are unfrustrated and can be
replaced simply by a ferromagnetic coupling −J3. The resulting effective
lattice which retains only four bonds and two types of spins is shown in
Fig. 4b. The unit cell is reduced from 7 to 5 spins. It is important to note that
this procedure of replacement of two antiferromagnetic couplings by a
ferromagnetic coupling−J3 strictly only holds for the ground state and that
at non-zeroT, the effective coupling−J3 will vary with temperature, leading

Fig. 3 | Spin structure factors of the 2D Hamiltonian. S(q) for three different
temperaturesT= 0.5 J4 (a–d)T= 0.1 J4 (e toh), andT= 0.01 J4 (i–l). The first column
(a, e, i) shows the result for the entire lattice, and the other three columns give
sublattice results: column two (b, f, j) for the pyramid base, column three (c, g, k) for

the pyramid apex, and column four (d, h, l) for the linking site, as shown in the insets
of (b, c and d). The Brillouin zones corresponding to the sublattices are denoted by
dashed green squares on each panel. All spin structure factors are normalized.
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to only a qualitative mapping. While not carried out in the present work, it
would be worthwhile to employ the decoration-iteration method46 to inte-
grate out such unfrustrated degrees of freedom as has been done previously
to map this class of spin models on the square kagome lattice onto the
checkerboard lattice47.

The specific heat calculations on this model do not exhibit any sig-
natures of a phase transition at finite temperatures, indicating that no dis-
crete symmetries are broken. Furthermore, the specific heat does not exhibit
any peak at low temperatures in contrast to the full 2Dmodel. The reason is
that the base spins are not locked into four specific directions in this case (see
Supplementary Fig. 6). As the Cu(3) spins are missing from this model, we
forego the comparison of the total spin structure factor to the fullmodel and
instead focus on S(q) for Cu(1) andCu(2) sublattices. The results are shown
in Fig. 4d–i, with the effective model on the left and the full model on the
right of each panel (full model results are the same as in Fig. 3). We use the
same three temperatures but expect differences only at temperatures below
the two eliminated couplings.However, Fig. 4 shows that the effectivemodel
reproduces the spin structure factor of the KCu7TeO4ðSO4Þ5Cl Hamilto-
nianwell for lower temperatures.Most importantly, atT=0.01 J4 (Fig. 4h, i),
the effective model reproduces the same needle structure for the Cu(1)
sublattice that is observed in the original model. The features of the Cu(2)
sublattice are also reproduced. This is counterintuitive in the sense that the
eliminated couplings represent the lowest energy scalesof the systemandwe
would expect their influence to be stronger at low temperatures. However,
we find that the fundamental physicalmechanisms occurring in the original
Hamiltonian can be studied from, and are well represented in, the simpler
effective model.

Let us first focus on a single pyramid from Fig. 4b and ask how the
energy can beminimized in such afive-spin system. Even though every spin
in the pyramid interacts with every other, due to the difference in the

couplings J2 ≠ J4, the corresponding five-spin Hamiltonian cannot be
rewritten as a complete square. We first focus on the four Cu(1) spins
connected in a squarewith J2 on the sides and J4 diagonals, anddisregard the
apical spin and the J5 coupling. This square has two possible solutions
depending on the ratio of antiferromagnetic J2 and J4 couplings. For J4 < J2,
the spins minimize the energy by forming a collinear Néel state on the
square. In contrast, if J4 > J2 as in thepresent case, the energy isminimizedby
a coplanar state in which each diagonal has opposing spins, but the angle
between spins of the two diagonals is completely free. These are the same
states that occur on a square lattice with next-nearest neighbor interactions,
where entropy favors stripe phases for the J4 > 0.5J2 case that lead to an
emergent discreteZ2 symmetry41,48. However, in the present case, the angle
between spins in different diagonals is completely free. Let us then assume
that the coplanar state on the square is in the xy plane, and let us couple the
center spin pointing in the z direction to the square by turning on J5. For
J5→ 0, the state on the square will remain coplanar. When J5 increases, the
spins on the square will start canting outside the plane, leading to a total net
ferrimagnetic moment. As J5 → ∞, the ground state has the center spin
pointing up and all the rest pointing down (see Supplementary Note 6 for
more details).

Once we know the ground state of a pyramid, the ferromagnetic
coupling−J3 only copies the spin fromonecornerof apyramid to the corner
of another pyramid. If it is possible to cover the whole lattice this way (in
other words, if−J3 is not a frustrating interaction), this serves as a ground-
state configuration for the effective model. As stated above, the four spins
belonging to a pyramid base group into two diagonal sets. In each diagonal,
the spins point approximately in opposite directions (with deviations owing
only to the shared canting angle). In the following analysis, we use the states
corresponding to the full 2D model, where the angle between spins in
opposing diagonals is nearly 90∘, as shown already in Fig. 2b.We then assign

Fig. 4 | Effectivemodel for the ferrimagnetic spin liquid. a 2Dmodel planar lattice
without spatial distortions. b Effective lattice for the spin liquid model where Cu(3)
sites as well as J1 and J6 exchange interactions have been removed. The sign of J3 is
flipped to account for the absence of Cu(3) sites. c Ground-state configurations for
the effective model, where each color represents a different spin direction. Ground

states 1 and 2 are connected by exchanging the spins along the gray path. A second
such exchange connects ground states 2 and 3. d–iComparison of the spin structure
factor of the effective model (left side of each panel) with the full two-dimensional
model (right side) for three different temperatures and the two relevant sublattices
(indicated in the insets of d and e).
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four colors to these four spins: red, blue, green, andorange, corresponding to
the four clouds of base spins shown in Fig. 2b. Then, we attempt to color a
2 × 2 lattice, as shown in Fig. 4c: to this effect, we distribute the four colors in
one of the squares and then copy the colors to other squares using the red
bonds. Such a tessellation can be viewed as a constrained version49 of the
canonical four-coloring problem50. It is manifest that the colors of one
square do not fix a ground state, and additional (arbitrary) fixing is needed.
However, a ground state can be formed, indicating that J3 is not a frustrating
exchange interaction and that the ground state in the whole lattice consists
of combinations of ground states of single pyramids.

Furthermore, there is a way to flip spins and visit other ground states.
For example, one cango fromgroundstate 1 to 2by exchanging red andblue
spins along a vertical path consisting of diagonals and J3 bonds, as shown by
the gray line in Fig. 4c. Thenwe can go to a different ground state by flipping
a horizontal line of diagonals and red bonds. This process can be applied to
any vertical or horizontal path consisting of only two colors of spins, giving
rise to a subextensive degeneracy in larger lattices due to the 2Lflippable line
loops on a L × L lattice. In effect, the aforementioned constraint is so strong
that choosing a pair of colors along one diagonal of a square fixes the
corresponding diagonals for all squares in the same column (or row). We
can represent this constraint by assigning an Ising variable (or arrow) to
each column and each row. As a result, the ground states can be mapped
onto the ground-state manifold of the Rys F-model in the limit
e1 = e2 = e3 = e4 ≪ 0 and e5 = e6 = 0, following the standard notation in
refs. 51,52. Further interactions would lift the degeneracy of this sub-
extensivemanifold, ultimately yielding a fourfold-degenerate ground state53.

The configurations in Fig. 4c also explain the need for an even number
of unit cells (above we found that the ground-state energy in the full
Hamiltonian is only achieved for even values of L): a lattice with odd L
cannot be colored properly, indicating the presence of frustration. Note that
in all these ground states, the pyramid apex sites point in the same direction,
forming a ferromagnetic state and giving the systema total net ferrimagnetic
moment.However, only at very small temperatures do the center spins align
ferromagnetically. Therefore, we have shown the existence of a spin liquid
with a non-zero totalmagneticmoment atT=0: a ferrimagnetic spin liquid,
characterized by needles in the spin structure factor. It is important to note
that the constrained four-coloring solution is valid for both the 2D and
effectivemodels, even though in the latter they represent only a subset of the
ground-state manifold. As mentioned above, this is because the angles are
not locked at 90∘ in the effective model and the link spins are missing. This

causes spin directions to only repeat for spins connected through zig-zag
lines (shownby the gray lines, for example), while spins on independent zig-
zag lines are completely independent (see Supplementary Fig. 6 for more
details).

The effective model can be further simplified to obtain a well-known
lattice. It can be thought of as a lattice of corner-sharing pyramids by
rotating each pyramid counter-clockwise by π/4 and merging the spins
connected by −J3 into one. If we forget for a moment about the pyramid
apex spins and about J5 that connects them to the lattice, the result of the
rotation is the checkerboard lattice. This lattice has been thoroughly studied
in the classical limit and is known to harbor a classical spin liquid54. In this
case, however, the spin configuration is non-coplanar due to the presence of
the spins at the center of the squares. In our analysis of the ground state,
these spins are all pointing in the same direction, such that they can be
thought of as auniformmagneticfield.Therefore, the resultingHamiltonian
turns into a checkerboard lattice in a magnetic field. We emphasize though
that this is only valid for the ground state and, as soon asT≠0, the spins at the
top of the pyramids cease to act as a uniformmagnetic field as evidenced by
the mostly constant intensity in the spin structure factor of Fig. 3k for
T = 0.01 J4.

Effect of quantum fluctuations
The magnetic moments of the Cu2+ ions in nabokoite KCu7TeO4ðSO4Þ5Cl
are S = 1/2 spins,whichbehavequantum-mechanically at low temperatures.
So far, we have only treated the DFT Hamiltonian classically and obtained
some qualitative and quantitative agreement with the experimentally
measured magnetization curve; this gave us important insight into the low-
temperature mechanisms that drive the classical spin liquid state. However,
analyzing the Hamiltonian in a quantummechanical formalism is essential
to check how the physical behavior changes. There are not many methods
that can treat highly frustrated quantum systems in two dimensions and at
finite temperatures. In this case, we resort to the pseudo-Majorana func-
tional renormalization group (PMFRG)method, which relies on re-writing
the spin–spin interactions in terms ofMajorana operators55,56. In particular,
we use the recently developed temperature flow scheme57, where the
renormalizationgroupflowequations canbewritten in termsof thephysical
temperature T. In this sense, we depart from a trivial known solution at
T =∞ and solve the flow equations as the temperature decreases to obtain
the spin-spin correlations at different temperatures. The PMFRG method
has proven to be reliable in two- and three-dimensional systems, obtaining
critical exponents and critical temperatures in quantitative agreement with
quantum Monte Carlo calculations, and qualitative signals of pinch-point
singularities, among others58,59.

In Fig. 5, we show the calculated spin structure factor at low tem-
peratures, T = 0.1 J4, for the whole lattice and the three different sublattices
of the 2D model (left side of each panel). We compare the result with the
cMC calculations at T = 0.5 J4, shown on the right side of each panel. We
find a good agreement between quantum and classical results at higher
temperatures (the cMC calculations at T = 0.1 J4 look completely different,
see Fig. 3e). Such a phenomenon has been referred to as quantum-to-
classical correspondence16,60–62, and it has been observed in the Heisenberg
model on several two- and three-dimensional lattices.However, it should be
pointed out that this correspondence holds only on the level of static cor-
relations and not for the full dynamical structure factor (or time-dependent
correlations). A theoretical description of why this happens has been
recently given in terms of perturbation theory, where the correspondence
breaks at fourth order in J/T63. Furthermore, partial diagrammatic cancel-
lations give rise to a good agreement even at moderately low temperatures.
Focusing only on the quantum results, our calculations indicate that the
spiral liquid rings remain visible down to comparatively lower temperatures
compared to the classical case, such that these features can be observed
experimentally in a wide range of temperatures. Furthermore, the Cu(2)
sublattice of apical spins shows an almost flat S(q), indicating that these
spins remain roughly paramagnetic down to low temperatures. Thus, they
can be very susceptible to small magnetic fields. In contrast to known

Fig. 5 | Quantum versus classical spin structure factors. Quantum spin structure
factor calculated with PMFRG at T = 0.1 J4 (left side of each panel) compared with
the cMC results at T = 0.5 J4. aTotal spin structure factor, b pyramid base, c pyramid
apex, d linking site. The sublattices are indicated by the insets.
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partially disordered phases64–66, in this case, two different sublattices are
disordered. However, one of them is correlated into a spiral-liquid-like
phase, and theotherbehavesas anuncorrelatedparamagnet.Unfortunately,
T = 0 is unreachable within PMFRG and we cannot explore the quantum
ground state to check whether the classical spin liquid state from cMChas a
quantum analog. However, the experiments in KCu7TeO4ðSO4Þ5Cl show a
phase transition at finite temperatures that is probably triggered by inter-
layer interactions (as we showed for the classical 3D model), such that the
ground-state physics of the isolated layers is likelyunreachable.Nonetheless,
we showed above that the interesting spin liquid with needle-like features
can be accessed experimentally at finite fields and it is not confined to the
ground state in 2D and h = 0.

Predictions for neutron scattering experiments
Wecalculate the complete spin structure factorwith the real positions of the
atoms to allow comparison with future (inelastic) neutron scattering
experiments.To take into account all interactions inour cMCcalculations as
well as the atomic positions in KCu7TeO4ðSO4Þ5Cl, we have to enlarge the
unit cell from 7 sites in the 2D model to 56 spins in the 3D case, which
includes two layers of 2 × 2 two-dimensional unit cells. This is needed
because consecutive layers in KCu7TeO4ðSO4Þ5Cl have different chirality,
meaning that J1 and J3 couplings and the twisting angle of the pyramids are
exchanged. At high temperatures, the inter-layer coupling J8 is expected to
have a negligible influence on the system and the physics should be the same

as for the two-dimensionalmodel. However, the averaging between the two
types of layers leads to a more symmetric spin structure factor, as seen in
Fig. 6 for T = 0.5 J4 and 0.1 J4 (see also Supplementary Note 7). If the spin
structure factor is calculated taking only the spins in one type of layer into
account, the spin structure factors for the two-dimensional model are
recovered for the two temperatures shown. The spin structure factors on the
two types of layers are connected by reflection qx→−qx or qy→−qy, such
that the spin structure factors of the three-dimensional model can be
obtained roughly as S3D(qx, qy, qz = 0) = S2D(qx, qy) + S2D( − qx, qy), where
S2D(qx, qy) are equivalent to the results in Fig. 3 but take into account the
lattice distortions in KCu7TeO4ðSO4Þ5Cl (see Supplementary Fig. 11 for
more details).

In Fig. 6, we also compare the results for cMC (S =∞) and PMFRG
(S = 1/2) at two different temperatures above the classical phase transition.
The results are presented in a larger region of reciprocal space because the
positions of the spins now lead to a spin structure factor which is not
periodic in an extended Brillouin zone. In real materials, the form factor of
themagnetic atoms causes the spin structure factor to fade for large values of
∣q∣. In Fig. 6a–d, we show the cMCcalculations. On the xy plane,we observe
that the spiral surface from the 2D model at T = 0.5 J4 deforms into a
horseshoe pattern when considering the spin positions. As the temperature
is lowered to T = 0.1 J4, these horseshoes become sharper and evidence the
crossover to the needle state which now is averaged over the two chiralities
and the weight is shifted by the distortions in the positions of the spins.

Fig. 6 | Prediction for neutron scattering experiments. a–h Spin structure factor
taking into account the atomic positions of KCu7TeO4ðSO4Þ5Cl, calculated in the
classical and quantum limits via cMCandPMFRG, respectively. The calculations are
performed at two different temperatures, T = 0.5 J4 and T = 0.1 J4, for two different
planes: (qx, qy, 0) and (qx, 0, qz). All calculations are normalized to the maximum in
each panel. i, j Integrated spin structure factor for the three-dimensional models

taking into account the positions of the spins and the dimensions of the rectangular
unit cell, as well as the magnetic form factor for the Cu2+ ions. Blue and green lines
show the cMC results at two different temperatures above the critical temperature,
while the red curve corresponds to the PMFRG results for the S = 1/2 case. i S(q)
integrated only in the qxqy plane using the atomic form factor. j S(q) integrated in the
complete Fourier space using the atomic form factor.
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These horseshoes resemble the square rings observed in the breathing
pyrochlore lattice, which originate from the possibility of flipping planes45.
We also observe that at low temperatures, a characteristic four-leaf clover is
formed in the center of the reciprocal space. All these features indicate a
highly correlated state atfinite temperatures,which cannot beunderstood as
the precursor of an ordered state. On the right part of Fig. 6b, we show the
Bragg peaks structure below the transition temperature (see Fig. 2d for
reference states). This evidences that the spin structure factor features we
observe at finite temperatures correspond to the liquid-like features in the
two-dimensionalmodel discussed above and arenot precursors of theBragg
peaks corresponding to the three-dimensional model.

In Fig. 6e–h we show the PMFRG calculations for the quantum S= 1/2
case for the same two temperatures. In this case,we can see that the horseshoe
features survive down to low temperatures (T = 0.1 J4), and the spin structure
factor resembles that of the classical case athigher temperatures.Weobserve a
qualitatively similar pattern down to T = 0.01 J4. We do not find a phase
transition within PMFRG. The very low critical temperature observed
experimentally, of about 0.02 J4, is well below the limit for which finite-
temperature phase transitions can be detected reliably with PMFRG.Already
atT=0.1 J4, somedark-blue parts canbe seen in Fig. 6f coming fromnegative
values in the spin structure factor. These small regions of unphysical values
usually appear in low temperatures in PMFRG and should be considered as
an artifact.However, the important thing is that the spin structure factor does
not change qualitatively down to the smallest temperatures.

Finally,wemove to the angle-integrated spin structure factor S(∣q∣ = q),
which can bemeasured via neutron scattering and is typically used as a first
approach to evaluate the ordering tendencies at low temperatures.We show
the spin structure factor, integrated over the qxqy-plane in Fig. 6i and
integrated over the whole Fourier space in Fig. 6j. The first is useful for
tracking the origin of the peaks, which originate from the integration circles
reaching thedifferent sets ofhorseshoes fromFig. 6a andb.The latter iswhat
can bemeasured experimentally, and shows that these peaks arewashed out
when taking into account the whole spin structure factor. However, some
very characteristic hills and valleys are present both in the classical and
quantum calculations at finite temperatures above the phase transition.

Discussion
Wederived an exchangeHamiltonian for theCu2+ based S = 1/2 compound
KCu7TeO4ðSO4Þ5Cl employing the energymapping techniquewithinDFT.
The Hamiltonian we obtained revealed weakly coupled layers of square-
kagome lattices with an extra site at the center of each square (and only
connected to the squares) forming pyramids. Furthermore, the pyramids
were shown to have a small twisting angle in the structure that leads,
however, to an appreciable difference between the two triangular couplings.
While one of them is large and antiferromagnetic, the other one vanishes
within error bars. The twisting anglewas found tobeopposite in consecutive
layers, leading to an opposite chirality of interactions (because J1 and J3
change places in consecutive layers).

To validate the Hamiltonian, we studied the model in a magnetic field
employing classical Monte Carlo simulations and found that the total fer-
rimagnetic moment for the 2D model lies close to the value observed
experimentally. Moreover, the 2D model can explain two out of the three
slopes experimentally observed in KCu7TeO4ðSO4Þ5Cl and permits us to
track the origin of the intermediate-field slope to the sites connecting the
pyramids. We also investigated the magnetization process of the 3Dmodel
in the classical limit and found an even better agreement with the experi-
mental results from ref. 32, accounting for the extra observed phase tran-
sition observed at small magnetic fields. This is a direct consequence of the
inclusion of the ferromagnetic inter-layer coupling J8 which, despite being
only ~5% of the largest coupling, changes the nature of the ground state
completely. Altogether, this demonstrates the essential level of accuracy
needed from the DFT Hamiltonian to capture all the important features in
the magnetization curve.

Given that the interlayer coupling is small, its effect can be countered in
twoways: either by increasing the temperature or by introducing amagnetic

field. Both lead to a two-dimensional behavior. It is therefore interesting,
from both theoretical and experimental perspectives, to study the Hamil-
tonian on single layers. In the classical case, we found several interesting
features. To beginwith, atmoderate temperatures, we observe spiral rings in
the total spin structure factor. A closer look at the spin structure factors for
different sublattices shows that in this regime, the spins at the center of the
squares are completely paramagnetic, indicating a partially disordered
phase. At lower temperatures, these spiral rings break down into needles
that indicate very specific directional degrees of freedom. We derived a
simplifiedmodelHamiltonian that explains the origin of these needles: they
originate from the freedom to exchange spins along specific lines of the
system. This leads to a unique type of ferrimagnetic spin liquid at zero
temperature. This type of unconventional ferrimagnetism, which emerges
solely from antiferromagnetic interactions among spins of equal size,
usually appears in systems where individual spins are coupled to a lattice
hosting a coplanar order in such a way that they see a zero mean field.
Prominent examples are the stuffed honeycomb and square lattices64,66–68. In
the case of KCu7TeO4ðSO4Þ5Cl, the role is played by the decorating sites
over the square-kagome lattice, which are only coupled to the spins in the
base of the pyramid by J5 and do not interact directly with one another (i.e.,
they become orphan spins if J5 = 0).

In the quantum case, we studied the spin structure factor at finite
temperatures and found that the high-temperature classical state survives to
lower temperatures, while the needle features are never observed. It would
be worthwhile to study the same model directly at T = 0 to check the
presence of needle-like features in the ground state of the quantum
Hamiltonian. Our analysis also makes it plausible to access interesting
ferrimagnetic spin liquid states at finite fields and finite temperatures in
nabokoite KCu7TeO4ðSO4Þ5Cl.

Methods
Density functional theory-based energy mapping
We perform DFT calculations using the full potential local orbital (FPLO)
basis69 and a generalized gradient approximation to the exchange correla-
tion functional70. We correct for the strong correlations on the Cu2+ ion
using a DFT+U correction71. The DFT-based energy mapping approach
requires calculating precise DFT energies for a large number of distinct spin
configurations and fitting them to the classical energies of the Heisenberg
Hamiltonian, Eq. (1). In the case of nabokoite, we reduce the symmetry to
P21 in order to make 14 of the 28 Cu2+ ions in the unit cell symmetry
inequivalent, and we calculate 31 energies which allow us to resolve 13
exchange interactions, among them the six nearest neighbor paths. Further
details are in the Supplementary Note 2.

Classical Monte Carlo
WeperformclassicalMonteCarlo calculations to study the properties of the
model Hamiltonian in the classical limit. In this limit, we consider the spins
as unit vectors, ∣S∣ = 1.We simulate systems of L × L unit cells, consisting of
N = 7L2 spins for the 2D model, with up to L = 80 (44,800 spins); and of
N = 56L3 spins for the 3Dmodel, with up toL = 8 (28,672 spins).We apply a
logarithmic cooling protocol from T = 2 J4 to T = 0.01 J4 with 120 tem-
perature steps consisting of 105 Monte Carlo steps each. Half of the steps at
each temperature are used for thermalization and each consists of N spin-
update trials intercalatedwith 2N overrelaxation steps. For the spin updates,
a Gaussian step is implemented such that the acceptance ratio is kept at
50%72. The second half of the Monte Carlo steps is used to measure the
energy e and the specific heat cv. Other quantities such as the spin structure
factor are calculated afterwards from previously stored thermalized states
for each temperature. Further details are in the Supplementary
Notes 3 and 4.

Pseudo-Majorana Functional Renormalization Group
We use the temperature-flow package for PMFRGwhich can be found in a
GitHub repository73. The method relies on rewriting the spin S = 1/2
operators in terms of Majorana fermions. This representation has the

https://doi.org/10.1038/s43246-025-00806-2 Article

Communications Materials |            (2025) 6:96 9

www.nature.com/commsmat


advantage of not generating any unphysical states. Only an artificial
degeneracy of states is introduced. However, this degeneracy only con-
tributes with a known factor to the free energy and it does not affect the
expectation values of the spin-spin correlations56,74,75.

In PMFRG all lattice symmetries (either translational, rotational, or
combinations of both) are implemented. Then, all the correlations are cal-
culatedbetween the three symmetry inequivalent sites andall theother spins
within a certain distance R. From the correlations, the spin structure factor
can be calculated at any temperature in the flow fromT=∞ down to 0.01 J4.
Within PMFRG, finite-temperature phase transitions can be detected via
finite-size scaling of the correlation length, which can be obtained from the
peaks in the spin structure factor58. In this case, we calculate the peak in the
spin structure factor as a function of the temperature, SmaxðTÞ, for different
system sizes R. In the 2D case, we observe that SmaxðTÞ does not change
above R = 10, where 1 is the nearest-neighbor distance, down to T = 0.01.
This indicates that there is no finite-temperature phase transition and that
calculating the correlation length would not lead to any crossings for dif-
ferent system sizes (no finite-size scaling is possible or needed). For the 3D
model, we observe that SmaxðTÞ does not change above R = 10Å, where the
nearest-neighbor distance is 3.102Å. This again means that there is no
finite-temperature phase transition. More information about the method
and the flows can be found in Supplementary Note 5.

Data availability
All the data that support the findings of this study are available in a Zenodo
repository76.

Code availability
TheDFT code used in this study is available fromhttps://www.fplo.de/. The
code for the cMC calculations of this study is available from the corre-
sponding author upon request. The PMFRG code can be found in aGitHub
repository73.
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