
6. Auxiliary field continuous time quantum
Monte Carlo

The purpose of the auxiliary field continuous time quantum Monte Carlo

method1 is to calculate the full Greens function of the Anderson impurity

model

H = −µ
∑
σ

nσ+Un↑n↓+
∑
kσ

tkσa
†
kσakσ+

∑
kσ

Vkσa
†
kσckσ+H.c. (6.1)

Diagrammatic Monte Carlo

In order to evaluate the partition function, we write the Hamiltonian as

H = H0 + V so that we have

e−βH = e−βH0 exp

{
− Tτ

∫β
0
dτV̂(τ)

}
(6.2)

with V̂(τ) in the interaction picture

V̂(τ) = e+τH0Ve−τH0 .

and the usual imaginary time ordering operatore Tτ. In Diagrammatic

Monte-Carlo, the Feynman diagrams of the perturbation expansion are

sampled by Monte Carlo. Then, the partition function is

Z = Tr
(
e−βH

)
= Z0

Tr
(
e−βH0 exp

{
− Tτ

∫β
0 dτV̂(τ)

})
Tre−βH0

(6.3)

with Z0 = Tre−βH0. Thus

Z

Z0
=

1

Z0
Tr
(
e−βH0 exp

{
−Tτ

∫β
0
dτV̂(τ)

})
=
〈

exp
{

−Tτ

∫β
0
dτV̂(τ)

}〉
0

1This chapter is based on a course given by Aaram J. Kim. The master thesis Topological Phases of
Interacting Fermions in Optical Lattices with Artificial Gauge Fields by Michael Buchhold is used as a
reference.
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(6.4)

This expectation value will be calculated with quantum Monte Carlo.

First, we write more explicitly

exp
{

− Tτ

∫β
0
dτV̂(τ)

}
=

∞∑
k=0

1

k!

∫β
0
dτk . . .

∫β
0
dτ1
(
(−V(τk)

)
. . .
(
(−V(τ1)

)
=

∞∑
k=0

∫β
τk−1

dτk . . .

∫β
τ1

dτ2

∫β
0
dτ1
(
(−V(τk)

)
. . .
(
(−V(τ1)

)
(6.5)

because if S(τ) = e+τH0e−τH, then

∂τS(τ) = e+τH0(H0 −H)e−τH = e+τH0(−V)e−τH0S(τ) =
(
−V(τ)

)
S(τ)

(6.6)

This is formally solved by integration:

S(β) = S(0) −

∫β
0
dτV(τ)S(τ) (6.7)

Iteration via

S(τ) = S(0) −

∫ τ
0
dτ ′V(τ ′)S(τ ′) (6.8)

leads to the expression (6.5). Then

Z

Z0
=
〈

exp
{

− Tτ

∫β
0
dτV̂(τ)

}〉
0

=
∑
k

1

k!

∫β
0
dτk . . .

∫β
0
dτ1

〈(
− V̂(τk)

)
. . .
(

− V̂(τ1)
)〉

0

=
∑
x

W(x) =

∫
dxW(x) (6.9)

Here, we interpret W(x) as a weight. In order to be able to interpret W(x)
as a probability, we assume it is positive.

In the continuous-time auxiliary field quantum Monte-Carlo algorithm,

an auxilary field decomposition of the interaction part of the Anderson

impurity model is used. In CT-AUX, the choice of interaction is

V = U

(
n↑n↓ −

n↑ + n↓
2

)
−
K

β
(6.10)
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where the second term is a Hartree like term, and the third term is a control

parameter for the expansion order. This means that the noninteracting

Hamiltonian is modified as

H0 = H− V (6.11)

The choice of V yields the following values for empty, singly occupied and

doubly ocupied impurity:

|0〉 −
K

β

| ↑〉 −
K

β
−
U

2

| ↓〉 −
K

β
−
U

2

| ↑↓〉 −
K

β
(6.12)

Now a Hubbard-Stratonovich transformation is applied to V :

V = U

(
n↑n↓ −

n↑ + n↓
2

)
−
K

β
= −

K

2β

∑
s=±1

eγs(n↑−n↓) (6.13)

The identity can be checked by applying the last expression on the basis

states in (6.12). For example, for |0〉, n↑ = n↓ = 0, and the expression

yields −K
β

. For | ↑〉,

n↑ = 1,n↓ = 0 y V = −
K

β
coshγ y coshγ = 1 +

Uβ

2K
(6.14)

s represents an Ising type boson that was introduced, an auxiliary spin.

Eventually there will be k auxiliary spins over which we sum:

Z

Z0
=
∑
{si}

(
+
K

2β

)k∏
σ

〈[
eγskσnσ(τk) . . . eγs1σnσ(τ1)

]〉
0

(6.15)

Here, σ is the physical spin, with numerical value σ = +1 for ↑ and σ = −1

for ↓. Then, for Monte Carlo sampling we identify

Z

Z0
=
∑
k

∫
dτk . . .

∫
dτ1
∑
{si}

W(x) (6.16)
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Figure 6.1: Example of a CT-AUX configuration at perturbation order 5.

The configuration space consists of perturbation order k, time indices τ

and auxiliary spin indices si; there are k time points. The random walker

needs to roam the entire configuration space. CT-AUX is a generalization

of the discrete time quantum Monte Carlo algorithm (Hirsch-Fye).

Explicit calculation of the matrix

We now prepare to write the action in terms of Grassmann variables by

rewriting the interaction

−V =
K

2β

∑
s=±1

eγs(n↑−n↓) =
K

2β

∑
s=±1

∏
σ

eγsσnσ (6.17)

further. Taylor expansion of the exponential yields (because n2
σ = nσ)

eγsσnσ = 1 + γsσnσ +
1

2!
(γsσ)2nσ + . . .

= 1 + −nσ + nσ + γsσnσ +
1

2!
(γsσ)2nσ + . . .

= 1 − nσ + eγsσnσ = 1 −
(
1 − eγsσ

)
nσ

= 1 −
(
1 − eγsσ

)
(1 − cσc

†
σ) = 1 −

[
1 − eγsσ − cσc

†
σ + eγsσcσc

†
σ

]
= eγsσ − (eγsσ − 1)cσc

†
σ

= eγsσ
(
1 − (1 − e−γsσ)cσc

†
σ

)
(6.18)

where Fermion antiperiodicity c
†
σcσ = 1 − cσc

†
σ was used. Thus, we have

found that

−V =
K

2β

∑
s=±1

eγs(n↑−n↓) =
K

2β

∑
s=±1

∏
σ=↑,↓

[
eγsσ−(eγsσ−1)cσc

†
σ

]
(6.19)

Now we can go from Hamiltonian to action formalism, writing for the

average of an operator A with respect to the noninteracting Hamiltonian
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H0

〈A〉0 =
Tr
[
Ae−βH0

]
Tr
[
e−βH0

] =

∫
D[c+c]Ae−S∫
D[c+c]e−S

(6.20)

While in the first expression, c, c† are operators, in the second, c and c+

are Grassmann variables. We now come back to the effective action of the

previous chapter

Seff =

∫
dτdτ ′c+(τ)G−1(τ− τ ′)c(τ) +

∫
dτV(τ) (6.21)

where the Weiss function G encodes the result of integrating out the bath

degrees of freedom. We will use a number of identities for Grassmann vari-

ables:∫
D[c+c]e−

∑
ij c

+
i Sijcj = det[S]∫

D[c+c]cxc
+
ye

−
∑
ij c

+
i Sijcj∫

D[c+c]e−
∑
ij c

+
i Sijcj

= (S−1)xy

e−ac+c = 1 − ac+c (6.22)

We now introduce the matrix elements Sij of the action with i, j indices for

time, spin, lattice sites, etc., i, j ∈ (0, ...,M) where M → ∞; as we have

passed from continous imaginary time τ integrals to sums, the τi have to

be infinitely dense. There are infinitely more times τi than the k times we

have in a given configuration of perturbation order k. Thus

D[c+c]e−S = D[c+c]e
∑
ij c

+
i Sijcj with Sij = (G−1)ij(τi − τj) (6.23)

For the interaction, we introduce the matrices A and B with

Aij =

{
δije

γsiσi for τi ∈ {τ1 . . . τk}

δij otherwise

Bij =

{
δij
(
1 − e−γsiσi

)
for τi ∈ {τ1 . . . τk}

0 otherwise
(6.24)

The time mesh for the Feynman path integral now has the imaginary times

τ1 to τk as well as an infinite number of additional time indices τi. A has,
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for perturbation order k, k exponentials on the diagonal for times τ1, τ2,

. . . , τk, and otherwise 1:

A =


1

eγs1σ

1

eγs2σ

. . .

 (6.25)

and consequently, B is

B =


0

1 − e−γs1σ

0

1 − e−γs2σ

. . .

 (6.26)

Then we can write the average of Eq. (6.9) as

〈(−V) . . . (−V)〉0 =

(∏
σ detAσ

) ∫
D[c+c]e

∑
σ c

+
iσB

σ
ijcjσe

∑
σ c

+
iσS

σ0
ij cjσ∏

σ detSσ

(6.27)

The product over spin reflects the fact that the noninteracting part of the

Hamiltonian Hσ0 contains only quadratic operators with index σ so that

H
↑
0 commutes with H

↓
0 so that integration weights W(x) are products of

weights for the individual spin components σ =↑, ↓. If we now rewrite the

exponentials as

e
∑
σ c

+
iσ

(
Sσ−Bσ

)σ
ij
cjσ

we find for the integral we need to compute

I =

∏
σ detAσdet

(
Sσ − Bσ

)∏
σ detSσ

(6.28)

Due to the M index, matrices A, S are infinite dimensional. The idea is

now to use the zeros in the B matrix to make things finite-dimensional by

reordering.

det(S− B) = detSdet(1 − BS−1) (6.29)
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because S−B = (1−BS−1)S, and the determinant of a product splits into

a product of determinants. We now exploit that at perturbation order k,

only k entries in the B matrix are nonzero:

B =



0

b1
0

. . .

0

bk
. . .

0


→ B̃ =


b1

b2
. . . 0

bk
0 0


(6.30)

This rearrangement doesn’t produce a sign as rows and columns are ex-

changed. In the same way, S−1 is rearranged into S̃−1 only that this doesn’t

produce empty submatrices. Then(
B̃ 0

0 0

)(
S̃−1 x

x x

)
=

(
B̃S̃−1 T

0 0

)
(6.31)

and

1 − BS−1 →
(

1 − B̃S̃−1 T

0 1

)
(6.32)

but in the determinant, only 1 − B̃S̃−1 remains:

det(1 − BS−1) = det(1 − B̃S̃−1) (6.33)

In Eq. 6.28, detSσ cancels with the denominator, so that we have

I =
∏
σ

detAσdet(1 − B̃S̃−1) =
∏
σ

detÃσdet(1 − B̃S̃−1) (6.34)

because the rearranged Ãσ has only entries of 1 beyond the reduced space

of dimension k. Now we arrive at the final expression

I =
∏
σ

det
(
Ã− ÃB̃S̃−1) =

∏
σ

(
eΓσ−(eΓσ−1)G

) ≡∏
σ

detN−1
σ (6.35)

where the k × k matrix G, with k numbering the time points, was intro-

duced, and the entire matrix that needs to be manipulated is now called

N−1
σ matrix (N matrix). The notation for Ã is

Ã ≡ eΓσ ≡ diag
(
eγs1σ, . . . , eγskσ

)
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Later, the Weiss function G will be represented by a very large mesh with

many more than k points; it will be interpolated linearly or by cubic meth-

ods from k points.

Insertion and removal

Now, we will assume that we know the N−1
σ matrix at a given perturbation

order k. To implement a random walk through configuration space, we

need to either insert a time point or remove a time point, based on the

Metropolis algorithm.

τ1 τ2 τ3 τ4

τ1 τ2 τ3 τ4

τ1 τ2 τ3

τ’

(a) k=4

(b) k=5

(c) k=3

0 β

0 β

0 β

insertion

removal

Figure 6.2: Schematic of insertion and removal updates to a configuration.

Insertion.- The decision to insert an auxiliary spin into the configuration

is taken based on a uniform random number r in the range [0, 1]. If

r > min

(
1, f

∣∣∣∣Wk+1

Wk

∣∣∣∣) (6.36)

where f is factor explained later, the update is accepted, otherwise rejected.

Thus, to take the decision, the ratio of weights needs to be calculated,

specifically:

det
(
N(k+1)−1)

det
(
N(k)−1)

= det
(
N(k)−1)

N(k) 0

0 1


det
(
N(k+1)−1)

N(k)−1
Q

R S


= det

(
1 N(k)Q

R S

)
= S− RN(k)Q (6.37)
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This uses the fact that N(k) and N(k)−1
are inverses of each other, and ma-

trices are multiplied using the properties of determinants. During the sim-

ulation N(k) rather than N(k)−1
is stored. For the enlarged matrix N(k)−1

we have

N(k+1)−1
=

(
N(k)−1

Q

R S

)
(6.38)

with (k× 1) vector Q, (1× k) vector R and S defined by (1 6 l 6 n):

Ql = −(eγslσ − 1)G0σ(τl − τ)

Rl = −(eγsσ − 1)G0σ(τ− τl)

S = eγsσ − (eγsσ − 1)G0σ(0
+) (6.39)

In case the insertion move is accepted, we now need the missing elements of

the enlarged matrix N(k+1), expressed in terms of the additional elements

Q, R, S of N(k+1)−1
which we know:

N(k+1)
[
N(k+1)

]−1
= 1I =

(
P̃ Q̃

R̃ S̃

)(
P Q

R S

)
(6.40)

where we write P for N(k)−1
. This yields the equations

P̃P + Q̃R = 1I

P̃Q+ Q̃S =
⇀

0

R̃P + S̃R =
⇀

0T

R̃Q+ S̃S = 1 (6.41)

which we have to solve for P̃(P,Q,R,S) and so on. The third equation

yields

R̃P = −S̃R y R̃ = −S̃RP−1 (6.42)

and inserting into the fourth equation

−S̃RP−1Q+ S̃S = 1 y S̃
(
S−RP−1Q

)
= 1 y S̃ =

1

S− RP−1Q
(6.43)

with P−1 = N(k). S̃ is a number which we don’t need to replace so that we

have from the third equation

R̃ = −S̃RN(k) . (6.44)
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The second equation

Q̃ = −
P̃Q

S
(6.45)

is inserted into the first

P̃P −
P̃QR

S
= 1 y P̃

(
P −

QR

S

)
= 1 (6.46)

where Q is a column vector, R is a row vector. Now we use the Sherman-

Morrison formula (for an invertible square matrix A, with vTA−1u 6= 1)

(
A+ uvT

)−1
= A−1 −

A−1uvTA−1

1 − vTA−1u
(6.47)

which allows a cheap update of the already known inverse of A if A is

modified by the rank 1 matrix uvT . Here, we have u = −Q
S

, vT = R and

P̃ =

(
P −

QR

S

)−1

= P−1 −

[
P−1
(

− Q
S

)] · [RP−1
]

1 − RP−1
(

− Q
S

)
= N(k) +

[
N(k)Q

] · [RN(k)
]

S− RN(k)Q
= N(k) + S̃

[
N(k)Q

] · [RN(k)
]

(6.48)

This is the most massive calculation in the update. Now we find for Q̃

Q̃ = −
P̃Q

S
= −

N(k)Q+ S̃
[
N(k)Q

] · [RN(k)
]
Q

S

−
N(k)Q

S

(
1 +

RN(k)Q

S− RN(k)Q

)
=

N(k)Q

S− RN(k)Q
= −S̃N(k)Q (6.49)

Removal.- The decision on insertion versus removal is taken with 50%

probability. For the deletion of an auxiliary spin s at time τ from the

matrix N(k), the situation is

N(k+1)−1
=

(
N(k)−1

Q

R S

)
N(k+1)

(
P̃ Q̃

R̃ S̃

)
with S̃ =

(
S− RN(k)Q

)−1
Q̃ = −S̃N(k)Q

R̃ = −S̃RN(k) P̃ = N(k) + S̃
[
N(k)Q

] · [RN(k)
]

(6.50)
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The idea is now to use to solve the P̃ equation forN(k) using the expressions

for Q̃ and R̃:

P̃ = N(k) +
Q̃

S̃
S̃
R̃

S̃
= N(k) +

Q̃ · R̃
S̃

y N(k) = P̃ −
Q̃ · R̃
S̃

(6.51)

Monte Carlo procedure.- To summarize, we use the expansion of the

partition function

Z =

∞∑
k=0

∑
{si}

∫β
0
dτk

∫ τ
0
dτ1

(
K

2β

)k
Zk
(
{si, τi}

)
(6.52)

where

Zk
(
{si, τi}

)
= Z0

∏
σ

detN−1
σ

(
{si, τi}

)
(6.53)

For the specific formulation of the update, we need the condition of detailed

balance

W(x)p(x→ x ′) = W(x ′)p(x ′ → x) (6.54)

Then in general, the Metropolis algorithm is to update, with a random

number r, if

r < min

(
1,
W(x ′)
W(x)

)
(6.55)

The detailed balance condition can be slightly modified by splitting the

transition probability into proposal and acceptance probabilities:

p = pproposalpacceptance (6.56)

For an insertion, the proposal probability is the probability p1 of choosing

a time τ from the interval [1,β], p1 = dτ
β

, times the probability p2 = 1
2 of

choosing the auxiliary spin s from {−1, 1}, i.e.

pproposal(k→ k+ 1) = p1p2 =
dτ

2β
(6.57)

For deletion, the tuple (τi, si) must be chosen from the existing k + 1

auxiliary spins, so that the proposal probability is

pproposal(k+ 1→ k) =
1

n+ 1
(6.58)
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Then, the Metropolis update decision is modified to

r < min

(
1,
W(x ′)pproposal(x ′ → x)

W(x)pproposal(x→ x ′)

)
(6.59)

Detailed balance then yields for the acceptance probabilities

pacceptance(k→ k+ 1)

pacceptance(k+ 1→ k)
=

2β

(k+ 1)dτ

Wk+1

Wk

=
K

k+ 1

∏
σ

detN−1
σ (k+ 1)

detN−1
σ (k)

(6.60)

because

Wk+1 = dτ1 . . .dτkdτk+1

(
K

2β

)k+1

detN−1
σ (k+ 1)

Wk = dτ1 . . .dτk

(
K

2β

)k
detN−1

σ (k)

This means that

pacceptance(k→ k+ 1) = min

{
1,

K

k+ 1

∏
σ

detN−1
σ (k+ 1)

detN−1
σ (k)

}
pacceptance(k+ 1→ k) = min

{
1,
k+ 1

K

∏
σ

detN−1
σ (k)

detN−1
σ (k+ 1)

}
(6.61)

Measurement of the Greens function

The Greens function, written for QMC without a minus sign, is

Gσ(τ− τ ′) =
〈
Tτcσ(τ)c

†
σ(τ

′)
〉

=

∫
D[c+c]cσxc

+
σye

−
∑
ijσ c

+
iσ(S−B)ijcσj∫

D[c+c]e−
∑
ijσ c

+
iσ(S−B)ijcσj

=
[
(S− B)−1]

xy
(6.62)

where x, y stand for arbitrary imaginary time indices. For the matrix

inverse, we can write

(S− B)−1 =
[
(1 − BS−1)S

]−1
= S−1(1 − BS−1)−1

= S−1(1 − BS−1)−1[(1 − BS−1) + BS−1]
= S−1 + S−1(1 − BS−1)−1BS−1 (6.63)
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Here we recapitulate the method of getting rid of the zero subspace: The

matrices S, B are infinite dimensional but B has many zeros:

B =

(
B̃ 0

0 0

)
S−1 =

(
S̃−1 . . .

. . . . . .

)
y BS−1 =

(
B̃S̃−1 T

0 0

)
1 − BS−1 =

(
1 − B̃S̃−1 T

1 0

)
y

(
1 − BS−1)−1

=

((
1 − B̃S̃−1

)−1
. . .

1 0

)
y

(
1 − BS−1)−1

B =

((
1 − B̃S̃−1

)−1
B̃ 0

0 0

)
(6.64)

Now we go back to the definitions of the A, B and S matrices:

A = eΓ B = 1 − e−Γ S−1 = G0 (6.65)

with the noninteracting Weiss function G0; thus S is invertible. Now we

insert Ã:(
1 − BS−1)−1

B =

((
1 − B̃S̃−1

)−1
Ã−1ÃB̃ 0

0 0

)
=

((
Ã− ÃB̃S̃−1

)−1
ÃB̃ 0

0 0

)
=

(
Nσ
(
{si, τi}

)
(eΓσ − 1) 0

0 0

)
≡
(
M 0

0 0

)
(6.66)

Then, coming back to the matrix inverse (6.63)

(S− B)−1 = G0 + G0
(
Nσ
(
{si, τi}

)
(eΓσ − 1) 0

0 0

)
G0 (6.67)

This means that the full Greens function can be evaluated as

Gσ(τ− τ ′) = G0
σ(τ− τ ′) + G0

σ(τ− τi)M
σ
ijG

0
σ(τj − τ

′) (6.68)

where τi, τj are configuration time points. The k× k matrix M is

Mσ = Nσ
(
eΓσ − 1

)
(6.69)

The Weiss function G0
σ does not depend on the configuration, but M does.

Therefore, we only need to accumulate terms that depend on the configu-

ration, in particular Mσ
ijG

0
σ(τj − τ

′). This is accumulated for many i, and

only a vector needs to be stored. This also explains why the Nσ matrix is

stored; it is needed for the Greens function. The matrix update cost is of

order O(k2) because only matrix vector multiplications are needed.
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