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Supplementary Note 1. REVISION OF THE
CURIE-WEISS TEMPERATURE

Supplementary Figure S1 shows the fit of the experimental
magnetic susceptibility using the ansatz developed recently
by Pohle and Jaubert [S1] as explained in the Method sec-
tion. Supplementary Figure S2 is the consistency check, fit-
ting the theoretical magnetic susceptibility using the same
ansatz.
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Supplementary Figure S1. Magnetic susceptibility x(7') of
spangolite from Ref. [S2], multiplied by temperature (sym-
bols) and fit by the ansatz of Eq. 8 of the main paper.

Supplementary Note 2. MAPLE-LEAF LATTICE
DEFINITION

Assuming a Cartesian coordinate system that sets the ref-
erence, the lattice vectors are given by

ay = fg (\%) az = V7 <(1)) . (S1)
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Supplementary Figure S2. Calculated magnetic susceptibility
x(T) of spangolite, multiplied by temperature (symbols) and
fit by the ansatz of Eq. 8 of the main paper. The theoretical
susceptibility data have been scaled by a factor of ~ 0.68
to match the high-temperature tail as explained in the main
text.

Here, the lattice constant is set to @ = 1. Furthermore, the
six-site basis of the maple-leaf lattice is defined in Supple-
mentary Figure S3. A fully translational system therefore

Supplementary Figure S3. Definition of one unit cell, the six-
site basis of the maple-leaf lattice.

consists of a single unit cell with six spins. The basis is
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spanned by the six basis vectors
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Supplementary Note 3. DETAILS OF THE TENSOR
NETWORK CALCULATIONS

A. Ground state calculations

In order to represent the wave function of the ground state,
we employ the iPESS ansatz. The tensor coefficients, that
ultimately represent the target wave function in the thermo-
dynamic limit are determined by a simple update procedure.
It is based on evolving an initial wave function under imagi-
nary time evolution to project out the ground state [S3, S4].
Due to the chosen coarse-graining of J; bonds, a single up-
date step includes six lattice sites in triangle configurations
at a time. This is visualized in Fig. 2b of the main paper.
In order to keep the bond dimension constant, the network
has to be truncated back to yp after each application of
the imaginary time evolution gate e=%7#_  Although the
simple update is an approximate scheme and treats the en-
vironment of a cluster only in mean-field approximation, it
is expected and has proven to work reliably for frustrated
quantum lattice systems in two dimensions.

B. Thermal state calculations

In contrast to ground state simulations, the local spin
degrees of freedom have to be doubled, such that the
system is described by a thermal density matrix. The
iPESS ansatz for state vectors has been recently extended
to the realm of operators, enabling the efficient simulation
of thermal states of frustrated systems using iPESO [S5].
Here, the algorithm used to obtain a thermal density matrix
p(B) at inverse temperature § is again based on the simple
update and Trotterization of the Hamiltonian. Starting
from an infinite-temperature state p(8 = 0), where the
thermal density matrix is simply a tensor product of local
identity matrices, the system is cooled down to the desired
final temperature 3. This procedure is implemented by
successive cooling steps with infinitesimal temperature 6
to keep the overall errors controllable. This can be done
in a similar fashion as in the simple update ground state
optimization and it is visualized in Fig. 2c¢ of the main
paper. Again, after the evolution with the gate e 9/H
the resulting iPESO network is truncated to the bulk bond
dimension xp. The accumulated truncation error € of the

full procedure can be used to probe the accuracy of the
simulations [S5].

C. Calculation of expectation values

In order to compute expectation values, the honeycomb
structure of the iPESS/iPESO ansatz can be mapped to a
regular square lattice with lattice vectors as shown in Fig. 1a
of the main paper. This procedure is visualized in Supple-
mentary Figure S4. The resulting tensor network on the

coarse-graining
—

Supplementary Figure S4. Coarse-graining of the three-site
unit cell to map the iPESS/iPESO tensor network ansatz on
the honeycomb lattice to a regular square lattice. Each lattice
site then contains six spins of the original maple-leaf lattice.

square lattice is known as an infinite projected entangled
pair state (iPEPS) or infinite projected entangled pair op-
erator (IPEPQ) respectively, which includes six spins of the
original MLL on every lattice site. This additional step is re-
quired to compute effective fixed-point environments of the
infinite MLL, e.g. by a regular corner transfer matrix renor-
malization group (CTMRG) procedure, as shown in Fig. 2d
of the main paper. Expectation values on the MLL can then
be accurately computed by the evaluation of single-site and
three-site expectation values on the coarse-grained square
lattice, corresponding to the two different types of simplex
configurations in the iPESS/iPESO ansatz. The approxima-
tions in the contraction of the infinite 2D lattice are con-
trolled by a bond dimension for the effective environment
tensors, denoted by xg. In practise, this parameter has to be
large enough so that expectation values are well converged.
Given the strong dimerisation observed for spangolite, the
choice of g = x% was found to be sufficiently accurate.
For xg > 8, we fixed xg = xB (xB — 2). Besides taking
the full CTMRG environment into account for the calcula-
tion of expectation values, it is also possible to only use a
mean-field (MF) environment. This environment is read-
ily available from the simple update for both ground and
thermal states. MF expectation values are computationally
much cheaper and have to be used for large bond dimen-
sions due to the high computational cost of the CTMRG
routine.
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