3. Separation von Gitter- und Elektronendynamik

3.1 Relative Größe der Beiträge zum Festkörperhamiltonoperator

In Kapitel 1, Gleichung (1.1) hatten wir bereits den allgemeinen Festkörper-Hamiltonoperator notiert; wenn wir die Terme einzeln berechnen, ist

$$H = T_e + T_K + V_{e-e} + V_{K-K} + V_{e-K}$$
(3.1)

mit kinetischen Energietermen T_e , T_K und Wechselwirkungspotentialen

$$V_{e-e} = \sum_{i < j} \nu_{e-e}(\vec{r}_i - \vec{r}_j), \ V_{K-K} = \sum_{k < l} \nu_{K-K}(\vec{R}_k - \vec{R}_l), \ V_{e-K} = \sum_{i,k} \nu_{e-K}(\vec{r}_i - \vec{R}_k).$$
(3.2)

In dieser allgemeinen Form kann Gleichung (3.1) auch die Situation beschreiben, dass die schweren Teilchen K nicht die nackten Atomkerne sind sondern Ionen, d.h. Kerne plus Elektronen der inneren, fest mit dem Kern verbundenen Schalen. Dann würden die Wechselwirkungspotentiale V_{e-K} , V_{K-K} nicht freie Coulombpotentiale, sondern abgeschirmte effektive Potentiale zwischen den Ionen bzw. zwischen positivem Ion und den Valenzelektronen (äußeren Elektronen) beschreiben. Bei Betrachtung der nackten Atomkerne sind aber die Potentiale v_{e-e} , v_{e-K} , v_{K-K} einfach die elementaren Coulombpotentiale aus Gleichung (1.1).

Es ist günstig, zu atomaren Einheiten überzugehen, wenn man nur die relative Größenordnung der Beiträge in Gl. (3.1) abschätzen möchte. Das bedeutet, dass Längen in Bohrschen Radien

$$a_0 = \frac{\hbar^2}{\mathrm{m}e^2} \approx 0.529 \text{ Å}$$

und Energien in Einheiten von Hartree

$$\mathsf{E}_0 = \frac{\mathsf{m} e^4}{\hbar^2} = \frac{e^2}{\mathfrak{a}_0} = 1 \operatorname{Ha} = 2 \operatorname{Ryd} \approx 27.2 \operatorname{eV}$$

(Ryd \equiv Rydberg) gemessen werden. Ortsvektoren werden durch die Ersetzung $\vec{r} = a_0 \vec{\tilde{r}}$ zu dimensionslosen Vektoren $\vec{\tilde{r}}$, Ortsableitungen werden zu $\nabla_r = \frac{\partial}{\partial r} = \frac{1}{a_0} \frac{\partial}{\partial \tilde{r}}$, und damit gilt

Der Hamiltonoperator hängt nur noch von Kernladungszahlen Z_n und Massenverhältnissen \mathfrak{m}/M_k ab. Insbesondere ist also die relative Größenordnung des Beitrags der kinetischen Energie der Atomkerne (oder auch der Ionen) genau um diesen Faktor \mathfrak{m}/M_k kleiner als die anderen Beiträge. Da $m/M_{\rm k}$ von der Größenordnung $10^{-4}-10^{-5}$ ist, bietet sich eine Entwicklung nach diesem Parameter und damit nach der kinetischen Energie der Atome T_K an. In niedrigster Näherung wird man also die Kerne als unbeweglich ansehen können und somit Elektronen im starren Gitter betrachten und den Einfluss der Bewegung der Kerne (Ionen) nur störungstheoretisch berücksichtigen. Die Kleinheit des Parameters m/M_k ist also der entscheidende Grund dafür, dass man Gitter- und Elektronenbewegung in niedrigster Ordnung als voneinander entkoppelt betrachten, d.h. Gitterschwingungen (Phononen) und Elektronen zunächst als unabhänging voneinander behandeln kann. Korrekturen dazu, d.h. die Elektron-Phonon-Kopplung, wird dann störungstheoretisch behandelt. Die Entkopplung von Gitter- und Elektronenfreiheitsgraden päzisieren wir im nächten Kapitel.

3.2 Adiabatische Näherung (Born-Oppenheimer-Näherung)

Wir fassen jetzt die kinetische Energie der Kerne T_K als Störung auf und vernachlässigen sie in niedrigster Ordnung:

$$\begin{split} \mathsf{H} &= \mathsf{H}_{0} + \mathsf{T}_{\mathsf{K}} \quad \text{mit} \quad \mathsf{H}_{0} = \mathsf{T}_{\mathsf{K}} + \mathsf{V}_{e-\mathsf{K}}(\underline{\vec{r}}, \underline{\vec{R}}) + \mathsf{V}_{e-e}(\underline{\vec{r}}) + \mathsf{V}_{\mathsf{K}-\mathsf{K}}(\underline{\vec{R}}) \quad (3.4) \\ \text{mit } 3\mathsf{N}_{e} \text{-dimensionalen Vektoren der Elektronpositionen } \underline{\vec{r}} = (\vec{r}_{1}, \vec{r}_{2} \dots \vec{r}_{\mathsf{N}_{e}}) \\ \text{und } 3\mathsf{N}_{\mathsf{K}} \text{-dimensionalen Vektoren der Kernpositionen } \underline{\vec{R}} = (\vec{R}_{1}, \overline{\vec{R}}_{2} \dots \vec{R}_{\mathsf{N}_{\mathsf{K}}}). \end{split}$$

Wir gehen jetzt davon aus, dass wir die zu H_0 gehörige Schrödingergleichung lösen können; diese Gleichung ist nur noch eine Differentialgleichung bezüglich der Elektronenpositionen $\vec{\underline{r}}$, da in H_0 keine Kernimpulse auftreten. Die Kernpositionen treten in der zu H_0 genörigen Schrödingergleichung nur als Parameter auf. H_0 beschreibt also das quantenmechanische Problem von N_e wechselwirkenden Elektronen im statischen Potential, das von N_K Atomkernen an festen Positionen $\vec{\underline{R}}$ erzeugt wird. Diese festen Atompositionen gehen auch in die elektronischen Wellenfunktionen $\left\{ \varphi_\alpha(\vec{\underline{r}},\vec{\underline{R}}) \right\}$ und die Eigenwerte $\epsilon_\alpha(\vec{\underline{R}})$ als Parameter ein:

$$H_0 \phi_{\alpha}(\vec{\underline{r}}, \vec{\underline{R}}) = \varepsilon_{\alpha}(\vec{\underline{R}}) \phi_{\alpha}(\vec{\underline{r}}, \vec{\underline{R}})$$
(3.5)

wobei $\{\alpha\}$ für einen vollständigen Satz von elektronischen Quantenzahlen steht. Für jede Konfiguration $\underline{\vec{R}}$ der Atomkerne bilden die $\{\varphi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}})\}$ ein vollständiges Funktionensystem. Die Wellenfunktion $\psi(\underline{\vec{r}}, \underline{\vec{R}})$ des vollen Hamiltonoperators H, d.h. eine Lösung des Eigenwertproblems

$$H\psi(\underline{\vec{r}},\underline{\vec{R}}) = E\psi(\underline{\vec{r}},\underline{\vec{R}})$$
(3.6)

muss sich daher für jedes feste $\underline{\vec{R}}$ nach den $\phi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}})$ entwickeln lassen:

$$\psi(\vec{\underline{r}}, \vec{\underline{R}}) = \sum_{\alpha} \chi_{\alpha}(\vec{\underline{R}}) \phi_{\alpha}(\vec{\underline{r}}, \vec{\underline{R}})$$
(3.7)

In Gl. (3.6) eingesetzt liefert das

$$\begin{aligned} \mathsf{H} - \mathsf{E})\psi(\underline{\vec{r}}, \underline{\vec{R}}) &= \sum_{\alpha} \left(\mathsf{H}_{0} - \mathsf{T}_{\mathsf{K}} - \mathsf{E}\right)\chi_{\alpha}(\underline{\vec{R}})\varphi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}}) \\ &= \left(\varepsilon_{\alpha}(\underline{\vec{R}}) - \mathsf{T}_{\mathsf{K}} - \mathsf{E}\right)\chi_{\alpha}(\underline{\vec{R}})\varphi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}}) = 0 \end{aligned} (3.8)$$

Multiplikation von links mit $\phi_{\beta}^{*}(\underline{\vec{r}}, \underline{\vec{R}})$ und Integration über alle Elektronenpositionen $\underline{\vec{r}}$ liefert (mit Vollständigkeit und Orthonormierung der $\{\phi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}})\}$)

$$0 = \sum_{\alpha} \int d\vec{\underline{r}} \, \phi_{\beta}^{*}(\vec{\underline{r}}, \vec{\underline{R}}) \left(\varepsilon_{\alpha}(\vec{\underline{R}}) - \mathsf{T}_{\mathsf{K}} - \mathsf{E} \right) \chi_{\alpha}(\vec{\underline{R}}) \phi_{\alpha}(\vec{\underline{r}}, \vec{\underline{R}}) = \sum_{\alpha} \delta_{\alpha\beta} \left(\varepsilon_{\alpha}(\vec{\underline{R}}) - \mathsf{E} \right) \chi_{\alpha}(\vec{\underline{R}}) - \sum_{\alpha} \int d\vec{\underline{r}} \, \phi_{\beta}^{*}(\vec{\underline{r}}, \vec{\underline{R}}) \frac{\hbar^{2}}{2M_{k}} \frac{\partial^{2}}{\partial \vec{\underline{R}}^{2}} \chi_{\alpha}(\vec{\underline{R}}) \phi_{\alpha}(\vec{\underline{r}}, \vec{\underline{R}}) ,$$

$$(3.9)$$

wobei wir im letzten Schritt mit dem Faktor $1/M_k$ die Annahme gemacht haben, dass es sich nur um eine Atomsorte handelt, was die Notation etwas vereinfacht. Die Ableitungen berechnen wir mit der Produktregel

$$\begin{aligned} \frac{\partial^{2}}{\partial \underline{\vec{R}}^{2}} \Big(\chi_{\alpha}(\underline{\vec{R}}) \phi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}}) \Big) &= \\ \phi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}}) \frac{\partial^{2}}{\partial \underline{\vec{R}}^{2}} \chi_{\alpha}(\underline{\vec{R}}) + 2 \frac{\partial}{\partial \underline{\vec{R}}} \phi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}}) \frac{\partial}{\partial \underline{\vec{R}}} \chi_{\alpha}(\underline{\vec{R}}) + \chi_{\alpha}(\underline{\vec{R}}) \frac{\partial^{2}}{\partial \underline{\vec{R}}^{2}} \phi_{\alpha}(\underline{\vec{r}}, \underline{\vec{R}}) \end{aligned}$$
(3.10)

und erhalten

$$\left(\mathsf{T}_{\mathsf{K}} + \varepsilon_{\beta}\left(\underline{\vec{\mathsf{R}}}\right)\right)\chi_{\beta}\left(\underline{\vec{\mathsf{R}}}\right) + \sum_{\alpha} A_{\beta,\alpha}\left(\underline{\vec{\mathsf{R}}}\right)\chi_{\beta}\left(\underline{\vec{\mathsf{R}}}\right) = \mathsf{E}\chi_{\beta}\left(\underline{\vec{\mathsf{R}}}\right). \tag{3.11}$$

 mit

$$\begin{split} \mathsf{A}_{\beta,\alpha}(\vec{\underline{R}}) &= -\sum_{\mathfrak{l}} \frac{\hbar^2}{2\mathsf{M}_{\mathfrak{l}}} \int d\vec{\underline{r}} \left[\Phi_{\beta}^*(\vec{\underline{r}},\vec{\underline{R}}) \frac{\partial^2}{\partial \vec{\underline{R}}^2} \Phi_{\alpha}(\vec{\underline{r}},\vec{\underline{R}}) \right. \\ &\left. + 2\Phi_{\beta}^*(\vec{\underline{r}},\vec{\underline{R}}) \left(\frac{\partial}{\partial \vec{\underline{R}}} \Phi_{\alpha}(\vec{\underline{r}},\vec{\underline{R}}) \right) \frac{\partial}{\partial \vec{\underline{R}}} \right] (3.12) \end{split}$$

Bei Vernachlässigung der Übergangsmatrixelemente $A_{\beta,\alpha}(\overline{\underline{R}})$ zwischen Quantenzahlen α und β erhalten wir

$$\left(\mathsf{T}_{\mathsf{K}} + \varepsilon_{\beta}(\underline{\vec{\mathsf{R}}})\right)\chi_{\beta}(\underline{\vec{\mathsf{R}}}) = \mathsf{E}\chi_{\beta}(\underline{\vec{\mathsf{R}}})$$

$$(3.13)$$

d.h. eine Schrödingergleichung nur für die Atomkerne im effektiven Potential $\epsilon_{\beta}(\vec{R})$. Die elektronischen Eigenenergien $\epsilon_{\alpha}(\vec{R})$ bestimmen also über ihre parametrische Abhängigkeit von der Kernpositionen \vec{R} das effektive Potential für die Kerne, in das die nackte Coulombabstoßung V_{K-K} additiv eingeht. Die Effekte der chemischen Bindung und der Ausbildung einer Kristallstruktur mit bevorzugten Positionen \vec{R}_0 drücken sich dadurch aus, dass $\epsilon_{\beta}(\vec{R})$ für diese Positionen minimal wird.

In der nächsten harmonischen Näherung, dem Thema des nächsten Kapitels, betrachtet man eine Entwicklung der $\varepsilon_{\alpha}(\underline{\vec{R}})$ bis zur 2. Ordnung in den Auslenkungen um die Gleichgewichtspositionen $\underline{\vec{R}}_0$; dann hat man es mit gekoppelten harmonischen Oszillatoren zu tun, für die die $\underline{\vec{R}}$ -Abhängigkeit der elektronischen Eigenenergien das harmonische Potential bildet. Diesen Ansatz können wir jetzt nutzen, um die Größenordnung der Eigenenergien der Kernbewegung E aus Gl. (3.13) abzuschätzen. In einem solchen System gekoppelter Oszillatoren sind die Energien E von der Größenordnung der Eigenfrequenz

$$E = \hbar \omega \sim \hbar \sqrt{\frac{K}{M}} \,,$$

wobei die effektive Federkonstante durch

$$K\sim \frac{\partial^2\epsilon}{\partial R^2}$$

gegeben ist. Wenn wir Auslenkungen auf der Skala des Bohrschen Radius $\Delta R \sim a_0 = \frac{\hbar^2}{me^2}$ annehmen und die zweite Ableitung der elektronischen Eigenenergien durch

$$\frac{\partial^2 \varepsilon}{\partial \mathsf{R}^2} \sim \frac{\mathsf{E}_0}{\Delta \mathsf{R}^2}$$

annähern (elektronische Energieskala Hartree: $\mathsf{E}_0=\frac{me^4}{\hbar^2}),$ bekommen wir die Abschätzung

$$\mathsf{E}^{2} = \hbar^{2}\omega^{2} \sim \hbar^{2}\frac{\mathsf{K}}{\mathsf{M}} \sim \frac{\hbar^{2}\mathsf{E}_{0}}{\mathsf{M}\Delta\mathsf{R}^{2}} = \frac{\mathsf{E}_{0}\mathfrak{m}^{2}\mathfrak{e}^{4}}{\mathsf{M}\hbar^{2}} = \frac{\mathfrak{m}}{\mathsf{M}}\mathsf{E}_{0}^{2} ~ \curvearrowleft ~ \mathsf{E} \sim \sqrt{\frac{\mathfrak{m}}{\mathsf{M}}}\mathsf{E}_{0}$$
(3.14)

Also sind für Schwingungen der Atomkerne typische Energien um einen Faktor $\sqrt{\frac{m}{M}}$ kleiner als typische elektronische Energien.

Nun fehlt noch die Abschätzung, ob die Vernachlässigung der Beiträge $A_{\beta,\alpha}(\vec{R})$ aus Gl. (3.11), die auf dem Raum der Kernwellenfunktionen $\chi_{\alpha}(\vec{R})$ als Operator wirken, gerechtfertigt ist. Da die Kern-Kern-Wechselwirkung V_{K-K} in der Schrödingergleichung (3.5) für die Elektronen nur als additive Konstante auftritt, stammt die \vec{R} -Abhängigkeit der Wellenfunktionen $\phi_{\alpha}(\vec{r},\vec{R})$ im Wesentlichen aus der Elektron-Kern-Wechselwirkung V_{e-K} . Daher ist nur eine Abhängigkeit von den Relativpositionen $\left|\vec{r}_{i} - \vec{R}_{k}\right|$ zu erwarten, und man kann $\frac{\partial}{\partial \vec{R}_{k}}$ in $\frac{\partial}{\partial \vec{r}_{i}}$ umschreiben. Dadurch wird aus dem ersten Beitrag zu $A_{\beta,\alpha}$ in Gl. (3.12) im Wesentlichen

$$\frac{m}{M} \langle \varphi_\beta | T_e | \varphi_\alpha \rangle \, .$$

Dieser Beitrag ist um einen Faktor der Größenordnung m/M kleiner als die kinetische Energie der Elektronen und damit auch der elektronischen

Eigenenergien ε_{α} . Er ist noch um einen Faktor $\sqrt{\frac{m}{M}}$ kleiner als die Eigenenergien der Kernbewegung. Den zweiten Beitrag in Gl. (3.12) kann man wie folgt abschätzen:

$$\frac{\hbar^{2}}{2M_{l}} \int d\vec{\underline{r}} \, \varphi_{\beta}^{*}(\vec{\underline{r}}, \vec{\underline{R}}) \left(\frac{\partial}{\partial \vec{\underline{R}}} \varphi_{\alpha}(\vec{\underline{r}}, \vec{\underline{R}}) \right) \frac{\partial}{\partial \vec{\underline{R}}} \chi_{\alpha}(\vec{\underline{R}}) \sim \frac{\hbar}{M} \langle \varphi_{\beta} | p_{\text{Elektron}} | \varphi_{\alpha} \rangle \frac{\partial}{\partial \vec{\underline{R}}} \chi_{\alpha}(\vec{\underline{R}}) \\
\sim \int d\vec{\underline{R}} \chi_{\beta}(\vec{\underline{R}}) \frac{\hbar}{M} \langle p_{el} \rangle \frac{\partial}{\partial \vec{\underline{R}}} \chi_{\alpha}(\vec{\underline{R}}) \sim \frac{1}{M} \langle p_{\text{Elektron}} \rangle \langle P_{\text{Kern}} \rangle \\
\sim \frac{1}{M} \sqrt{mE_{0}} \sqrt{ME_{\text{Kern}}} \sim \sqrt{\frac{m}{M} E_{0}} \sqrt{\frac{m}{M} E_{0}} = \left(\frac{m}{M}\right)^{3/4} E_{0} \tag{3.15}$$

Dieser vernachlässigte energetische Beitrag ist also um einen Faktor $\left(\frac{m}{M}\right)^{3/4}$ kleiner als die rein elektronischen Energien und damit immer noch um einen Faktor $\left(\frac{m}{M}\right)^{1/4}$ kleiner als die berücksichtigten charakteristischen Energien der Bewegung der Kerne im effektiven Potential; dieser Faktor $\left(\frac{m}{M}\right)^{1/4}$ ist von der Größenordnung $10^{-1}-10^{-2}$. Die **adiabatische Näherung (Born-Oppenheimer-Näherung)** besteht in der Vernachlässigung der $A_{\beta,\alpha}$ -Terme in der im Prinzip exakten Gleichung (3.11). Damit sind Elektronenund Kern-Bewegung vollständig voneinander separiert. Die Vorgehensweise ist also folgendermaßen:

- 1) Zunächst ist für fest vorgegebenen Kernpositionen $\underline{\vec{R}} = (\vec{R}_1, \vec{R}_2 \dots \vec{R}_{N_K})$ die Schrödingergleichung (3.5) für das elektronische Problem zu lösen, wobei die Energieeigenwerte $\varepsilon_{\alpha}(\underline{\vec{R}})$ von den Kernpositionen $\underline{\vec{R}}$ abhängen.
- 2) Dann ist für jede feste Quantenzahl α die Schrödingergleichung (3.13) zu lösen, wobei die elektronischen Eigenenergien $\varepsilon_{\alpha}(\underline{\vec{R}})$ das effektive Potential für die Atomkerne bilden.

Die physikalische Motivation für dieses Vorgehen ist die Vorstellung, dass sich das Elektronensystem der Kernbewegung praktisch instantan anpasst, weil sich die Elektronenbewegung wegen des Massenverhältnisses m/M auf wesentlich kürzere Zeitskalen abspielt als die Kernbewegung. Auch wenn sich die Kernen bewegen, sieht das elektronische System ein statisches Potential, als ob die Kerne an den Orten $\underline{\vec{R}}$ fest wären. Die Entkopplung heißt adiabatische Näherung, weil sich das Kernsystem so langsam ändert, dass sich für das Elektronensystem immer wieder der Gleichgewichtszustand fester, quasistatischer Kernpositionen einstellt.

3.3 Chemische Bindung

Bevor wir zur Beschreibung der Gitterdynamik kommen, wollen wir kurz das effektive Wechselwirkungspotential $V_{\rm eff}(\vec{R}_1,\ldots,\vec{R}_{N_K})$ diskutieren, in dem sich die Kerne bzw. Ionen bewegen. Dabei handelt es sich bei tiefen Temperaturen um die elektronische Grundzustandenergie $\varepsilon_0(\vec{R}_1,\ldots,\vec{R}_{N_K})$. Diese kann man im wesentlichen auf zwei Arten bestimmen: 1) durch Methoden der Bandstrukturrechnung wie beispielsweise der Dichtefunktionaltheorie, die das Thema späterer Kapitel sein wird, und 2) durch Modellansätze wie empirische Parametrisierungen, also z.B. Zwei-, Drei- und Vierkörperpotentiale. Zweikörperpotentiale (Paarpotentiale) beispielsweise se gehen davon aus, dass man das effektive Potential von N_K miteinander wechselwirkenden Teilchen als Summe der Wechselwirkung von je zwei der Teilchen darstellen kann:

$$V(\vec{R}_{1},...,\vec{R}_{N_{K}}) = \sum_{n < m} \nu(|\vec{R}_{n} - \vec{R}_{m}|) = \frac{1}{2} \sum_{n \neq m} \nu(|\vec{R}_{n} - \vec{R}_{m}|) \qquad (3.16)$$

Qualitativ sind Paarpotentiale von der in Abb. 3.1 gezeigten Form; für kleine Abstände gibt es einen stark repulsiven Anteil, der dafür sorgt, dass sich Atome nicht beliebig nahe kommen können. Ein attraktiver Anteil mit schwächerer 1/r-Abhängigkeit sorgt für ein Minimum des Potentials bei einem bestimmten Abstand \mathbf{r}_0 , dem Gleichgewichtsabstand.

Während sich alle Wechselwirkungspotentiale $V_{\rm eff}(\vec{R}_1,\ldots,\vec{R}_{N_K})$ aus der Lösung der elektronischen Schrödingergleichung (3.5) ergeben, kann man unterschiedliche Bindungstypen unterscheiden, durch die die Atome eines Kristalls zusammengehalten werden. Der Übergang zwischen den verschiedenen Bindungstypen ist fließend, aber häufig kann man einen dominierenden Anteil ausmachen.

1) Van der Waals Bindung

In kondensierten Edelgasen bleiden die Atome aufgrund der abschlossenen Schale fast im gleichen Zustand wie in der gasförmigen Phase. Aufgrund der der Polarisierbarkeit der einzelnen Atome entsteht eine schwache Bindung, die Van der Waals Bindung. Auch grössere kovalent gebundene strukturelle Elemente, wie z.B. eine Ebene mit abgechlossenen kovelenten Bindungen (wie in den Hochtemperatur-Supraleitern) können Van-der-Waalsgebunden sein. Solche schichtweise aufgebauten Kristalle lassen sich leicht spalten (Spaltebenen), wie z.B. Glimmer.

Modellmässig können wir uns vorstellen, dass die Elektronen durch eine Federkraft an die Kerne gebunden sind. Quanten-Fluktuationen können nun zu wechselweise induzierten Dipolmenten \vec{p}_1 und \vec{p}_2 führen. Das elektrische Feld des induzierten Dipols \vec{p}_1 am Orte $\vec{r} = r\vec{n}$ ist

$$\vec{\mathsf{E}}_{1}(\vec{\mathsf{r}}) = \frac{3\vec{\mathsf{n}}(\vec{\mathsf{p}}_{1}\cdot\vec{\mathsf{n}}) - \vec{\mathsf{p}}_{1}}{r^{3}}.$$
(3.17)

Diese Feld spührt das zweite Atom und induziert in diesem das Dipolmoment \vec{p}_2 . Die Grösse von \vec{p}_2 wird durch die Balance der elastischen Energie mit der elektrostatischen Energie $-\vec{p}_2 \cdot \vec{E}_1(\vec{r})$ bstimmt. Der Energiegewinn W ist klein,

$$W = -\vec{p}_1 \cdot \vec{E}_2 \propto \frac{1}{r^6}, \qquad (3.18)$$

und nur für kleine Abstände \mathbf{r} wirksam. Bei Bindungen wie der Van-der-Waals-Bindung, die gut durch Paarpotentiale modelliert werden können, wird umso mehr Bindungsenergie gewonnen, je mehr Bindungen gebildet werden; dadurch sind dichteste Kugelpackungen am günstigsten, und tatsächlich kristallisieren die Edelgase in der fcc-Struktur.

Ein bekanntes empirisches Potential, das diese Wechselwirkung parametrisiert, ist das Lennard-Jones-Potential

$$\nu(\mathbf{r}) = 4\varepsilon \left[\left(\frac{\sigma}{\mathbf{r}} \right)^{12} - \left(\frac{\sigma}{\mathbf{r}} \right)^6 \right]$$
(3.19)

Für die Kurve in Fig. 3.1 ist das Lennard-Jones-Potential mit $\varepsilon=1,$ $\sigma=1$ geplottet. Für den Gleichgewichtsabstand findet man $r_0=2^{1/6}\sigma.$ Das effektive Potential eines Kristalls ist dann

$$V_{\text{eff}}(\vec{R}_1, \dots, \vec{R}_{N_K}) = 4\varepsilon \sum_{n < m} \left[\left(\frac{\sigma}{R_{mn}} \right)^{12} - \left(\frac{\sigma}{R_{mn}} \right)^6 \right]$$
(3.20)

mit $R_{mn} = |\vec{R}_n - \vec{R}_m|$. Setzt man $R_{mn} = ap_{mn}$ (mit Gitterkonstante a der konventionellen Einheitszelle), dann sind die p_{mn} bei einer einatomigen Basis Zahlenwerte, die das Bravaisgitter charakterisieren (für Edelgase beispielsweise ist das fcc-Gitter typisch), und man kann die Summen ausführen. Es ergibt sich die Grundzustandsenergie

$$\mathsf{E}_{0}(\mathfrak{a}) = 2\mathsf{N}\varepsilon \left[\left(\frac{\sigma}{\mathfrak{a}}\right)^{12} \mathsf{C}_{12} - \left(\frac{\sigma}{\mathfrak{a}}\right)^{6} \mathsf{C}_{6} \right]$$
(3.21)

mit charakteristischen Summen

$$C_{\alpha} = \sum_{n \neq m} p_{mn}^{-\alpha} \tag{3.22}$$

Für das fcc-Gitter ist beispielsweise $C_{12} = 12.13$, $C_6 = 14.45$. Aus der Bedingung, dass E_0 minimal wird, erhält man die Gleichgewichtsgitterkonstante

$$a_0 = \left(2\frac{C_{12}}{C_6}\right)^{1/6} \sigma, \qquad (3.23)$$

also z.B. für fc
c $\mathfrak{a}_0=1.09\sigma.$ Damit wird die Grundzustandsenergie

$$\mathsf{E}_{0}(\mathfrak{a}_{0}) = -\frac{1}{2}\mathsf{N}\varepsilon\frac{\mathsf{C}_{6}^{2}}{\mathsf{C}_{12}}, \qquad (3.24)$$

also für fcc $E_0(a_0) = -8.6 N \epsilon$.

2) Ionische Bindung

Die ionische Bindung ist typisch für Salze. Man kann sich vorstellen, dass ein oder mehrere Elektronen aus der äußeren Schale eines Atoms A zum Auffüllen der atomaren Schalen eines zweiten Atoms B verwendet werden, sodass positiv geladene Kationen A^{+n} und negativ geladen Anionen B^{-n} entstehen, die durch elektrostatische Anziehung aneinander gebunden sind. Etwas realistischer kann man sagen, dass die Hybridorbitale fast vollständig auf einem der beiden Atome lokalisiert sind, wodurch beide elektrische Ladung tragen.

Für NaCl beträgt die Bindungsenergie (7.9 + 3.6 - 5.1) eV = 6.4 eV pro Molekül NaCl (siehe Abb. 3.2).

Das Wechselwirkungspotential zwischen zwei Ionen mit Ladungen Q_1 und Q_2 im Abstand r ist

$$\nu(\mathbf{r}) = \frac{B}{\mathbf{r}^{\alpha}} + \frac{Q_1 Q_2}{4\pi\epsilon_0 \mathbf{r}},\tag{3.25}$$

wobe
i α wieder für ein stark repulsives Potential sorgt, z.B.
 $\alpha=12$. Wie bei der van-der-Waals-Wechselwirkung lässt sich die Grundzstandenergie für ein gegebenes Gitter aufsummieren, und das führt wegen der alternieren
den Vorzeichen von $Q_m Q_n$ in der Summe zur Madelungkonstante. Wie die Van-
der-Waals-Bindung ist bei der ionischen Bindung dichte Packung günstig, sodass hohe Koordinationszahlen auftreten.

3) Kovalente Bindung

Die kovalente Bindung entspricht der chemischen Bindung in Molekülen, nur dass sie für einen Festkörper translationsinvariant aufgebaut ist. Die atomaren Orbitale bilden dabei paarweise Hybridorbitale, welche bindend, nicht-bindend und anti-bindend sein können. Dabei spielen die Geometrie und die Vorzeichen der teilnehmenden atomaren Orbitale eine entscheidende Rolle. Durch die Hybridisierung der atomaren Orbitale (siehe Abb. 3.3) wird Energie gewonnen, die den Festkörper stabilisiert. Es handelt sich bei der kovalenten Bindung um eine direktionale Bindung (ihre Stärke ist stark vom Winkel abhängig), und daher spielen für die Kristallstruktur andere Effekte als nur die dichteste Packung eine Rolle; es können sich auch sehr stark gebundene Kristalle mit niedrigen Koordinationszahlen bilden.

Abbildung 3.3: Möglicher Überlapp zwischen s- und p-Wellenfunktionen. In (a) kompensieren sich die Beiträge unterschiedlichen Vorzeichens, und der Zustand ist nicht bindend. In (b) führt der Überlapp zu einer σ -Bindung und einer Absenkung der Energie.

Abbildung 3.4: Größenvergleich zwischen typischen 3d- und 4s-Wellenfunktionen.

4) Metallische Bindung

Während für kovalente und ionische Bindung eine Lokalisierung der Elektronen auftritt, im ersten Fall auf den Molekülorbitalen zwischen den Atomen, im zweiten Fall auf den Ionen, ist für die metallische Bindung die Delokalisierung der Elektronen entscheidend. Die metallische Bindung kommt zustande, wenn ein Teil der Leitungselektronen, z.B. die 4s-Elektronen,

viel grösser als die intermetallischen Abstände sind (siehe Abb. 3.4). Dann kann man diese Elektronen nicht mehr den einzelnen Ionen (wie in ionischen Kristallen) oder einzelnen Bindungen (wie in kovalenten Kristallen) zuordnen, sie sind delokalisiert. Allerdings gilt der Umkehrschluss nicht: Auch kovalente Kristalle können metallisch sein, also elektrischen Strom leiten, wenn die Bänder an der Fermikante nicht vollständig gefüllt sind.

5) Wasserstoffbrückenbindung

Eine Bindung, deren Bedeutung man kaum übertreiben kann, ist die Wasserstoffbrückenbindung. Es handelt sich dabei um den wichtigsten Beitrag zur dreidimensionalen Struktur von Proteinen; diese Bindung ist auch wesentlich für die Struktur von flüssigem Wasser und Eis. Wasserstoffbrücken sind die stärksten intermolekularen Bindungen, auch wenn sie schwächer sind als kovalente und ionische Bindungen. Fig. 3.5 zeigt die Struktur einer typischen Wasserstoffbrückenbindung, bei der A und B im Fall des Wasserdimers beide für Sauerstoff stehen; aber im allgemeinen Fall ist A sehr elektronegativ und B ein Elektronendonator. Wasserstoffbrückenbindungen sind gerichtete Bindungen, wobei der A-H-B-Winkel α nahe bei 180° liegt.

Abbildung 3.5: Struktur des Wasserdimers zur Illustration einer typischen Wasserstoffbrückenbindung.

