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Tensor network analysis of themaple-leaf
antiferromagnet spangolite
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Spangolite (Cu6Al(SO4)(OH)12Cl ⋅ 3H2O) is a hydroxy-hydrated copper sulfatemineral with a one-seventh
depleted triangular lattice of Cu2+ ions in each layer. Experimental measurements revealed a non-
magnetic ground state at T ~ 8K with magnetic properties dominated by dimerization. We propose a
spatially anisotropic Heisenberg model for the Cu2+ spin-1/2 degrees of freedom on this geometrically
frustrated and effectively two-dimensional maple-leaf lattice, featuring five symmetry inequivalent
couplingswith ferromagnetic bonds on hexagons and antiferromagnetic triangular bonds. The validity of
the proposed Hamiltonian is demonstrated by state-of-the-art tensor network calculations, which can
assess both the nature of the ground state as well as low-temperature thermodynamics, including the
effects of a magnetic field. We provide theoretical support for a picture of a non-trivially correlated dimer
groundstate,whichaccounts for theappreciable reductionof themagneticmomentat high temperatures
observed in experiment, thereby resolving a long-standing puzzle. We predict the static spin structure
factor as well as the emergence of magnetisation plateaus at high values of an external magnetic field,
explore the nature of the quantum states in them, and study their melting with increasing temperature.

The kagome lattice antiferromagnet is the embodiment of high geometric
frustration in two dimensions1. However, a number of other lattices based
on triangular motifs come close if we consider suppression of ordered
moment2,3. Examples of other highly frustratedArchimedean lattices are the
star, bounce, trellis and maple-leaf lattices. A common feature of these
lattices is that material realizations are extremely rare4; metal-organic
approximate versions exist for the star5 and trellis lattice6. Concerning
the maple-leaf lattice (MLL) (see Fig. 1a)7, the situation is slightly
more promising8,9 as a number of minerals with quantum spins like
bluebellite Cu6IO3(OH)10Cl

10, mojaveite Cu6TeO4(OH)Cl
10, fuettererite

Pb3Cu6TeO6(OH)7Cl5
11, sabelliite (Cu,Zn)2Zn[(As,Sb)O4](OH)3

12 and
spangolite Cu6Al(SO4)(OH)12Cl ⋅ 3H2O

13–16 have been found; besides, some
semi-classical maple-leaf lattice antiferromagnets like MgMn3O7 ⋅ 3H2O

17

andNa2Mn3O7
18,19 are known.Here,we focus on spangolite,whichhas been

characterisedmagnetically20 with evidence of a non-magnetic ground state.
However, thenature of the singlet ground state remains a riddlewith various
speculative scenarios of either isolated or interacting dimers and trimers
having been discussed in ref. 2, but none found to be in complete agreement
with observed magnetic features. In this manuscript, we address this long-
standing issue by first employing ab-initio density functional theory (DFT)
calculations to reliably ascertain themagnetic interactions, which are shown
inFig. 1a, and found tobe antiferromagnetic on thedimer (J1) and triangular

(J4 and J5) bonds, and ferromagnetic on the hexagons (J2 and J3). The
resulting magnetic Hamiltonian is analysed employing state-of-the-art
tensor network (TN) simulations based on infinite projected entangled
simplex states (iPESS)21 and infinite projected entangled simplex operators
(iPESO)22 ansätze, to assess both its ground state as well as finite magnetic
field and finite-temperature behaviour.

Our results lend support to a picture of a dimerized ground state
characterised by strong singlet formation on the dimer bonds (J1 in Fig. 1a),
which can be ascribed to the presence of a large antiferromagnetic coupling
on these bonds. Since these singlets are coupled via appreciable ferromag-
netic correlations on the hexagons, they cannot be viewed as being isolated.
The ground state is thus composed of correlated dimers and can be viewed
as a dressed version of the exact dimer product state23. The behaviour of the
magnetic susceptibility with temperature is found to be in qualitative
agreement with experiment. For a quantitative match of the calculated
susceptibility, a smaller spin gap would be required which would conse-
quently lead to a higher maximum; it is plausible that once an experimental
low temperature crystal structure becomes available, redetermination of the
Hamiltonian could yield a slightly smaller J1 and larger frustration, yielding
a smaller spin gap. The finding of a substantially reduced effectivemagnetic
moment at high temperatures (in agreementwith experiment) compared to
that expected of six S = 1/2 spins lends support to a ground state composed
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of non-trivially correlated dimers. This is indeed confirmed by the obtained
ground state spin correlation profile, which features significant spin-spin
correlations on the triangular and hexagonal bonds. We do not see any
evidence of the formation of strongly bound clusters or trimers, which
would require invoking additional orbital moments as speculated in ref. 20.
Under the application of amagnetic field, the resultingmagnetisation curve
displays plateaus at 1/3 and 2/3 of the saturation magnetisation char-
acterisedby a translationally invariant pattern of spin-spin correlations. The
temperature evolution of the magnetisation curve shows a relatively faster
melting of the 1/3 compared to the 2/3 plateau.

Results
Heisenberg Hamiltonian
We begin our study of spangolite by determining the parameters of the
Heisenberg Hamiltonian

H ¼
X
i < j

J ijSi � Sj ð1Þ

using the density functional theory based energy mapping technique. This
approach has proven instrumental for the understanding of various Cu2+

based minerals like centennialite24, henmilite25, birchite26, kapellasite27 as
well as PbCuTe2O6 (idealized coloalite

28)29. The first step is to establish the
best possible crystal structure, including all hydrogen positions. For this
purpose, we use the structure determined by Fennell et al.20, adding to it the
missing H3 position fromHawthorne et al.16. We then carefully relax all six
hydrogen positions using the full potential local orbital (FPLO) code30 and
the generalized gradient approximation (GGA)31 exchange correlation
functional. The resulting crystal structure is shown in Fig. 1b. The structure

is characterised by Cu2+ maple-leaf layers where Al3+ ions fill the centers of
the hexagons. The metal hydroxide layers are well separated by sulfate
groups andwatermolecules, indicating ahigh level of two-dimensionality of
the material.

We now proceed to extract theHeisenbergHamiltonian parameters of
Eq. (1) by DFT energy mapping (see Method section for details). We can
resolve thefive nearest-neighbour exchange interactionswhichmake up the
distorted maple-leaf lattice of spangolite. We also determine seven longer
range couplings which turn out to be less than one percent of the largest
coupling and which we ignore in our subsequent analysis. The values of the
firstfive exchange interactions are plotted inFig. 1c as functionof the on-site
interaction strength U. The relevant value of U, determined by demanding
that the mean-field estimate of the Curie-Weiss temperature matches the
experimental value of θCW =−29.4 K20 ismarkedby a vertical line (note that
we redetermined θCW from the experimental data as explained in the
Method section).The resultingHamiltonianparameters,which are the basis
for our further investigation are given in Table 1. Spangolite is found to be
characterised by a unique network of three antiferromagnetic and two
ferromagnetic couplings shown in Fig. 1a. The largest coupling, anti-
ferromagnetic J1, defines dimers. The two weaker antiferromagnetic cou-
plings J4 = 0.297J1 and J5 = 0.437J1 define triangles, and the two
ferromagnetic couplings J2 =−0.252J1 and J3=−0.254J1 form thehexagons
of the maple-leaf lattice.

Inorder tounderstand theunique features of spangolite, it is instructive
to compare it to bluebellite which has been investigated in refs. 32–34 (see
Table 1). The dimer coupling J1≡ Jd which is strong for both spangolite and
bluebellite is nearly equal in magnitude but opposite in sign, anti-
ferromagnetic and ferromagnetic, respectively. This implies that a dimer
singlet picture is the natural starting point to understanding the physics of
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Fig. 1 | Structure and Heisenberg Hamiltonian parameters of spangolite.
a Distorted maple-leaf lattice realized in spangolite. The bonds represent the
exchange interactions Ji, with thickness scaled in proportion to their values. J1 to J5
are named with ascending Cu-Cu distance, while Jt1, Jt2 (triangles), Jd (dimer) and
Jh1, Jh2 (hexagon) are used in the literature. b Crystal structure of spangolite
Cu6Al(SO4)(OH)12Cl ⋅ 3H2O

20 with DFT relaxed hydrogen positions. c Five

exchange interactions constituting themaple-leaf lattice, determined byDFT energy
mapping, as function of on-site interaction strengthU. The vertical line indicates the
U value for which the couplings match the experimental Curie-Weiss temperature,
and for this U we have antiferromagnetic J1 = 95.0(2) K, J4 = 28.2(1) K and
J5 = 41.6(2) K and ferromagnetic J2 =−23.9(1) K and J3 =−24.2(1) K.

Table 1 | Exchange interactions of spangolite obtained by DFT energy mapping and compared to bluebellite

role name spangolite bluebellite name

(this work) Ji (K) Ji=Jmax dCu−Cu (Å) Ji (K) Ji=Jmax dCu−Cu (Å) Ref. 33

dimer J1 95.0(2) 1 3.005 −120.8 −0.82 2.992 Jd

hexagon 1 J2 −23.9(1) − 0.252 3.107 88.6 0.60 3.000 Jh1

hexagon 2 J3 −24.2(1) − 0.254 3.110 −93.7 −0.63 3.165 Jh2

triangle 1 J4 28.2(1) 0.297 3.213 147.6 1 3.287 Jt1

triangle 2 J5 41.6(2) 0.437 3.216 61.3 0.42 3.453 Jt2

The spangolite couplings (given in bold face) are interpolated to U = 8.15 eV so that they match the Curie-Weiss temperature θCW =−29.4 K (see Methods). The Cu-Cu distances are given to identify the
exchange path. The Hamiltonian of bluebellite Cu6IO3(OH)10Cl from ref. 34 is given for comparison.
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spangolite as all other couplings are clearly subdominant. In contrast, in
bluebellite, strong ferromagnetic Jd bonds compete with even stronger
antiferromagnetic triangles, which leads to a very different starting point
based on antiferromagnetically frustrated triangles.

The two sets of hexagon bonds J2, J3 (Jh1, Jh2) are both ferromagnetic
and of nearly equal magnitude in spangolite, while in bluebellite they are
nearly equal in magnitude but of opposite signs. This leads to inherently
strongly frustrated hexagons in bluebellite but unfrustrated hexagonal units
in spangolite. Hence, this points to completely different frustration
mechanisms at play in the two materials. Furthermore, the hexagonal
couplings in bluebellite are ~60% of the strongest coupling and cannot
simply be treated as a perturbation of a parent order determined by Jt1 and Jd
couplings. On the other hand, for spangolite, the hexagonal couplings are
only ~20% of the dimer coupling and do not alter the picture of weakly
correlated dimers. In the following, we will analyse the properties of the
spangolite Hamiltonian using state-of-the-art tensor network techniques.

Tensor network ansatz
The study of the spangolite Hamiltonian is based on numerical tensor
network simulations in the thermodynamic limit. TNs are efficient repre-
sentations of quantum many-body systems, that encode the probability
amplitudes of a (thermal) quantum state as a contraction of a network of
local tensors. The tensors are interconnected by auxiliary, virtual indices as
shown in Fig. 2a, whosemaximal dimension is called the bond dimension χB
of the TN (bulk bond dimension). It is a control parameter that can be
systematically increased to improve the accuracy of the ansatz. Tuning the
bond dimension changes the number of variational parameters in the TN
and thereby the amount of quantum entanglement that can be captured.
Tensor networks offer efficient numerical simulations with only a poly-
nomial scaling in the number of particles, thus overcoming the exponential
barrier by targeting the low-entanglement sector of the fullHilbert space35,36.
Inour study,we employ infiniteprojected entangled simplex states (iPESS)21

and infinite projected entangled simplex operators (iPESO)22 for the
simulation of ground states and thermal states, respectively. In this context,
the TN is used as an ansatz for the full many-body system, consisting of a
unit cell of different tensors that generates a translationally invariant
quantum state. The simple update steps for the iPESS and iPESO networks
visualized in Fig. 2b, c are described Supplementary Notes 2 and 3, together
with the coarse-graining scheme shown in Fig. 2d, and other details of the
TN implementation.

Ground state without magnetic field
The ground state for the spangoliteHamiltonian can be represented with a
single geometrical unit cell of six spins.Due to the strong antiferromagnetic
interaction on J1 bonds, it is dominated by a dimerization of the connected
spins. The remaining antiferromagnetic interaction terms contribute only
weakly to the structure, however, there exist nonnegligible ferromagnetic
correlations on the hexagonal bonds. Due to the chosen coarse-graining,
the two spins on J1 bonds are treated exactly as a single tensor site, and
entanglement with neighbouring sites is only weak. The chosen TN ansatz
is therefore ideal and the simple update algorithm leads to accurate results.
More sophisticated procedures, such as variational optimisation37 are
limited to smaller bond dimensions and not superior here. The ground
state energy vs. the inverse iPESS bond dimension is shown in Fig. 3a.
Quantum correlations are already seen to be well captured with an ansatz
of χB = 8, and a larger bond dimension does not substantially decrease the
energy further. A fit of the six largest data points reveals a good estimate for
the infinite bond dimension limit (χB→∞), for whichwe extrapolate to an
energy of

E0=J1 ¼ �0:4066ð4Þ: ð2Þ

The energy is found to be lower compared to that of an exact dimer product
state (on J1 bonds),whichhas an energyper site ofE/J1 =−0.375.The spatial
pattern of nearest-neighbour spin-spin correlations 〈Si ⋅ Sj〉 reveals the

expected strong dimerization of the ground state on J1 bonds. It is shown as
the inset of Fig. 3a. The spins on the hexagons show weak ferromagnetic
alignment, while the spins on triangle configurations are nearly
uncorrelated. Thus, the ground state cannot be characterised by isolated
singlet formations on the dimer bonds alone, but instead these dimers are
correlated (due to ferromagnetically correlated hexagonal bonds) forming a
correlated dimer liquid with a lower energy.

In order to further characterize the ground state, we compute the
equal-time spin structure factor

SðqÞ ¼
X
i;j

X
m;n

e_ιq�ðRi�RjÞe_ιq�ðbm�bnÞ

× SðRi þ bmÞ � SðRj þ bnÞ
D E

:

ð3Þ

Here, (i, j) denotes the summation over unit cells and (m, n) the additional
summation over the six-site basis of the maple-leaf lattice. By exploiting
translational invariance, one sum over unit cells can be removed, and the
structure factor can be computed by a CTMRG resummation scheme38–40,
accounting for the appropriate phase factors and spin operators while
absorbing tensors into the environment tensors.This scheme typicallyneeds
large environment bonddimensions χE to reach convergence.However, due

Fig. 2 | Tensor network setup for the simulations of spangolite. a Infinite projected
entangled simplex state and operatoransatz for the simulations of spangolite. A coarse-
graining of the two spins on J1 bonds results in a regular kagome lattice, on which the
tensor network is defined. Here, green tensors reside on the coarse-grained sites,
encompassing the physical degrees of freedom, while gray tensors mediate quantum
correlations through purely virtual bonds, linking the former. While quantum states
∣ψ
�
haveone physical index (represented by the black vertical lines), thermal states ρ(β)

need twophysical indices (bothblack andgrayvertical lines).b, c Simple update step for
the iPESSground state (T=0K) and iPESOthermal state (T>0K). The imaginary time
evolution gate is first absorbed into a triangle configuration to evolve the states.
Applying a higher-order singular value decomposition (SVD) with truncation (tSVD)
to thebulkbonddimensionχB recovers the individual tensors.dCoarse-graining the six
spins in the elementary unit cell results in a square lattice TN, whose contraction is
approximated by fixed-point environment tensors shown in gray, using a corner
transfermatrix renormalization groupprocedure.Theunavoidable approximations are
controlled by an environment bond dimension χE.
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to the large gap in our system (cf. the width of the zero-magnetisation
plateaubelow), the calculations of the structure factor canbe convergedwith
moderate χE. In order to have a defined reference, we show the structure
factor for the spangolite ground state in comparison to an exact dimer state
on J1 bonds in Fig. 3b, c.While the exact dimer state is representable with an
iPESS at bond dimension χB = 1, i.e., a product state of coarse-grained
dimers, the structure factor for spangolite is computed at χB = 8 to balance
accuracy and the computational cost of the CTMRG routine. The similarity
in the structure factor for the spangolite ground state with the exact dimer
one confirms the strong dimerization, however, it is slightly smeared
compared to the exact dimer state.

Thermal state and heat capacity
Before investigating magnetic properties of the spangolite Hamiltonian, we
compute thermal state properties without a magnetic field using iPESO
simulations at a large bulk bond dimension χB = 24 with mean-field
environments22. Thermal states are obtained by successively cooling an
infinite-temperature state with infinitesimal steps δβ = 10−4 down to low
temperatures. From the thermal state energy we can compute the heat
capacity C = ∂U/∂T. Results are shown in Fig. 4a. The heat capacity C/T
features a pronounced peak at T ~20K.

In the inset we show the thermal state energy alongside the truncation
error in the simple update cooling procedure. The thermal state energy
converges to the ground state energy of Fig. 3a for low temperatures, indi-
cating that the procedure does not get stuck in local minima during the
cooling. The truncation error can be used to probe the accuracy of the
simulations. It stays below ε ~ 10−2 down to T = 1 K, which is a good
indication that the chosen bonddimension for the thermal state simulations
is sufficiently high.

Magnetic susceptibility
To further characterize the spangolite Hamiltonian, we computed the
variation of the magnetic susceptibility with temperature using the iPESO
thermal state algorithm. To this end, we choose again a bulk bond dimen-
sion of χB = 24 and an accurate infinitesimal temperature step of δβ = 10−4,
leading to a maximally accessible temperature of 1/δβ = 104 K. Expectation
values are computedusing themean-field environment,which is reasonable
due to the high bond dimension and temperature, and low entanglement in
the system. Fortunately,we candirectly compare our theoretical simulations
of the model Hamiltonian to experimental measurements on spangolite.
The magnetic susceptibility is computed from the magnetisation along the
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direction of the field according to

χMðTÞ ¼
∂mzðTÞ
∂hz

����
hz!0

: ð4Þ

Our results, alongside the data extracted from ref. 20 are shown in Fig. 4b.
Themain feature of a sharp peak and the high-temperature tail are correctly
recovered by our tensor network simulations. A numerical fit of the high-
temperature regime (T > 1000 K for the simulation, T > 250 K for the
experiment) with a Curie-Weiss law

χMðTÞ ¼
C

T � θCW
ð5Þ

is used to extract the Curie-Weiss temperature θCW. The fit results in
parameters given inTable 2. The simulations showapeak at a slightly higher
temperature (T = 59 K) compared to experiment (T = 44K) and a quicker
decline of the magnetic susceptibility, indicating a non-magnetic ground
state already at higher temperatures. From the Curie-Weiss constant C we
can compute the effective magnetic moment

μeff ¼
ffiffiffiffiffiffiffiffiffiffiffi
3kBC
NAμ

2
B

s
: ð6Þ

The extracted value from theTNsimulations is slightly larger compared to the
experimentally estimated one, see Table 2. However, our calculations capture

the substantial reduction in μeff compared to the expected value for the
spangolite formula unit, which has μeff = 10.39 μB/f.u. for the six spin-1/2s

20.
This reflects the fact that the ground state cannot be viewed as either being
composed of isolated dimers or explained by a model of dimers interacting
with a mean-field41–43 and confirms the description of the ground state
obtained fromTN simulations. In order tomatch the high-temperature tail of
the susceptibility to the experimental data,weneed to scale theWeiss constant
C by a factor of ~0.68. The experimental finding is that the expected effective
moment of μeff = 10.39 μB for a unit cell of six Cu S = 1/2 is reduced to
μeff = 4.75 μB which is only 46% of the expected value and corresponds to a
reducedspinvalueofS=0.14.Theoretically,wefindareductionof theeffective
moment to μeff = 5.82 μB which is 56% of the expected value and corresponds
to a reduced spin value of S = 0.20. Thus, our simulations capture the major
part of themoment reduction but fall a bit short. Themissing reduction in the
magneticmoment couldbe related to enhanced frustrationupon introduction
of inter-layer couplings which are inevitably present in the real material. The
fact that our calculated susceptibility vanishes at a somewhat higher
temperature than in experiment indicates an overestimation of the formation
of dimers, which could result from a slightly too high value for J1 in themodel
Hamiltonian. The iPESO ansatz itself is biased towards the formation of
dimers on J1 bonds as well, however, the large bulk bond dimension
χB = 24 should allow sufficient correlations to neighbouring sites to counteract
this bias.UsingC= χMT in Eq. (6), we can plot the effectivemagneticmoment
as function of temperature as shown in the inset of Fig. 4b. While neither
experiment nor simulation data for the effective moment completely saturate
at room temperature, our result approaches a slightly lower value compared to
the experiment, in agreement with the preceding discussion.

Magnetisation plateaus
Finally, we study the spangolite Hamiltonian in an external magnetic field.
Due to the strong antiferromagnetic interaction on J1 bonds, the system
retains a non-magnetic ground state up until hz ~ 56 T. In the T = 0 K
simulations we have used unit cells of six, twelve and eighteen spins in order
to capture more complicated ground state structures. Upon tuning the
magnetic field, we find the emergence ofmagnetisation plateaus at values of
mz/mS = 1/3 and 2/3 of the saturation valuemS = 1/2. The fullmagnetisation
curve is shown in Fig. 5a. It is interesting to note that we do not find the 1/6,

Table2 | Parametersof thenumericalfit of theCurie-Weiss law
of the magnetic susceptibility

experiment simulation

C ergK
G2mole

� �
2.85 4.23

θCW (K) −29.4 −31.5

μeff (μB/f.u.) 4.76 5.82

Experimental data from ref.20 have been fitted as explained in the Method section. The effective
magnetic moment μeff is computed according to Eq. (6) in the units of μB per formula unit.

Fig. 5 | Magnetisation curves of spangolite. a Zero
temperature magnetisation of the spangolite Hamil-
tonian over the magnetic field hz at χB = 8, using
CTMRG environments with χE = 64. Below hz ~ 56 T
the strong antiferromagnetic J1 interaction leads to a
vanishingmagnetisation. Two plateaus at 1/3 and 2/3
of the saturationmS = 1/2 are found. bMagnetisation
curve of spangolite at finite temperatures. The insets
show the melting of the mz/mS = 1/3 and 2/3 mag-
netisation plateaus as an effect of increasing tem-
perature. c, d Nearest-neighbour spin-spin
correlations and local Sz expectation values for the 1/3
and 2/3 magnetisation plateaus, corresponding to
values of c hz = 70 T and d hz = 90 T, respectively.
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2/9 and 2/7 plateaus observed in themagnetisation curve of the exact dimer
product ground state44. This provides further evidence that the ground state
of the spangolite Hamiltonian is not formed by isolated singlets but more
appropriately viewed as a correlated dimer state due to the presence of
ferromagnetic correlations on the hexagonal bonds connecting the dimers.

The spin-spin correlations in both the 1/3 and 2/3 plateaus are trans-
lationally invariant and thus representable within a six site unit cell. Those
plateaus satisfy the conventional condition for a magnetisation plateau to
emerge, namely,NuSð1�mz=msÞ 2 Z45,46, whereNu is the number of sites
in theunit cell for the ground state and S is the spin quantumnumberwhich,
in the present case, is S = 1/2. For the aforementioned quantities, we obtain
values of 2 and 1 for the 1/3 and 2/3 plateaus, respectively. The spatial
pattern of spin-spin correlations and z-component of the magnetisation is
shown in Fig. 5c, d.

Finally, we analyse the stability of the observed plateaus with respect to
temperature. To this end, we simulate the spangolite Hamiltonian in a field
over a temperature range T ∈ [0.1 K, 1000 K] at a fixed bond dimension of
χB= 24usingmean-field environments to compute expectation values.Here
we use a slightly larger temperature step δβ = 10−3 to achieve more efficient
cooling. The unit cell is set to six spins.While the infinite-temperature states
are fully disordered without any magnetisation, the simple update cooling
procedure recovers the two plateaus at low temperatures. A set of fixed
temperature slices is shown in Fig. 5b. In the inset we show the melting of
both plateaus. Noticeably, they melt rather symmetrically from the low and
high field limits, respectively. Due to the smaller width, the 1/3 magneti-
sation plateau is more susceptible to thermal effects and starts melting
sooner than the 2/3 plateau.

Discussion
Employing a combination of density functional theory based energy map-
ping and tensor network simulations, we investigated the ground and
thermal state properties in the presence of a magnetic field of a distorted
maple-leaf lattice as realized in spangolite (Cu6Al(SO4)(OH)12Cl ⋅ 3H2O).
TheDFTHamiltonian features the largest coupling, antiferromagnetic J1 on
the dimer bonds, while the subleading antiferromagnetic couplings,
J4 = 0.297J1 and J5 = 0.437J1 define the triangles. A noteworthy aspect of the
Hamiltonian is the presence of substantial ferromagnetic interactions,
J2 =− 0.252J1 and J3 =− 0.254J1 on the hexagons. The pattern of spin-spin
correlations in the ground state consequently features strong singlet for-
mation on the dimer bonds, and sizeable ferromagnetic correlations on the
hexagonal bonds which connect the dimers. Interestingly, the spins on the
triangles are nearly uncorrelated. Thus, our picture of a non-trivially cor-
related dimer ground state accounts for the appreciable reduction in mag-
netic moment at high temperatures observed in experiment, thereby
resolving a long-standing puzzle. It also effectively rules out a scenario of a
ground state composedof either isolateddimers or dimers interactingwith a
mean-field, and dispenses with the need of invoking more complicated
mechanisms which have been speculated about earlier. We find a good
agreement with the experimentally observed behaviour of the magnetic
susceptibility. The magnetisation curve of spangolite does not show the
presence of 1/6, 2/9, and 2/7 plateaus which are expected for an exact dimer
product configuration. This lends further evidence of a correlated dimer
ground state.We find that the 1/3 and 2/3 plateau states are fully translation
invariant.With increasing temperature, the 2/3plateau appearsmore robust
compared to the 1/3 plateau.

Much of the recent theoretical efforts in search of exotic non-magnetic
states on themaple-leaf lattice have focused on the purely antiferromagnetic
model47–49. However, lately the explorations of models with mixed ferro-
antiferro couplings (with antiferromagnetically coupled hexagons and fer-
romagnetic coupling on triangles and dimer bonds) have unveiled a variety
of dimer orders encompassing an island of putative quantum spin liquid
behaviour50. In a similar vein, there could be a putative quantum spin liquid
lurking around the corner proximate to the observed correlated dimer
ground state. To this end, it would be worthwhile to perform a thorough
investigation of the mixed ferro-antiferro parameter space of the spangolite

Hamiltonian, which features ferromagnetically coupled hexagons and
antiferromagnetic coupling on triangles and dimer bonds. This might also
enable us to ascertain whether the observed dimerized phase could poten-
tially be viewed as an instability of proximate quantum spin liquids, which
have lately been classified in ref. 51.

Our study of spangolite is the second detailed elucidation of the
Hamiltonian of amaple-leafmaterial, thefirst being the recent investigation
of bluebellite34. Bothminerals share thedistortionpatternof the idealmaple-
leaf lattice with five inequivalent nearest-neighbour bonds and the fact that
the Hamiltonian is dominantly antiferromagnetic, but modified by two
ferromagnetic exchange interactions. As the resultant physics, spin singlet
formation versus valence bond solid ground state for spangolite and blue-
bellite, respectively, vary considerably, it is a worthwhile endeavor to
understand the other known copper minerals with maple-leaf lattice,
mojaveite, fuetterite and sabelliite, as well. Their maple-leaf lattices are also
distorted, promising new patterns of antiferromagnetic and ferromagnetic
bonds. The example of bluebellite17 suggests that synthesis of theminerals is
possible and can lead to a reduction of the lattice distortions. A next step
could be efforts to synthesize material variations, for example by replacing
chlorine by bromine and thus to further extend the richness of quantum
spin systems with maple-leaf structure.

Methods
Density functional theory based energy mapping
We use all electron density functional theory calculations with a full
potential local orbital (FPLO) basis set30. For the prediction of the hydrogen
atom positions, we use a generalized gradient approximation (GGA)
exchange correlation functional31. We determine the Heisenberg Hamilto-
nian parameters from total energies where we correct for the strong elec-
tronic correlations on theCu2+ 3dorbitals by aDFT+Ufunctional52. For the
energy mapping approach, we classify all 4096 possible spin configurations
for the twelve Cu2+ ions in the unit cell after removing the symmetry. We
find that the 364 distinct classical energies allow us to resolve twelve Hei-
senbergHamiltonianparameters.Wefix theHund’s rule coupling forCu3d
as JH= 1 eV, in agreementwithmany previous studies24,29.We then perform
the energymapping approach for six values of the onsite interaction valueU
(see Fig. 1c). We choose the appropriate value for spangolite by demanding
that the Curie-Weiss temperature calculated as

θCW ¼ 1
3
SðSþ 1Þ J1 þ J2 þ J3 þ J4 þ J5 þ J15 þ J16

�
þ J17 þ J18 þ J19 þ J21 þ J23

� ð7Þ

agree with the experimental value of θCW. For this purpose, we reconsider
the Curie-Weiss fit performed in ref. 20. We use a fitting ansatz developed
recently by Pohle and Jaubert53 for spin liquids:

χT∣fit ¼ 1þ b1 exp½c1=T�
aþ b2 exp½c2=T�

C ¼ 1þ b1
aþ b2

; θCW ¼ b1c1
1þ b1

� b2c2
aþ b2

ð8Þ

Note that this ansatz has recently allowed us to assign a Curie-Weiss
temperature to nabokoite54. The fit is excellent throughout the temperature
range (see Supplementary Fig. 1) and allows us to revise the Curie-Weiss
temperature of spangolite to θCW = − 29.4 K, which is somewhat smaller
than the result of the traditional χ−1

fit of θCW =− 38 K.
As a consistency check, we have evaluated the theoretical magnetic

susceptibility that we obtained with the DFT Hamiltonian given in Table 1
in the same way as the experimental susceptibility (see Supplementary
Fig. 2). The fit with the ansatz of Eq. (8) yieldsWeiss constantC and Curie-
Weiss temperature θCW that are in good agreement with experiment.
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Tensor network ansatz
The construction of the tensor network state proceeds by coarse-graining
the two spins on the dominant antiferromagnetic J1 bonds in themaple-leaf
lattice, which then maps it to a regular kagome lattice. Due to its corner-
sharing triangles, a TN setup on the dual honeycomb lattice in the form of
iPESS and iPESO is very well suited to capture the multipartite quantum
correlations therein. The general TN setup is shown in Fig. 2a, where the
stretched hexagons denote coarse-grained lattice sites, each represented by a
single green tensor in b and c. In the chosen TN ansatz, those tensors reside
on the links of the honeycomb lattice, so that additional three-index simplex
tensors have to be introduced to connect them (gray tensors). Quantum
states, represented by an iPESS, have only a single physical index per lattice
site tensor, while thermal density matrices, represented by an iPESO, have
two. This is shown in the figure as black, and both black and gray indices,
respectively. A single unit cell consists of three lattice tensors (capturing six
spins), together with two simplex tensors. Importantly, tensor networks in
the thermodynamic limit offer thepossibility of choosing arbitrary unit cells,
that are repeated periodically to generate the 2D lattice. This gives us the
possibility to determine the actual structure of the targeted states based on
energy comparisons of different configurations55. Each elementary unit cell
of the honeycombTN can be further coarse-grained into an effective tensor
on a regular square lattice, as described in Supplementary Fig. 4. It allows to
combine six spins on the originalmaple-leaf lattice into a single tensor. This
is important to compute accurate expectation values, for which we use a
corner transfer matrix renormalization group (CTMRG)56–58 procedure, as
shown in Fig. 2d. The contraction of the infinite square lattice introduces an
additional control parameter, the environment bond dimension χE. In our
simulations we use system sizes of six, twelve and eighteen spins. Both
ground and thermal state simulations are based on the very efficient simple
update procedure21,22,59,60. It is an approximate, yet reliable algorithm fre-
quently used in TN simulations. The main refinement parameters, i.e.,
the bond dimensions and the infinitesimal cooling step in the finite-
temperature simulations, are carefully chosen to achieve sufficient
accuracy and accessible temperature ranges while balancing the numerical
effort. Details about the simple update for iPESS and iPESO, as well
as the calculation of expectation values are presented in the Supplemen-
tary Note 3.

Data availability
Thedatasets generated for andpresented in this study are available in ref. 61.

Code availability
TheDFT code used in this study is available fromhttps://www.fplo.de/. The
TN code developed during the present study is based on TensorKit.jl62 and
available on GitHub63.
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