
2. Density functional theory

The widely used and extremely succesful density functional theory is based

on the exact theorem that the ground state energy is determined only by

the density. In particular, the theorem guarantees that all ground state

properties are unique functionals of the electron density and that the elec-

tron density can be obtained from a Schrödinger equation in an effective

potential. Thus the interacting electron system is mapped onto a system of

noninteracting electrons in an effective potential. This potential depends

on the electron distribution and describes the interactions between the

electrons in an effective way.

Density functional theory provides a total energy functional of the form
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Ts is the kinetic energy of the noninteracting reference system, not that of

the many body system. It can be written as a functional of the density.

Exc[n(
⇀
r)] is the exchange and correlation functional which is not known

and has to be approximated .

The minimum principle leads to the Kohn-Sham equations for the one
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with the effective potential
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and the density

n(
⇀
r) =

N∑
n=1

φ∗n(
⇀
r)φn(

⇀
r) (2.4)

Thus, a conventional selfconsistency cycle to solve this system of equations

looks like this:

2.1 Local spin density approximation

In order to describe magnetic systems (called open shell molecules by che-

mists), one uses the local spin density approximation where the spin depen-

dent density n(
⇀
r,σ) is used instead of the total density n(

⇀
r) =

∑
σ n(

⇀
r,σ).
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This leads to one-particle wave functions with spin up and spin down cha-

racter and to two effective potentials, one for spin up electrons and one

for spin down electrons. The difference between the effective potentials

acts like a magnetic field even though its origin is purely electrostatic, i.e.

exchange and correlation; it is called the exchange interaction.

2.2 Interpretation of Kohn-Sham energies

The Kohn-Sham eigenvalues, introduced as Lagrange multipliers, have no

direct physical meaning, at least not that of the energies to add or substract

electrons from the interacting manybody system (in analogy to Koopmas

theorem for Hartree Fock). The exception is the highest eigenvalue in a

finite system which is minus the ionization energy.

Nevertheless, the eigenvalues have a well defined meaning within the theory

and can be used to construct physically meaningful quantities. For exam-

ple, they can be used to develop perturbation expressions for excitation

energies, either in the form of a functional or in the form of explicit many-

body calculations that use the Kohn-Sham eigenfunctions and eigenvalues

as an input.

Within the Kohn-Sham formalism, the meaning of the eigenvalues, known

as Janak theorem, is that the eigenvalue is the derivative of the total energy

with respect to the occupation of a state:
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=

∫
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2.3 Basis sets

Here we give a very brief overview over the different basis sets that are in

use for the solution of the Kohn Sham equations.

1) Plane waves

Plane waves are conceptionally very simple but they are not well adapted

to describe strongly varying potentials. Therefore, they are usually used

in conjunction with pseudopotentials or their more recent generalization,

projector augmented waves (PAW).

2) Augmented functions

Mixed basis sets that treat the region close to the atomic cores different-

ly from the interstitial region are often computationally efficient as they

lead to a small (or even minimal) basis. Examples are augmented plane

13



wave (APW), muffin tin orbital (MTO) and the Korringa-Kohn-Rostoker

(KKR) multiple scattering Green function method. Linear augmented func-

tion methods were invented to deal with the energy dependence of the basis

functions.

3) Localized orbitals

Here, we give slightly more detail about methods using localized orbitals

as we will use one of them in this course.

The following expansion theorem is important for the usefulness of analy-

tical basis functions:
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This is an expansion in terms of basis functions on neighbouring sites.

Examples are: Gaussians times polynomials rβe−αr2, Slater type orbitals

(STO) rβe−αr, Bessel, Neumann and Hankel functions.

a) Gaussians

Gaussians have the nice property that the product of any two Guassians

is a Gaussian:
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(2.7)

Thus, all multicenter integrals can be done analytically. This is why most

molecular calculations and quantum chemistry codes use Gaussians. They

are also very suitable for Coulomb integrals which is important for Hartree

Fock and hybrid functionals. Many commercial codes based on Gaussians

exist.

b) Numerial atomic orbitals

These basis sets rely on the solution of the atomic Schrödinger equati-

on with spherically symmetric potentials; confining potentials are used for

compression (i.e. for limiting the range of the overlap of the basis functi-

ons). An example is the SIESTA code with has rather low precision due to

its use of pseudopotentials.

The full potential local orbital (FPLO) minimum basis band structure code
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uses the crystal potential decomposition

v(
⇀
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whwere L = l,m and YL are real spherical harmonics. Extended states are

expanded in localized atomic basis orbitals

〈⇀r|⇀R⇀
τL〉 = φl⇀

τ
(|

⇀
r−

⇀

R−
⇀
τ|)YL(

⇀
r−

⇀

R−
⇀
τ) (2.9)

The basis orbitals solve the Schrödinger equation with spherical potential
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1
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FPLO uses a confinement potential growing as r4,

vconfinement =
( r
r0

)4
(2.11)

but there are several other choices in the literature.
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