4. Dynamical mean field theory

Fock space

We consider the Hilbert space Hy for a system of N identical particles. The

wave function Py (T1, T, . .., Tn) representing the probability amplitude for
finding the particles at N positions T1 ..., Tn must satisfy
<1I)NN)N> = Jd?’Tl . dBT’Nhl)N(?l, - 7?N)’2 < 400 (4.1)

Hn is the Nth tensor product of the simple particle spaces H
HN=HRHR- ---H (4.2)

If {|)} is an orthonormal basis of H, the canonical orthonormal basis of
Hn is constructed from the tensor products:

o . oon) = o) o) - Ja) (4.3)

The bra/ket have round brackets as long as the symmetry property is not
taken into account.
The basis states have wave functions

ll)oqocg...ocN (?1,?2,---,?1\1) = (?17--~,?N\O¢17--~,06N)
= (M@ Tl @+ @ (*n]) (Jor) @ [ox2) @ -+ - @ |oen))
= Qo (T1) oy (T2) -+ - Py (TN) (4.4)

The overlap of two vectors is

(s .. omlagod ... o) = (] @ (o @ - @ (o) (loe) @ log) -+ - @ |oe))
= (o |ocy) (xafog) - . (onloxy)
(4.5)

and the completeness relations of the basis follows from the tensor product
of the completeness relations of {|x)}:

Z ‘0610(2...061\])(0(10(2...0(]\1‘:1 (4.6)
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1 is the unit operator in Hy. Hy is generated by linear combinations of
products of single particle wave functions.

Now we need to account for the symmetry property of the wave function.
In nature, for identical particles, only totally symmetric and totally an-
tisymmetric states are observed, corresponding to Bosons and Fermions,
respectively. The wave function for Fermions/Bosons obeys

I-I)(?plu?‘pzw"u?‘p]\]) = 8P1|)(?17?27"'7?N) (47)

where P = (p1, po, ..., pN) represents any permutation of the set (1,2,..., N),

and P is the parity (sign) of the permutation P (number of transpositions
needed to achieve the permutation). ¢ = —1 for Fermions, ¢ = +1 for
Bosons.

This restricts the Hilbert space of the N particle system; a wave function

P(T1,...,7Tn) belongs to the Hilbert space f]-f](\f) of N Bosons (Fermions) if
it is symmetric (antisymmetric) under a permutation of the particles.
We define a symmetrization operator P, by the action on the wave function:

N - 1 N N
Tsll)(rlw--aTN) :Wzgpq)(rpvrmv---?rpl\l) (4'8)

P

E.g. for two Fermions

Pop(ri, o) = %(ﬂ)(ﬂ,@) — (T2, 71)) (4.9)

with the group composition of two permutations P and P’, the symmetriza-
tion operator P, can be shown to be a projector (P? = P.). Thus, these
projectors project Hy onto Fermionic and Bosonic Hilbert spaces:

H = P Hy (4.10)

Now, a system of Bosons or Fermions with one particle in state «, one in
state x9, ... one in state xy is represented as

|061...O(N}E \/N!fPE‘Oq...CXN)
1 P
=—— > &lop,) ® log,) @ .. [ogyy,) (4.11)
VNI &

Symmetrized states are marked with curly bra/ket. The Pauli principle
stating that two Fermions cannot occupied the same state is automatically
satisfied for antisymmetric states; if we take states |ot;) = |xg) we have

‘061062063 ce O(N} = VN!IP,HOQOCQOCg ce OCN) = —V N!ﬂll\ocgoclocg e O(N)
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(4.12)

From Eq. (4.10), if |&jota . .. an) is a basis of the Hilbert space Hy, then

Pelaixs ... N ) is a basis of Fermionic or Bosonic Hilbert spaces U‘C](\T ); the
completeness (closure) relation Eq. (4.6) becomes the completeness relation

in J‘C](\Tl) or J—C,(\P:

Z Tg‘“lO(Q ce ocN)(oclocg e OCN‘TE

= W ‘0610(2...061\1}{0(10(2...0(]\1‘ =1 (4.13)
T ... N
If a basis |«) is orthogonal in H, then the basis | s . .. &) is orthogonal
in Hy, and the basis |o; s . .. N} is orthogonal in J{I(j).

The scalar product of two such vectors constructed from the same basis
) is

{aay . oqgoq o . ..o} = Nl oo . ..oy |PPlocoxs . . . o)
= N!(ogoh. .. (| Pelogoe . .. on)

- Z ¥ (aflog, ) (e op,) - - . (ol apy ) (4.14)

The basis |«) is orthogonal; therefore, the only nonvanishing terms in this
sum are the permutations P such that

/ / /
X = Oy, Ky = Ky, - .y XN = Gy, (4.15)

If of, ), ..., 0 is a permutation of oy, X, ..., an, the overlap can be
directly evaluated. For Fermions, there is at most one particle per state |o),
so that no two identical states can be present in the set {&, Xo, ..., an};
only one permutation P can transform o, oo, . .., oy into o], &, .. ., &y
The sum reduces to one term, and the result is

{ajod .. oo ... o} = (—1)° (for Fermions) (4.16)

For Bosons, one has to count the permutations that transform {o, xo, . .., an}
into {a], o), ..., ). The result is (for n; Bosons in state &;, Ny in state
®2, ..., Ny in state «, where states o1, &g, ..., &, are distinct):

{ogos . ooJoros .. ant = nyins! .. Myp! (for Bosons) (4.17)
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The two results can be efficiently combined by specifying a state with
particles in states o, Xo,..., N in terms of occupation numbers o of
each state of the basis |); Ny is unrestricted for Bosons and can only be 0
or 1 for Fermions. In both cases, the total number of occupied states equals
the total number of particles:

N= > n, (4.18)

Example: A three-Boson state with particles in states &, &1, o would be
characterized as Ny = 2, no = 1, ny = 0Vi > 3. A three-Fermion state
with particles in states &, &9, &3 would be written as ny = 1, no = 1,
n3 =1, ny = 0Vi > 4. With the convention 0! = 1 we then have

{ogog . cologos .. ant = ePHn(x! (4.19)
X

With this expression we obtain an orthonormalized basis for the Hilbert
spaces 3{](\? ) as

1
|O€10¢2...0€N> = |‘OC1(XQ...OCN}

[Tana!
1
= N 2 o) @ l0g) @ @lay) (420)
Tl 2

(angular brackets | ) are now used for normalized symmetric or antisym-
metric states).

The overlap between a tensor product |31, B2, ..., An) and a symmetrized
(antisymmetrized) state |0 ... o) 18

1
(BiB2...Bnlxixa ... an} = N ; e” (B1loy, ) (Balop,) - (Bnlogpy)

= ms(%i\o‘j»

(4.21)

where S(M;) denotes a permanent (analogon of determinant without signs)
for Bosons

perm(Mg) = Y Mip,Map, ... Mg, (4.22)
P
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and a determinant for Fermions
det(Myj) = > (—1)"Myp, Moy, .. Mnpy (4.23)
P

In coordinate representation, we obtain in this way a basis of permanent
wave functions for Bosons

We,po.pn (T1:T2, ..o, TN) = (T1, T2, .., TNIB1R2 - - BN)
1 -
= perm(@g.(15)) 4.24
ANITT 1t [T ! Bill] ( )
and a basis of Slater determinants for Fermions
1-1)[51(32...61\, (?1,?2, . ;?N) = (?1,?2, . 7?NH3162 e BN>
1 -
= 'det((pﬁi(rj)) (4.25)

vN!

The overlap of two normalized Boson or Fermion states is

(B1B2- .. Bnlooxa ... an) = ! S((Biloy))  (4.26)
Ve Tl

The completeness relation in fH](\T ) becomes

ng!
Z H]i“ (X ‘0610(2...OCN><061062...O£N| =1 (4.27)

*x1...0N

Creation and annihilation operators

Creation and annihilation operators provide a convenient representation
of the many-particle states (and manybody operators). They generate the
entire Hilbert space by their action on a single reference state and provide
a basis of the algebra of operators of the Hilbert space. For each single
particle state |A) of the single particle space H, a Boson or Fermion creation
operator a; is defined by its action on any symmetrized or antisymmetrized

state [A1, A9, ..., AN} of fH](\T):

(11\‘}\1,7\2,...,7\]\]}5 |7\}\1,}\2,...,)\N} (4.28)
We us an orthonormal basis {|A;)} so that a;\ can also be defined as
(lj\‘)\l, Ao, ... ,7\N> = /1 + 1AA Ag, ... ,7\N> (4.29)
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with occupation number ny, of state |A) in [A, Ao, ... AN). a;f\ adds a par-
ticle in state |A) to the state on which it operates and symmetrizes or
antisymmetrizes the new state. For Fermions:

IAAL, Ao, ... AN} if state |]A) not present in A1, Ag, ..., AN}

0 otherwise

ai\\?\lj\g, R ,7\]\]} = {

(4.30)

Grassmann algebra

We need anticommuting numbers for constructing coherent states for Fermions
which are eigenstates of annihilation operators because nticommutation re-
lations of annihilation operators a; lead to anticommutation relations of the
eigenvalues Xi. Algebras of anticommuting numbers are called Grassmann
algebras. For the present purpose, it is sufficient to consider Grassmann
algebra with its definition of differentiation and integration as clever con-
structs that take care of the minus signs that arise from the antisymmetry
of Fermions.

An algebra is a linear space in which, besides the usual operations of addi-
tion and multiplication by numbers, a product of elements is defined with
the usual distributive law:

x(al+b&) = ax(+bx§  (al+b&)x = alx+béx (4.31)

with numbers a, b € K (here K = C) and elements of the algebra X, (
and &. The algebra is associative if for any three elements

X(C&) = (xC)& (4.32)

A Grassmann algebra is defined by a set of generators {xi}, 1 = 1...m.
These generators anticommute

XiXj T XiXi = 0 (4:33)
so that in particular (for i =j)
E? — 0 (4.34)

The basis of the Grassmann algebra is made up of all distinct products of
the generators. Thus, a number in the Grassmann algebra is a linear combi-
nation, with complex coefficients, of the numbers {1, X oy, Xo; Xotas - - - » Xoy Xoto*

44



- Xa,, ; With indices o ordered, by convention, as &) < oy < -+ < Oy.
The dimension of the algebra with n generators is 2™ since distinct basis
elements are produced by the two possibilities of including a generator 0
or 1 times for each of the n generators.

A conjugation operation can be defined in an algebra with an even number
n = 2p of generators. We select a set of p generators x; and to each we
associate a generator called x;. Then the conjugation is defined by

X' =xi )" =x (4.35)
Then, for complex A

(Axi)" = A"{ (4.36)
and for products of generators

(X Xow - - - X)) = Xoe Xoo s - - - Xy (4.37)

We now consider a Grassmann algebra with two generators, x and x*. The
algebra is generated by {1,x,%x*, x*X}. Because of Xi2 = 0, any analytic
function of f defined on this algebra is a linear function:

f(x) = fo+ f1x (4.38)

An operator A has the form

A(X"x) = ag + arx + aix" + apx’x (4.39)

Now a derivative can be defined for Grassmann variable functions; it is like
the complex derivative, but for the operator % to act on X, X has to be
anticommuted until it is adjacent to x. For example:

0 —(X'x) = aa (—xx") = —x
X

*

0x
Then
0 . . a _
a—A(X ,X) = a1 — apgy 3 ,X) = a1 + any
X X
0o 0 0
—A — = — — A 4.4
o Ox (x",x) = —an ox (X", x) (4.40)
Thus, X
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In defining an integral, there is no analog of the Riemann sum; rather, it
is defined as a linear mapping which has the fundamental property

Joo df(x)

oo dx

=0 in case f(x — 00) = f(x — —00) =0 (4.41)

of ordinary integrals over functions vanishing at infinity that the integral
of an exact differential form is zero. This implies

J dx1 =0 (4.42)

The only nonvanishing integral is that of x since x is not a derivative. Thus
we define

dex =1 (4.43)

and again in order to apply this, one has to anticommute x to bring it
next to dx. Grassmann integration turns out to be equivalent to Grass-
mann differentiation. As we arbitrarily defined half the generators X to
be conjugate variables but otherwise they are equivalent to xi, we define
integration for conjugate variables in the same way:

de* 1=0 J dx*x =1 (4.44)

Examples for integration rules are:

dx f(x) = de(fo +fi1x) = f1

dx Alx",x) = JdX (ap + arx + arx” + ar2x™x) = a1 — apx”

dx*Alx",x) = a1 + anx

dx” J dx Alx",x) = —app= — J de dx* A(Xx", x) (4.45)

Functional integral representation

We now introduce coherent states as a basis of Fock space F. They are
eigenstates of Fermionic annihilation operators (creation operators would
not work as they don’t have eigenstates)!:

ailx) = Xilx) (4.46)

lsee J. W. Negele and H. Orland, Quantum Many-Particle Systems, Perseus Publishing, Cambridge
1998, p. 20.
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This leads to the definition of a generalized Fermion Fock space as now
complex as well as Grassmann coefficients are allowed for a state?. A vector
in this space can be expanded as

) = Z Xil$i) (4.47)

with x; part of the Grassmann algebra G and |¢p;) element of the Fock
space F. For calculating with expressions mixing Grassmann variables and
creation or annihilation operators, commutation rules are necessary:

[~, d]+ — O (448)
and
(xa)t = a'x* (4.49)

with X any Grassmann variable in {Xi, x;} and a is any operator in {aj, aiT}.
A Fermi coherent state is defined as

X) —exp{ le } H(l_XiaD|O> (4.50)

1
Noting that pairs of Grassmann variables and creation or annihilation op-
erators commute:

iial, xjall = xialxjal —xjalxia] = —xixgalal + xxiala]
:)(j)(laTaT—)())(1 ] T =0 (4.51)

we can show that the two definitions of Eq. (4.50) are really the same:

= exp{ le } Hexp{—xia;r}l()) = H(l —Xi(lD|0>

i i

(4.52)
We show that |x) is indeed an eigenstate for a; with eigenvalue X;:

ailx) = a; H(1 - Xja})|0>

j

— 11 (1—xa T)al(l —Xid )‘O> H(l — Xja;r>XiaiaU0> using Eq. (4.48)
AL jAL

=1 “(1 - Xja;[)Xim = H(l — Xja;)xi(l — Xiai)\O) because X7 = 0
AL j#

= XilX)

2see ibid., p. 29.
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(4.53)

The adjoint of a coherent state is

(Xl = <0|eXp{—Z(Xja}L)T} = <0|eXp{Z X?aj} = O] [0+xja)

j

(4.54)
This state is a left eigenfunction of a;r
(xlal = (xIx; (4.55)
The effect of a creation operator ai on a state [x) is
allx) = al [ [(1—=x5a))10) = [ [(1 —x9)) &l (1 = X)) l0)
j j#
= H(l —Xj a})aIlO) because aia.;r =0
j#i
0 ; ; 0
= ——(1—xia) [ (1 = x5a])10) = ——1) (4.56)
OXi o OXi
j#L
and in the same way
(x| 0 (x| (4.57)
ai = :
Xlai ox: X

The coherent states now form an overcomplete basis of the generalized
Fock space, and two states |x) and |x') have an overlap:

(b = O ][O +xia) [T =xaf)i0) = O] J(1 +xia) (1 =x:ap) o)

i j
=0 [ —xtana) o) = [J(1 +xix:) = eXp{Z xi‘xi}
l l 1 (4.58)
One can then prove that the unit of the physical Fock space F can be
written as®
JH dx} dxie= XX x) (x| = 1 (4.59)
i

3for the proof see ibid., p. 31.
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4.1 DMFT self consistency condition for the Hubbard model

We consider the Hubbard Hamiltonian

H —_- — Z -tl]c.j;_C]o- Z C'L()'Clo- —|_ Z ClGCu;ClG,Clgl (460)
ijo ioo’
o#0’
where the spin and orbital index o runs from 1 to N. The partition function
corresponding to this Hamiltonian is

= J H DCwDCiGe_S (461)

with the action

(4.62)

where the Fermion operators C{;, Cis of the Hamiltonian have been replaced
by Grassmann variables Ciy(T), Cio(T).

The cavity method now requires that we focus on one site 1 = o and
separate the Hamiltonian (4.60) into three parts, one relating to site o
only, one connecting this site to the lattice and one for the lattice with site
0 removed:

H=H, +H, +H (4.63)
u
Ho — _HZ C:O‘COO' —l_ 5 Z Cj)—o‘COO'C(—)I—O'/COO'/ (464)
o oo’
o#o’
H. = — Z [tiocjgcog + toicjocw} (4.65)
+ + u + o0 ot
| Z 4jCi6Co — H'Z CioCio T 5 D Chtisticio
i#£0j#0 0 i#£oo0 i#£0 00’
o#o’
(4.66)
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The three parts of the Hamiltonian correspond to the action S, of site o
the action AS for the interaction between site o and the lattice, and the
action S of the lattice without site o

o —J dt [Z COO' (_ - FL> COO‘(T) + % (_:OO'(T)COO'(T)COO'/(T)COO'/(T)
cggc;’
(4.67)
AS = — JB dt [Z tioéiG(T)Coa(T) + toiéoc(T)CiG(T)] (4'68)
0 ic
:J [Z Cio(T <_ - H) Cig(T) — Z tijéio(T)CjG(T)
i#o 0 i#£0j#0 0
(4.69)
‘|‘ = Z Cio(T)Cio(T)Cior (T)Cior (T )]
1750 oo’
o0#0’

The aim is now to integrate out all lattice degrees of freedom except those
of site 0 in order to find the effective dynamics at site 0. In that process,
the action S, remains unchanged, the terms of AS are expanded in terms of
the hopping t which becomes small with increasing dimension and averaged
with respect to the action S{©). Defining AS(T) via AS = fg dt AS(T) the
partition function is

Z= J DEogDeoge ™ J []DeioDeioe s e o drast (4.70)
i#o

Now we can expand the last exponential function as

. B LB (B

e Jo dTAS(T):l—J dTAS(T)-}—EJ dTlJ dte AS(T1)AS(To) —
0 HJo 0

(4.71)

Taking into account that in general an operator average with respect to an
action S can be expressed as

JTTi DeaDege *Alcy, ol

(A)s = [TLi DeaDeyes

1 J H DégDege SAlCy, Col

o0



(4.72)

we can consider the second functional integral in (4.70) to average the
terms of the expansion (4.71) with respect to the lattice action S

0

B
/= JH DEOG'DCOGQ_SOZS(O] {1 — J dt <AS(T)>S(0)

1 [P p
—I_EJ dT1J dTo <AS(T1)AS(T2)>S(O) —}
- J0 0
(4.73)
Here, the partition function of the lattice without site o is abbreviated as

Zso = J [T DeuDeae™"” (4.74)

Now the terms in (4.73) with odd powers of AS will average to zero. For
example,

(AS(T))st0) = Ztio<éia(’f)>s<o)coa(’f)‘|‘toi(_loo(’f)<Cia(’f)>5(o) =0, (4.75)

because the average (...)sw©) acts on all sites except 0. The next average
in (4.73) yields

(AS(T1)AS(T2))s10) = <TT [Z tioCio(T1)Coo(T1) + toiéoc(Tl)Cic(Tl)] X

io

X [Z tjoéja’(’r2)coa’(ft2) + tOjCOG/(Tz)CjGI(Tz)] >S(°]

jo’
= Z tiotojCoo(T1){TxCio(T1)Cjor (T2))s10) Coor(T2)
ijoo’
+ Z toitjoCoo(T1) (TrCic(T1)Cio (T2))s(0) Coo’(T2)
ijoo’
=2 Z tiotojCOG(Tl)<TTCiG(T1)6jG’(T2)>S(0) COG’(TQ)
ijjoo’
=2 Z tiOtOjCOO'(Tl)<TTCiG(T1)(_:jO'(T2)>S(O) COG(TZ)
ijo
= —2 Z tiotojéoa(Tl)Gi(joé(Tl - TQ)COO'(TQ)
ijo

ol



(4.76)

The imaginary time ordering operatore . enters because the path integral
leads to imaginary time ordering. Only terms with ¢ = ¢’ contribute as
we are considering a paramagnetic state and thus (TCig(T1)Cjo' (T2)) 5001 =
do07 (TrCio(T1)Cis(T2))510). We have identified the average with the cav1ty

Greens function Gijc)r(Tl —T9) = —(Tx Cw(’tl)c (T2))s(0), 4. €. the Greens
function of the Hubbard model without the 81te 0. Now we have for the
partition function

= J H Déogﬂcoge_SOZS(o] X
o

P )
X {1 —J dT1J dto Ztiotojéocr('rl)COG(T2)G£)'O()7(T1 —To) + .. }

0 0 ijo

(4.77)

We would like to write the bracket {...} in (4.77) again as an exponential
function in order to identify an effective action Seg:

_ J T DeosDeooe e (4.78)

Noting that the next term in the expansion of (4.77) would read

B ) B B
J dTlJ deJ deJ dTy ) CoolT1)Cos(T3)Coo(T2)Con(Ta) X
0 0 0 0 tiiejije 0

X tll Otlg Ot0]1tO]QG (Tl T3, T2 T4) .

(4.79)

111211)20

We can write for the partion function (4.77)

= J H ‘D(_:OO'DCOO'e_SOZS(O) X
i

B
X eXp{ Z ZJ drty.. J dTon Coo(T1) - . CoolTon—1)Coo(T2) . .. Coo(Tan) X

n=1 o

§ (o)
X t11 o - 0]1 to)nGllinjl)no—(Tl PN T2n_1, T2 PN T2n)

“L17 a}TL
J15--5)n
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(4.80)

All terms but the first in this sum over n turn out to be at least of order
1/d so that they vanish in the limit of infinite dimension d = oco. Thus, in
this limit we find for the effective action

eff - S + Z J dTl J dTQ 606(T1)C06(T2) Z tiotong)();(Tl - TZ)

i

_ L dT[;COG(T)(a 1) cacl) + 5 Zcoa ©)oa(T)Coar () oo (1)

0‘750‘
+ Z J dTl J dT2 EOO'(Tl)COO'(TQ) Z tiotojGEjogy(Tl - TQ)

(4.81)

and introducing the Weiss field

_ 0 0
5! (1 —t) = (50— 1)Bnm — ) tloGiylm — ) (182)
Ly

we finally get

B B
Seff - - Z J dTl J dTQ 500(’&)951(’51 - T2)C00(T2)

— Jo 0
P ou
] ety Y Colteos(team (Do () (483)
0 2
oo’ o#0’

The equation

Gl = Gije — GiooGolyGojo (4.84)

ijo 000

is needed to relate the cavity Greens function to the Greens function of
the lattice Gijo. Going from imaginary time to imaginary frequency and
combining with (4.84), the Weiss function (4.82) reads

Gyl (iwn) = iwn + 1 — ) tiotejGi(iwn)
i
. . . 1 .
= 1lWn + UL — Z tioto; {Gi)’ G(lwn) — Gio G(lwn)Goo a(lwn)Goj G(lwﬂ)
i
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(4.85)

If we now go from real space to k space we can simplify this equation.
Introducing the Fourier transform Gy, via

1) o lu)n Z elkR” Gk 1(,Un) (4.86)

we find
Z tlo GIOO' l(Un Z th Z elkaGkG l(Un Z ekaO' l(Un
Z JCwtOJGU o(iwn) Z tiotoj Z e!Ru Gy oliwn)

i
— § § tloelleO § tojelkRO] Gko‘ lwn § ekao‘ 1wn

(4.87)

In the general form of the Greens function G, clr(iwn) =iwn + UL — & —
Y s(iwy) we introduce the abbreviation & = 1w, + 1 — Xs(iwy) to get
Ggé(iwn) = & — ¢ and determine the sums

: — &+ &
;Ekac(lwn) :Z E,ikf,k :ZEka_—ak _—1‘|‘Z

K K &
=—1+ EZ Gro(iwn) = =1+ EGoo G(lwn)
k
2 . o €]2< o Sk(Ek - —f‘ SkE,
gekahwn) ‘%a—ek —g — _Z k+aza_€k
E.( 1+ &Gooo 1wn)) = —&+ 5'2 ooc(lwn)
(4.88)

With this, the Weiss function (4.85) becomes

Sgl(iwn) = 1lWwn + 1 — Z S%Gko(iwn (Z exGro(iwn) )2Go_o G(iwn)
k

= 1wy, + K+ & — £2Goo G(iwn)
+ (=1 + EGoooliwn)) (—Goagliwn) + &)
= iwn —I_ p’ _ E, —I_ G;(}o'(lwn) — Z (1wn) —l_ Goo o‘(lwn)
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(4.89)

The effective action (4.83) can now be interpreted in terms of the Anderson
impurity model, i. e. the Anderson impurity model gives rise to an action
which becomes identical to (4.83) if an additional self consistency condition
is fulfilled. The Hamiltonian for the Anderson impurity model is

u Z
ko ko o oo’
o#0’

(4.90)

where o runs from 1 to the degeneracy N. The action corresponding to
this Hamiltonian will consist of a purely local part S, concerning only the
f electrons

O_J dT[Zf (——u) )4 — Zf e )fo,(m)]
- (4.91)

and a part involving conduction band electrons that can be integrated out:

s=s.t [ dTZ[cka (35 + o) cral) + eual ol )+ Vil lcsa()
(4.92)

Now the partition function for the Hamiltonian (4.90) is
Z= J DfoDf J H DeigDeige > = J DfeDfye > J [ [ DeioDeiox
X eXp{J dTZ [Ckcr ( + €k> CkG( )vkékG(T)fO'(T) + VEFG(T)CkG(T)] }
= JDF Df, e o r det(i + £k> X
o o k‘_ a"['

P rB 0 ~1
X eXp{ZJ d’tl dT2 f (Tl)Vka<— + Ek) 57112f0("f2)}

0
ko “0 J0 T

(4.93)
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In the last step, the terms involving f electrons Vi fq(T) and Vifs(T) were
taken as source terms, which makes the term in the exponent a Gaussian
integral that can be evaluated directly. The determinant constitutes a con-
stant factor in the partition function that doesn’t concern us here. We are
left with an action for the f electrons that reads

B B _
Sf :J d’Tl J dT2 Z FG(Tl) [(aiﬁ — u) 611 Ty Z |vk|2(aiTl + 5k> 16’(1 TQ] fG(T2)

0 0 ”

0 2
o#0’

B
+ ] aey Y Fl 0ol

(4.94)

If we now compare this to the effective action of the Hubbard model (4.83),
we see that they are identical if we require that the Weiss function §(t; —
Ty ) fulfils the condition

0 0 -1
9_1(’(1 — TQ) = — <a_"t1 — H) 6T1 T ; ‘Vk‘Q <6—71 + Ek) 6T1 Ty (4~95)

Going from imaginary time to imaginary frequency, this equation reads

Vi?

_ 4.96
1Wn — € ( )

5 '(iwn) =iwn+p— )
k

Here we can identify the usual definition of the hybridization function
A(iwy) in the Anderson impurity model

. Vi?
Allwy) = _ 4.97
o = 5 o

If we now equate Weiss functions (4.89) and (4.96) we find the DMFT
selfconsistency condition in terms of a prescription for A(iwn)

Aliwy) = iwy + 1 — Ze(iwn) — God o (iwy) (4.98)

On the Bethe lattice and with a half band width of 2t, we have a nonin-
teracting density of states

pole) = L\/ 412 — g2 (4.99)
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and thus we can write for the local Greens function

Goool@) = Y Gulw) = Y ——  with {=w+u—To(w)
k

k
C[qopole) 1% w—e? 1 I
_JdEC— e 2mt? J_ztde (—e¢ th(C—SgH(C)m)
(4.100)

From this we gain the expression
t*Gooo(W) — {4+ Gogy(w) =0, (4.101)

which combined with Eq. (4.98) leads to a simplified form of the selfcon-
sistency condition

A(iwn) = t2Gye o (iwy) . (4.102)
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