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Strong-coupling formula for momentum-dependent susceptibilities in dynamical mean-field theory
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Computing momentum-dependent susceptibilities in the dynamical mean-field theory (DMFT) requires
solving the Bethe-Salpeter equation, which demands large computational cost. Exploiting the strong-coupling
feature of local fluctuations, we derive a simplified formula that can be solved at a considerably lower cost. The
validity and the physical meaning of the formula are confirmed by deriving the effective intersite interactions
in the strong-coupling limit, such as the kinetic exchange and RKKY interactions. Furthermore, numerical
calculations for single-orbital and multiorbital models demonstrate surprisingly wider applicability including
a weak-coupling region. Based on this formula, we propose three levels of practical approximations that can
be chosen depending on complexity of problems. Simpler evaluations of spin and orbital susceptibilities in
multiorbital systems thus become possible within DMFT.
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I. INTRODUCTION

Strongly correlated materials including d and/or f elec-
trons show rich quantum phases that attract academic interest
and promise novel functionality. To find further interesting or
useful properties, new compounds are searched for continu-
ously. On the theoretical side, a qualitative or even quantitative
prediction of phase transitions is desired to promote experi-
mental researches for finding new materials.

Dynamical mean-field theory (DMFT) is a method
which is extensively employed in investigations of strongly
correlated systems [1]. The DMFT takes full account of
local correlations, which is responsible for formation of a
local moment, and therefore offers a good starting point in
addressing long-range ordering. Applications of the DMFT
have expanded from models to materials by combining
first-principles calculations within the density functional
theory (DFT+DMFT) [2].

The DMFT is exploited not only for single-particle exci-
tations but also for two-particle responses by means of the
momentum-dependent susceptibilities χ (q, ω). The dynami-
cal part gives information of two-particle excitations including
collective modes. On the other hand, the static component
χ (q) allows systematic investigations of phase transitions.
This method has been applied to various correlated models
such as the Hubbard model [3–6], the periodic Anderson
model [7], and variants of the Kondo lattice model [8–11].
It has also been applied to material calculations within the
DFT+DMFT framework [12–14].

An actual calculation of χ (q) requires much more effort
compared to the ordinary self-consistency calculations: In

*Present address: Research Institute for Interdisciplinary Science,
Okayama University, Okayama 700-8530, Japan.

addition to the single-particle Green function (or the self-
energy), one needs to compute the two-particle Green function
(or the vertex part) which depends on three frequencies. This
is plugged into the Bethe-Salpeter (BS) equation to compute
q-dependent χ (q). This additional process of computing χ (q)
becomes particularly harder in multiorbital systems, since the
number of susceptibility components increases in proportion
to N4

orb, where Norb is the number of orbitals. Toward realistic
susceptibility calculations including full orbitals, efforts have
been made to develop an efficient treatment of the BS equation
[15] and the vertex part [16–21]. Related developments are
addressed, for example, in solving the parquet equation [22]
and diagrammatic extensions of the DMFT [23,24].

In this paper we establish a practical approximation that
enables quick computations of χ (q), rather than pursuing
the rigorous solution of the original BS equation. Using a
strong-coupling feature of the vertex part, we first reduce
the BS equation into a simple form which is similar to the
random phase approximation (RPA). The difference with the
RPA, however, is that the starting point of our formula is
the local susceptibility, which fully takes local correlations
into account. The effective interaction becomes nonlocal,
describing, for example, the kinetic exchange interaction in
the Hubbard model and the RKKY interaction in the periodic
Anderson model. Thus, our simple formula captures correct
physics of well-defined local moments in the strong-coupling
limit (SCL). For this reason, we refer to this formula as SCL
formula. It will be shown by numerical calculations that the
SCL formula provides accurate results over a wide range from
weak- to strong-coupling region.

This paper is organized as follows. In Sec. II we first
review necessary equations for computing χ (q), and present
an explicit example that shows the issue to be addressed. In
Sec. III we derive the SCL formula of χ (q) by reducing the
BS equation. In Sec. IV we prove that the formula contains

2469-9950/2019/99(16)/165134(17) 165134-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.165134&domain=pdf&date_stamp=2019-04-23
https://doi.org/10.1103/PhysRevB.99.165134


OTSUKI, YOSHIMI, SHINAOKA, AND NOMURA PHYSICAL REVIEW B 99, 165134 (2019)

proper physics around the atomic limit such as the kinetic ex-
change interactions and the RKKY interactions. The equation
is extended to multiorbital systems in Sec. V. Based on the
SCL formula for χ (q), we propose three levels of practical
approximations in Sec. VI. An application to a two-orbital
model is presented in Sec. VII to compare those approxima-
tion schemes. The paper is summarized in Sec. VIII.

II. FUNDAMENTALS

A. Susceptibility in the DMFT

We first review how to evaluate the momentum-dependent
susceptibilities within the DMFT. The basic idea is presented
in Ref. [3], which showed that the antiferromagnetic (AFM)
transition temperature covers the paramagnetic Mott transi-
tion in the Hubbard model. For early and recent reviews of the
method, see Refs. [1,25], respectively.

We define a local one-particle operator Omσ,m′σ ′ at site i by

Omσ,m′σ ′ (i) = c†
imσ cim′σ ′ , (1)

where m and σ denote orbital and spin components, re-
spectively. Any orbital or multipole operators that are in-
variant under the point-group symmetry are represented by
linear combinations of Omσ,m′σ ′ . In this paper we consider
momentum- and frequency-dependent susceptibility corre-
sponding to Omσ,m′σ ′ . Regarding Omσ,m′σ ′ as a vector, the
susceptibility is defined as a matrix χ as

[χ(q, i�)]12,34 =
∫ β

0
dτ 〈O12(q, τ )O43(−q)〉ei�τ , (2)

where � denotes the bosonic Matsubara frequency, and ab-
breviations such as 1 ≡ (m, σ ) were introduced. Eigenvalues
of χ gives physical susceptibilities χ (γ )(q, i�). A phase tran-
sition can be detected by divergence of the static component
χ (γ )(q, 0).

In the DMFT calculations, we treat the two-particle
Green function X12,34(iω, iω′; i�), defined with two additional
fermionic Matsubara frequencies iω and iω′. The physical
susceptibility χ is obtained by summing over the fermionic
frequencies as

χ12,34(q, i�) = T
∑
ωω′

X12,34(iω, iω′; q, i�). (3)

For convenience, we introduce a matrix notation including iω
and iω′ as

X12,34(iω, iω′; q, i�) ≡ [X (q, i�)](12,ω),(34,ω′ ). (4)

Then, the BS equation which X (q, i�) satisfies is represented
as a matrix equation of the form

X−1(q, i�) = X−1
0 (q, i�) − �loc(i�), (5)

where X 0(q, i�) is defined by

[X0(q, i�)](12,ω),(34,ω′ ) = −δωω′

N

∑
k

G31(k, iω)

× G24(k + q, iω + i�). (6)

Here N denotes the number of lattice sites, and G31(k, iω) is
the single-particle Green function within DMFT. The vertex

part �loc(i�) does not depend on momentum in accordance
with the local self-energy in the DMFT. Hence, �loc(i�)
can be evaluated in the effective impurity problem through a
similar BS equation

X−1
loc (i�) = X−1

0,loc(i�) − �loc(i�), (7)

where X 0,loc is defined by X 0,loc(i�) = N−1 ∑
q X 0(q, i�).

Eliminating �loc in Eqs. (5) and (7), we obtain

X−1(q, i�) = X−1
loc (i�) − X−1

0,loc(i�) + X−1
0 (q, i�). (8)

This is the equation we need to solve to compute χ(q). The
size of the matrices in Eq. (8) is, in general, 4N2

orbNω ×
4N2

orbNω, where 4 comes from spin, Norb denotes the number
of orbitals, and Nω is the number of the fermionic Matsubara
frequencies. Solving the matrix equation as well as computing
X loc in the effective impurity problems becomes hard for
multiorbital models at low temperatures.

Hereafter, we consider the static susceptibility � = 0, and
omit the argument i�.

B. Exemplary results and aim of this paper

To illustrate the formalism so far, and to make it clear
the purpose of this paper, we show exemplary results for the
Hubbard model on a square lattice. The Hamiltonian reads

H =
∑
kσ

εkc†
kσ

ckσ + U
∑

i

ni↑ni↓, (9)

where εk = −2t (cos kx + cos ky). The chemical potential is
fixed at μ = U/2 to consider a half-filled case. The bandwidth
is given by W = 8t , and we use t = 1 as the unit of energy.
All computations were performed in a system of size N =
32 × 32 with the periodic boundary condition.

Regarding the impurity solver, we used the hybridiza-
tion expansion algorithm of the continuous-time quantum
Monte Carlo (CTQMC) method [26,27] in the region U/W �
1.5. In the strong-coupling regime U/W � 1.0, we used the
Hubbard-I approximation to obtain a stable solution, avoiding
statistical errors (see Appendix A for some remarks). In solv-
ing the matrix equation in Eq. (8), we introduced a cutoff for
the fermionic frequencies. See Appendix B for the technical
details.

Figure 1 shows the momentum dependence of the static
spin susceptibility χ

sp
q . Here χ

sp
q is defined as the correla-

tion between the operator Osp = (O↑↑ − O↓↓)/
√

2. From this
figure we confirm that fluctuations at q = (π, π ) ≡ Q is the
strongest. Then, we fix q at Q and look into the T dependence
of χ

sp
Q . Figure 2 shows the inverse of χ

sp
Q as a function of T

for U/W = 0.5, 1, and 1.5 (red squares). In the DMFT, χ
sp
Q

basically follows the Curie-Weiss law χ
sp
Q 	 C/(T − TN), due

to the mean-field nature of the intersite correlations [28]. The
Curie constant C agrees with that estimated from the localized
spin C = 1/2 in the strong-coupling limit, and is reduced in
the weak-coupling regime. The transition temperature deter-
mined from the divergence of χ

sp
Q is plotted as a function of U

in Fig. 3. Convergence to the Heisenberg limit TN ∼ 4t2/U is
confirmed.
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FIG. 1. Momentum dependence of the static spin susceptibility
χ

sp
q for the square-lattice Hubbard model with U/W = 1 and T =

0.5. The CTQMC solver was used. �: (0,0), X : (0,π ), M: (π, π ) ≡
Q, M ′: (π/2, π/2).

Two reference results are shown in Figs. 2 and 3 for
comparison. One is the RPA computed by(

χRPA
q

)−1 = (
χU=0

0,q

)−1 − U . (10)

Here χU=0
0,q denotes the susceptibility for U = 0 (no self-

energy correction). The RPA yields TN that increases mono-
tonically with increasing U/W , and hence TN is considerably
overestimated in the whole parameter region, as expected.
Improvement to the RPA susceptibility is made by includ-
ing correlations from DMFT calculations. We consider the
following quantity, which we refer to as renormalized RPA
(RRPA): (

χRRPA
q

)−1 = χ−1
0,q − χ−1

0,loc + χ−1
loc . (11)

This expression corresponds to replacing all X with χ in
Eq. (8) (namely, summation over the fermionic Matsub-
ara frequencies are taken independently on each X ). The
RRPA formula takes two corrections into account compared
with that in RPA: First, G in χ0 includes the self-energy

FIG. 2. Temperature dependence of the inverse susceptibility
1/χ

sp
Q for the AFM fluctuation in the Hubbard model on a half-filled

square lattice. The closed (open) symbols are CTQMC (Hubbard-
I) results. The squares are results computed with the original BS
equation in Eq. (8), and circles are results computed with RRPA in
Eq. (11).

FIG. 3. Phase diagram of the Hubbard model on a square lattice.
See the caption of Fig. 2 for explanations of symbols.

correction, and second, the bare interaction U is replaced with
the effective one, Ueff = χ−1

0,loc − χ−1
loc . Figure 3 demonstrates

that the RRPA yields a reasonable value between the exact
and RPA for U � W . However, it underestimates TN for U �
W and does not give the correct asymptotics for large U .
Consequently, the RRPA results in a wrong phase diagram in
which some phase is missing (orbz) in multiorbital cases (see
Sec. VII for an explicit result). In the rest of this paper we
propose an alternative approach which is valid in the strong-
coupling regime. The formula is as simple as the RPA formula
and is executable with a low numerical cost comparable to the
RRPA.

III. STRONG-COUPLING FORMULA

In this section we derive a simple susceptibility formula
which gives the correct asymptotics in the large-U limit.
To avoid complexity and illustrate our main idea clearly,
we restrict ourselves to a single-band model in this section.
Extension to multiorbital systems will be presented in Sec. V.

A. Decoupling

In Eq. (8) the frequency dependence in Xloc(iω, iω′) is
particularly important in the strong-coupling regime. The
RRPA formula filters out the frequency dependence over
(iω, iω′) space and hence fails in reproducing the correct
results for U � W . Let us begin with observing Xloc(iω, iω′)
to understand its structure in the ω-ω′ plane. Figure 4(a)
shows numerical results for Xloc(iω, iω′) in the spin channel
(we represent it as X sp

loc). It consists of sharp contribution
at the diagonal ω = ω′ and a broad peak around the origin
ω = ω′ = 0.

Our finding is that the broad contribution describes fluctu-
ations of local degrees of freedom, which are relevant for χq,
and the diagonal components are irrelevant. Furthermore, the
broad peak in the ω-ω′ plane can be decoupled as

Xloc(iω, iω′) 	 (iω)(iω′). (12)

Mathematically, this approximation is carried out by consid-
ering Xloc(iω, iω′) as a matrix with respect to ω and ω′, and
performing the singular value decomposition (SVD) to retain
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FIG. 4. (a) The two-particle Green function in the spin channel
ReX sp

loc(iω, iω′) in the Hubbard model with U/W = 2 and T = 0.1
computed by the Hubbard-I approximation. (b) The result after the
decoupling approximation in Eq. (13). (c) The difference between
(a) and (b). (d) The charge channel ReX ch

loc(iω, iω′).

only the leading term:

Xloc(iω, iω′) =
∑
i�0

siui(iω)v∗
i (iω′) 	 s0u0(iω)v∗

0 (iω′). (13)

Here {ui(iω)} and {vi(iω)} each is an orthogonal set and nor-
malized by

∑
ω |ui(iω)|2 = ∑

ω |vi(iω)|2 = 1. Provided that
the phase factor of u0(iω) and v∗

0 (iω) are properly cho-
sen, those functions satisfy u0(iω) = v∗

0 (iω) (for details, see
Appendix C). Thus, (iω) can be obtained by

(iω) = √
s0u0(iω) = √

s0v
∗
0 (iω). (14)

The left panel of Fig. 5(a) shows the singular values si

of X sp
loc(iω, iω′) in the Hubbard model. It turns out that the

first component s0 is larger than the second component s1

by 1–2 orders of magnitude. We found that s0 increases in
proportion to 1/T . The ratio s1/s0 plotted as a function of U
in Fig. 5(b) demonstrates a rapid reduction of the higher-order
contribution as U increases and T decreases. We conclude
from these results that the decoupling in Eq. (13) is valid in
the strong-coupling and low-temperature regime.

After the decoupling, X sp
loc(iω, iω′) in Fig. 4(a) is approxi-

mated into Fig. 4(b), and Fig. 4(c) shows the neglected part. It
is clear from these figures that the broad peak is extracted by
s0, and the diagonal components are neglected, demonstrating
that our central idea is supported in terms SVD.

For comparison, the charge channel X ch
loc(iω, iω′) is plotted

in Fig. 4(d). Here the charge operator is defined by Och =
(O↑↑ + O↓↓)/

√
2. In contrast to the spin channel, the dom-

inant structure appears to be the diagonal component, and a
broad peak around ω = ω′ = 0 is missing. In this case, the
singular values si vary continuously as shown in the right
panel of Fig. 5(a). The decoupling approximation, therefore,
does not work for the charge channel.

The contrasting behaviors of si in the spin and charge
channels indicate that the singular peak at s0 is indicative
of residual degrees of freedom in the ground state. As the

FIG. 5. (a) The singular values si of Xloc(iω, iω′) for the spin
channel (left) and for the charge chance (right). The half-filled
Hubbard model with U/W = 1.5. (b) The ratio s1/s0 for the spin
channel as a function of U .

local spin fluctuations get stronger according to the Curie
law, the singularity in s0 becomes more conspicuous. Since
long-range order takes place in such situations, the decoupling
approximation is expected to be suitable for descriptions of
phase transitions.

Let us finally derive an explicit relation between s0 and
χloc. For this purpose, we use Eq. (3) as a “sum rule” for
Xloc(iω, iω′). Substituting Eq. (12) into Eq. (3), we obtain

T χloc 	 
2 = s0u2

0, (15)

where the overline signifies an average defined by  ≡
T

∑
ω (iω)eiω0+

. At low T , u2
0 is proportional to T (see

Sec. IV A), and we obtain s0 ∝ χloc.

B. The SCL formula

Now we apply the decoupling in Eq. (12) to the BS
equation in Eq. (8). To this end, we first rewrite Eq. (8) in
the form which is suitable in the strong-coupling regime:

X−1
q = X−1

loc − �q, (16)

where

�q ≡ X−1
0,loc − X−1

0,q. (17)

Equation (16) differs from the weak-coupling formula like
the RRPA in the sense that the starting point is the local
susceptibility and the nonlocal correction is taken into account
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by �q. Expanding the right-hand side of Eq. (16) requires
evaluation of the product X loc�qX loc, which can be evaluated
under the decoupling approximation as∑

ω′′
Xloc(iω, iω′′)�q(iω′′)Xloc(iω′′, iω′) 	 λqXloc(iω, iω′),

(18)

where we defined λq by

λq ≡
∑
ω′′

�q(iω′′)(iω′′)2. (19)

Using this result, Eq. (16) can be expressed as Xq 	 (1 −
λq)−1X loc. The summations over ω and ω′ can be now taken
explicitly to yield

χSCL
q = (1 − λq)−1χloc. (20)

Here the superscript SCL stands for strong-coupling limit.
Equation (20) is our susceptibility formula derived in the
strong-coupling limit.

It is convenient to express Eq. (20) in an RPA-like form.
Defining a quantity Iq by

Iq ≡ λq/χloc, (21)

Eq. (20) is rewritten as

χSCL
q = (

χ−1
loc − Iq

)−1
. (22)

One can see that Iq represents effective intersite interactions,
which give rise to the correction to the local susceptibility
χloc. In the next section (Sec. IV) we will show that, in-
deed, Iq correctly reproduces the kinetic exchange and RKKY
interactions in the Hubbard and periodic Anderson models,
respectively.

Finally, it is important to confirm, in Eq. (21), that χloc is
canceled with λq and Iq is independent of χloc (otherwise, Iq

does not make physical sense). To see this, we use the relation
in Eq. (15), which holds in the strong-coupling limit, and
express Iq as [29]

Iq 	 T
∑

ω

�q(iω)φ(iω)2, (23)

where we introduced a normalized function φ(iω) =
(iω)/. It is now clear that, since φ(iω) is normalized, Iq

does not depend on the magnitude of local fluctuations.

C. Numerical verification of the SCL formula

Let us apply the SCL formula, Eq. (22), to the Hubbard
model to check the validity of the approximation. Figure 6
shows a comparison between χSCL

q and χq computed with
the original BS equation. For the strong-coupling parameter
U/W = 1.5, the two results agree quite well as expected. For
weaker coupling, on the other hand, χSCL

q is larger than χq,
namely, overestimate fluctuations at high T . However, the
deviation gets smaller as T decreases, and the two results
coincide at the transition temperature. This result indicates
that the decoupling approximation does not cause a loss in
quality of estimation of the transition.

The Néel temperature TN is shown in Fig. 7 as a function
of U/t . Surprisingly, our formula, which was derived using

FIG. 6. Comparison of 1/χ
sp
Q computed in two ways. The green

triangles are results computed by the SCL formula, Eq. (22), and
using the SVD (termed as SCL1 scheme later). The red squares are
those computed by the original BS equation (the same data as in
Fig. 2).

the strong-coupling features of Xloc(iω, iω′), shows complete
agreement with the correct TN even in the weak-coupling
regime down to U/W = 2/8. From this result, we conclude
that our SCL formula, Eq. (22), provides the correct esti-
mation of the transition temperature, though the fluctuations
are overestimated for T > TN. Multiorbital models will be
examined in Sec. VII.

We close this section by discussing the effective nonlocal
interactions Iq which can be derived using the SCL formula by
virtue of the simplified treatment of the BS equation. Figure 8
shows Isp

q in the spin channel computed by Eq. (21). The
positive (negative) values indicate enhancement (suppression)
of the fluctuations, and the peak at M point (q = Q) means
antiferromagnetic interactions. The result for U/W = 1.5 per-
fectly agrees with the analytic formula in the atomic limit
Iatom
q = −(4t2/U )(cos kx + cos ky), demonstrating the valid-

ity of the SCL formula. This will be proved analytically in
the next section. For smaller U , the result shows deviation
from the simple cosine function (especially at X point),
which indicates that the second neighbor or even longer-range

FIG. 7. Comparison of TN computed by the SCL formula (termed
as SCL1 scheme later) and that computed by the original BS
equation.
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FIG. 8. Momentum dependence of the the effective exchange
interactions I sp

q computed by the SCL formula for T = 0.5. The lines
with a dot show the analytic expression Iatom

q for U/W = 1.5.

interactions are effectively active. Figure 9 shows the
T dependence of Isp

Q . It turns out that the value only weakly
depends on T . Thus, it has been confirmed that Iq can be
regarded as a physical effective interaction between the lo-
calized spins.

IV. ATOMIC LIMIT OF THE SCL FORMULA

Our SCL formula in Eq. (22) is expected to capture correct
physics in the strong-coupling regime. In this section we
verify analytically that the formula yields the well-known
effective interactions emerging in the strong-coupling limit of
two fundamental lattice models: the kinetic exchange interac-
tion in the Hubbard model and the RKKY interaction in the
periodic Anderson model.

A. The function u0(iω) in the atomic limit

The expression for Iq in Eq. (23) includes two kinds of
contribution: �q(iω) takes account of the energy-band struc-
ture, and φ(iω) or u0(iω) takes local correlations into account.
We first clarify the features of the local quantities in this

FIG. 9. T dependence of I sp
Q for U/W = 1.5. The dashed line

indicates the atomic-limit value Iatom
Q = 2/3.

FIG. 10. The function u0(iω) for a single-orbital Hubbard atom
with U = 16, μ = 4, and T = 0.1. The lines show the fitting results
using Eq. (24).

subsection, and then derive the effective interactions in two
lattice models in the succeeding subsections.

Figure 10 shows the numerical result for u0(iω) in a single-
orbital atom with the Hubbard interaction. Here the phase
of u0(iω) is fixed so that

∑
ω u0(iω) is positive real. The

parameters U and μ are chosen so that the ground state is
the singly occupied states without the particle-hole symmetry.
We found numerically that u0(iω) at low temperatures can be
perfectly fitted by the two-pole function of the form

uatom
0 (iω) = A

2

(
1

iω + μ
− 1

iω + μ − U

)
, (24)

where A is a real normalization factor determined by the
condition

∑
ω |uatom

0 (iω)|2 = 1. The form of Eq. (24) can be
interpreted in terms of single-particle excitations: The first
contribution is due to the excitation to empty state, and
the second due to the excitation to doubly occupied state.
In the case with the particle-hole symmetry, namely μ = U/2,
the function uatom

0 (iω) is reduced to a Lorentzian of the form
uatom

0 (ω) = A(U/2)[ω2 + (U/2)2].
For the sake of later use, we derive explicit expressions

of A and s0. For simplicity, we consider the low-temperature
region, i.e., T  μ and T  U − μ, in which the average u0,
for example, is simplified into u0 	 A/2. From the normaliza-
tion condition of uatom

0 (iω), A is evaluated as

A2 	 8UTr(1 − r), (25)

where r ≡ μ/U . Furthermore, using the Curie law χloc =
1/2T (1/2T norb in the case with orbital degeneracy) in
Eq. (15), we obtain

s0 	 1

4UTr(1 − r)
. (26)

This result is consistent with Fig. 5(a), which exhibits an
increase of s0 with decreasing T .

Finally, the function φ(iω) defined in connection with
Eq. (23) is evaluated by φ(iω) = u0(iω)/u0, which becomes

φatom(iω) = 1

iω + μ
− 1

iω + μ − U
. (27)
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B. Kinetic exchange interaction in the Hubbard model

The Hubbard model is reduced to the Heisenberg model
in the strong-coupling limit. The exchange coupling constant
is proportional to t2/U . Applying Eq. (22) to the Hubbard
model, we demonstrate below that χSCL

q corresponds to the
mean-field susceptibility of the effective Heisenberg model.

A key observation is that the quantity �q(iω) defined in
Eq. (17) becomes independent of ω in the strong-coupling
limit. Given that the energy dispersion εk takes the form εk =
2tγk with γk ≡ cos kx + cos ky, the quantity �q(iω) becomes

�q(iω) 	 −2t2γq. (28)

The detailed derivation is presented in Appendix D. The
numerical result in Fig. 11(a) shows that �q(iω) is well
represented by Eq. (28) for U/W = 1.5. We note that the
quantities X0,q(iω) and X0,loc(iω) [see Eq. (17)] do depend
on ω [Fig. 11(a)], however, the ω dependence cancels out in
�q(iω).

Substitution of Eqs. (28) and (27) into Eq. (23) yields the
coupling constant Iq of the form

Iq 	 −4t2γq

U
, (29)

where we used A2 = 2UT , assuming the half-filling μ =
U/2. This expression corresponds to the kinetic exchange
interaction between neighboring sites. The transition tem-
perature is determined by the condition χlocIq = 1. Using
Iq = 8t2/U and the Curie law χloc = 1/2T , we obtain the
Néel temperature TN = 4t2/U , which is consistent with the
Heisenberg limit of the Hubbard model.

C. RKKY interaction in the periodic Anderson model

We next consider the periodic Anderson model and de-
rive the RKKY interaction between localized electrons. The
Hamiltonian consists of band electrons written with the c
operator and localized (correlated) electrons written with f
operators:

H =
∑
kσ

εkc†
kσ

ckσ + ε f

∑
kσ

f †
kσ

fkσ + V
∑

k

( f †
kσ

ckσ + c†
kσ

fkσ )

+U
∑

i

n f i↑n f i↓, (30)

where n f iσ = f †
iσ fiσ . The ordinary derivation of the RKKY

interaction is given as the fourth-order perturbation with re-
spect to V (see for example Ref. [30]). We will derive a similar
result based on the DMFT, starting from the SCL formula.

We consider the susceptibility χ (q) of f electrons. Al-
though there are two bands (c and f ) in this model, the BS
equation is closed only with f quantities because no two-
body interaction is supposed between c electrons [7]. Hence,
we simply regard all equations in Sec. III as those for f
components.

In the atomic limit of Iq in Eq. (23), φ(iω) is common be-
tween the Hubbard model and the periodic Anderson model.
Hence, the difference between the two models arises from
�q(iω). In the strong-coupling limit, the analytical expression

FIG. 11. �q(iω) (upper panel) and X0,q(iω) and X0,loc(iω) (lower
panel) as a function of ω. (a) The Hubbard model with n = 1, T =
0.1, and (b) the periodic Anderson model with V 2 = 1, ε f = −U/2,
T = 0.1. The red squares are q = 0 and the blue circles are q = Q.
The impurity solver used is the CTQMC method in (a) and the
Hubbard-I approximation in (b).

of �q(iω) reads

�q(iω) = V 4[Xc,q(iω) − X̄c(iω)] (31)

where

Xc,q(iω) = −〈gc,k(iω)gc,k+q(iω)〉k, (32)

X̄c(iω) = −ḡc(iω)ḡc(iω). (33)
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The detailed derivation is presented in Appendix E.
Figure 11(b) shows �q(iω) in the periodic Anderson model,
and demonstrates a striking difference with that in the Hub-
bard model. We note that no qualitative difference is seen in
X0,q(iω), confirming that the quantity �q(iω) is the relevant
quantity which characterizes each model. In Fig. 11(b) we
remark that �q(iω) decays rapidly above ω ∼ t [because t is
the only energy scale that enters in gc,k(iω)]. On the other
hand, φ(iω) shows the power-law decay with the length ω ∼
U [see Eq. (27) and Fig. 10]. Therefore, we can replace the ω

dependence in �q(iω) with δω,0 if U � t :

�q(iω) 	 δω,0V
4χc,q/T, (34)

where χc,q is the static susceptibility of the conduction elec-
trons defined by χc,q = T

∑
ω[Xc,q(iω) − X̄c(iω)]. Replacing

�q(iω) in Eq. (23) and using φ(0) = 4/U [from Eq. (27)], we
obtain

Iq 	 J2
Kχc,q, (35)

where the Kondo exchange coupling JK is defined by JK =
4V 2/U . The above expression for Iq is consistent with the
RKKY interaction.

As demonstrated above, our SCL formula correctly repro-
duces the RKKY interaction in f electron systems and the
kinetic exchange interaction in d electron systems, depending
on the form of �q(iω) (delta function and constant, respec-
tively). It provides a solid ground for applications of the SCL
formula.

V. EXTENSION TO MULTIORBITAL SYSTEMS

We now recall the orbital indices in χloc and X loc(iω, iω′),
and consider multiorbital systems (or spin-orbital coupled
systems if the spin-orbit coupling exists). In this case,
we diagonalize χloc with respect to the indices α ≡ (1, 2)
and α′ ≡ (3, 4), and consider “eigenmodes” ξ of local
fluctuations as

[χloc]αα′ =
∑

ξ

Wαξχ
ξ

locW
†
ξα′ . (36)

Using the unitary matrix W , we transform X loc(iω, iω′) into
the eigenmode basis

X ξ

loc(iω, iω′) ≡
∑
αα′

W †
ξα[X loc(iω, iω′)]αα′Wα′ξ . (37)

We neglect off-diagonal components (ξ �= ξ ′), since they
disappear when summations over ω and ω′ are taken. Thus,
the discussion up to here for the single-orbital model can be
applied to each eigenmode X ξ

loc(iω, iω′).
As in Eq. (13), we apply SVD to X ξ

loc(iω, iω′) and retain
the leading term as

X ξ

loc(iω, iω′) =
∑
i�0

sξ
i uξ

i (iω)vξ
i

∗
(iω′) 	 sξ

0uξ
0 (iω)vξ

0
∗
(iω′).

(38)

We show, in Fig. 12, an exemplary numerical result for the
singular values sξ

i in a two-orbital atom. The explicit form
of the interactions will be presented in Sec. VII. Here we
only emphasize that the eight independent fluctuation modes

FIG. 12. Singular values sξ
i of X ξ

loc(iω, iω′) in a two-orbital
atomic model for different values of T . See Eq. (49) for the explicit
Hamiltonian (�/W = 1.1). The eight fluctuation modes in (a)–(h)
are listed in Table I.

are classified into two types. Figures 12(b), 12(c) 12(e), and
12(g) exhibit a singular behavior at s0, as in the spin channel
in the Hubbard model [left panel in Fig. 5(a)]. The singular
enhancement of s0 indicates the existence of local degrees
of freedom, which gives rise to the Curie law in the local
susceptibility. For such fluctuation modes, the decoupling in
Eq. (38) is justified. On the other hand, the rest fluctuation
modes [Figs. 12(a), 12(d) 12(f), and 12(h)] are continuous
around i = 0 as in the charge channel in the Hubbard model
[right panel in Fig. 5(a)]. The decoupling is not valid for those
modes. However, since such fluctuations are absolutely small,
the decoupling does not affect principal results in χq. Thus, the
decoupling approximation in Eq. (38) is expected to provide a
reasonable description in multiorbital models.

Using the decoupling in Eq. (38), we can represent Eq. (37)
as follows:

X loc(iω, iω′) 	 �(iω)�(iω′), (39)

165134-8



STRONG-COUPLING FORMULA FOR … PHYSICAL REVIEW B 99, 165134 (2019)

where

[�(iω)]αα′ =
∑

ξ

Wαξ

(√
sξ

0uξ
0 (iω)

)
W †

ξα′ . (40)

The phases of uξ
0 (iω) and v

ξ
0 (iω) have been fixed so that

uξ
0 (iω) = v

ξ
0
∗
(iω) (for details, see Appendix C). The fre-

quency dependence has thus been decoupled as in Eq. (12),
while the spin-orbital indices α and α′ are retained to be
evaluated by the matrix product.

Once the decoupling in Eq. (39) is applied, the BS equation
in Eq. (16) is evaluated to yield

X q(iω, iω′) = �(iω)
[
1 + λq + λ2

q + · · · ]�(iω′), (41)

where we defined a multiorbital extension of λq in Eq. (19) by

λq =
∑

ω

�(iω)�q(iω)�(iω). (42)

We can now take the summations over ω and ω′ independently
in Eq. (41), and obtain the SCL formula for the spin and
orbital susceptibility

χSCL
q = χ

1/2
loc (1 − λq)−1χ

1/2
loc . (43)

This is the multiorbital extension of Eq. (20). Here we used

the relation �
2 	 T χloc with � ≡ T

∑
ω �(iω)eiω0+

[multi-
orbital version of Eq. (15)].

As in the case of the single-orbital formula, we can repre-
sent χSCL

q in an RPA-like expression. We define

Iq ≡ χ
−1/2
loc λqχ

−1/2
loc , (44)

and then rewrite Eq. (43) as

χSCL
q = (

χ−1
loc − Iq

)−1
. (45)

Iq represents the intersite spin and orbital interactions. In
the strong-coupling regime, we can eliminate χloc in the
expression of Iq. Following the procedure leading to Eq. (23),
we can show

Iq 	 T
∑

ω

φ(iω)�q(iω)φ(iω), (46)

where φ(iω) ≡ �(iω)�
−1

. Since φ(iω) is normalized, Iq has
no explicit dependence on local fluctuations, and reflects lat-
tice properties predominantly. We note again that Iq describes
both the kinetic exchange process and the RKKY interactions
depending on the functional form of �q(iω) as demonstrated
in Sec. IV.

If the ξ dependence in φξ (iω) is neglected as a rough
approximation (see Sec. VI B), Iq is reduced to a simpler
expression

Iq 	 T
∑

ω

�q(iω)φ(iω)2, (47)

which is similar to Eq. (23).

VI. APPROXIMATION SCHEME

Our susceptibility formulas [Eq. (22) for single-orbital
cases and Eq. (45) for multiorbital cases] simplify the process
of computing χq in the DMFT. In particular, it has been

FIG. 13. Schematic figures showing how much information of
Xloc(iw, iw′) is necessary in each approximation scheme.

shown, in the single-orbital Hubbard model, that TN computed
using the formula shows a complete agreement with the
rigorous solution of the BS equation. This result indicates that
the decoupling of X loc(iω, iω′) essentially does not worsen the
estimation of transition temperatures. In a practical point of
view, however, the computational cost is still not low enough,
since the decoupling in Eq. (13) requires as much information
as in solving the BS equations. Simpler calculations of χq
are achieved by evaluating the decoupled functions �(iω) or
φ(iω) without SVD of X ξ

loc(iω, iω′).
In order to reduce the computational cost for

X loc(iω, iω′), we propose three levels of approximation in
evaluating �(iω):

SCL1: Using SVD [Eq. (13)]. Full information of
X loc(iω, iω′) is required within a certain cutoff
frequency. Results are already shown in Sec. III C.

SCL2: Estimating uξ
0 (iω) from one-dimensional data of

X loc(iω, iω′). For example, iω is varied with fixing
iω′ = iω0.

SCL3: Assuming an analytical form of uξ
0 (iω) which is

valid in the atomic limit. No calculation of X loc(iω,iω′)
is required.

The difference in the necessary information of X loc(iω, iω′)
is schematically depicted in Fig. 13. The cost of computing
X loc(iω, iω′) is O(N2

ω ), O(N1
ω ), and O(1) for SCL1, SCL2,

and SCL3, respectively. Here Nω is the number of fermionic
Matsubara frequencies in each axis.

A. SCL2: A crude estimation of u0(iω)

In the second scheme, SCL2, only a part of data in ω-ω′
plane is used. This approximation is based on the fact that, if
the decoupling in Eq. (12) is exact, one-dimensional data (cut
of the plane) is sufficient for evaluation of u0(iω). Actually,
since the result depends on the location of the cut, one can
improve accuracy by considering more than one cut and
taking the average over different estimations. Technical details
are presented in Appendix F for a practical implementation.

The phase diagram obtained by the SCL2 scheme is shown
in Fig. 14(a). The value of TN turns out to be underestimated,
in particular, in the weak-coupling regime U/W � 1.0. The
deviation becomes smaller as U increases, and the SCL2
reproduces TN almost perfectly in the strong-coupling regime
U/W � 1.5.

The fact that the SCL2 scheme underestimates TN can
be explained in terms of a variational principle as follows.
We first remark that the square of the singular value s2

i
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FIG. 14. Comparison between TN computed by an approximation
scheme and that computed by the original BS equation. (a) SCL2
scheme and (b) SCL3 scheme.

corresponds to the eigenvalue of X locX †
loc. Hence, the de-

coupling approximation, Eq. (13), is represented by s2
0 	

〈u0|X locX †
loc|u0〉. The right-hand side becomes maximum

when u0(iω) is the true eigenvector of X locX †
loc. In other

words, an approximate evaluation of u0(iω) results in a
smaller estimation of s0, namely, the underestimate of χq.

This fact gives us “controllability” in applications of the
SCL2 scheme. Since the SCL2 scheme underestimates all
fluctuation modes, a competition among different modes
would still be captured correctly. Indeed, the result for the
two-orbital model in Sec. VII supports the validity of the
SCL2 approximation.

B. SCL3: Two-pole approximation

In the single-orbital model, the function u0(iω) is reduced
to a simple two-pole function (Lorentzian) in the atomic limit,
as discussed in Sec. IV A. This results from the fact that
the intermediate empty and doubly occupied states are both
singlet. In multiorbital models, on the other hand, u0(iω) is not
of Lorentzian, since intermediate states have multiplet. Nev-
ertheless, the two-pole function gives a reasonable approxi-
mation for relevant fluctuation modes that follow the Curie
law. Detailed analysis in a two-orbital model is presented in
Appendix G. For this reason, we adopt the two-pole function
also in multiorbital cases and construct an approximation that
does not require explicit computations of X loc(iω, iω′).

We generalize the two-pole function in Eq. (27) into mul-
tiorbital cases as [31]

φξ (iω) = 1

iω + E ξ
−

− 1

iω − E ξ
+

, (48)

where E ξ
− = En−1 − En > 0 and E ξ

+ = En+1 − En > 0. Here
En denotes a “typical” value of n-particle states, e.g., the
average or the lowest energy. In general, E ξ

± depends on
ξ , because the dominant contribution to X ξ

loc(iω, iω′) occurs
from different (n ± 1)-particle states depending on ξ . Once
the parameters E ξ

± are fixed, we can readily evaluate χSCL
q

using Eqs. (45) and (46), which we refer to as SCL3 approx-
imation. In practical applications, it is convenient to replace
E ξ

± with the lowest excitation energy E±,min estimated in the
local Hamiltonian. For details, see the example in Appendix G
and Sec. VII.

The accuracy of the SCL3 scheme is examined in
Fig. 14(b) for the single-orbital model, in which E ξ

± can be
uniquely fixed at E ξ

± = U/2 for the half-filling. The transition
temperature turns out to be slightly overestimated for U/W �
0.5 and converges to the strong-coupling tail. The deviation
is large in the weak-coupling regime of U/W � 0.5, since the
analytic expression in Eq. (48) is justified only for large U .

Though the SCL3 approximation gives reasonable results
for the single-orbital model, the situation is rather complicated
in multiorbital models. The SCL3 scheme corresponds to an
approximation which neglects splitting of energy levels of ex-
cited multiplet, and may result in a misjudgment of competing
orders. See the next section for a test in a multiorbital model.

VII. APPLICATION: TWO-ORBITAL MODEL

A. Model and background

For a demonstration of the multiorbital version of the
strong-coupling formula, Eq. (45), we consider a two-orbital
model with an energy splitting �. Letting the spin index
σ =↑, ↓, and the orbital index τ = a, b, the Hamiltonian reads

H =
∑
kτσ

εkc†
τσ cτσ + �

2

∑
iσ

[nibσ − niaσ ] + U
∑

iτ

niτ↑niτ↓

+
∑

i,τ>τ ′,σ

[U ′niτσ niτ ′σ + (U ′ − J )niτσ niτ ′σ ]

+ J
∑

i,τ �=τ ′
(c†

iτ↓c†
iτ ′↑ciτ ′↑ciτ↓ + c†

iτ↑c†
iτ↓ciτ ′↑ciτ ′↓). (49)

The kinetic energy term is assumed to be orbital diagonal. We
consider the tight-binding band on the square lattice in com-
mon with the previous example in Eq. (9). The second term
expresses the energy splitting � between the two bands. The
rest terms are the Slater-Kanamori interactions. We consider
the half-filled case n = 2 and vary � keeping other parameters
U , U ′, and J . We fix U at U/W = 1.5, and use the Hubbard-I
solver, which is expected to be reasonable at this parameter as
demonstrated in the case with the single-band model (see for
example Fig. 3). The Hund’s coupling J is fixed at J = U/4,
and U ′ at U ′ = U − 2J to keep the rotational symmetry of the
orbitals when � = 0.
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FIG. 15. The orbital-dependent occupation number nτ in the
two-orbital model.

This model has been discussed in the context of the
spin-state transition [32–34] and an excitonic insulator (EI)
[5,35–38]. Let us first review the basic properties of this
model. When �  W , the two orbitals are almost degenerate,
and the spin-triplet state is favored according to the Hund’s
coupling. The two orbitals are equally occupied as shown in
Fig. 15. When � � W , on the other hand, only the lower band
is occupied and the spin state becomes singlet. It is known
that the change between the two spin states becomes more
abrupt as T is lowered [32] as seen around � 	 W in Fig. 15.
Hence, large orbital fluctuations are expected. As a result of
competing spin and orbital fluctuations, a spin-orbital coupled
state called EI state emerges in this region [5,35]. We examine,
in the following, whether this nontrivial ordered state can be
reproduced by our simplified calculation scheme.

B. Susceptibilities

There are 16 fluctuation modes represented by the operator
Oτσ,τ ′σ ′ defined in Eq. (1). It is convenient to represent the
spin and orbital indices in terms of the Pauli matrix σ ξ (ξ =
0, x, y, z) as

Oξη =
∑

σσ ′ττ ′
c†
τσ σ

ξ

σσ ′σ
η

ττ ′cτ ′σ ′ ≡ σ ξτ η. (50)

These operators are classified into eight classes as summa-
rized in Table I. The number of degeneracy is either 1 or 3,
where threefold degeneracy is due to the spin part (σ x, σ y,
σ z), while no extra degeneracy takes place because the orbital
indices are all independent. For reference, correspondence
to the irreducible representations in the cubic point-group
symmetry is also listed [39,40]. The indices g (u) and + (−)
stand for time-reversal even (odd). Here the odd time-reversal
symmetry comes from σ x, σ y, σ z, and τ y. The third to fifth
classes (labeled with orb) are kinds of orbital orders, and the
sixth to eighth (labeled with sp-orb) are spin-orbital coupled
orders with broken time-reversal symmetry. In particular, the
third operator (orbz) is the same as the level splitting, and its
staggard order corresponds to high-spin–low-spin (HS/LS)
order. The seventh operator (sp-orb3x) corresponds to the EI
ordered state.

The left panel of Fig. 16(a) shows the q dependence of χq

obtained by solving the original BS equation in Eq. (8). We

TABLE I. Classification of 16 operators σ ξ τ η in the two-orbital
system. The column irrep shows irreducible representation in cubic
point group in Mulliken and Bethe notation. The index g and u (or +
and −) represent time-reversal even and odd, respectively.

Label Operator(s) Degeneracy irrep in Oh

Charge σ 0τ 0 1 A1g �+
1

Spin (AFM) σ xτ 0, σ yτ 0 σ zτ 0 3 T1u �−
4

orbz (HS/LS) σ 0τ z 1 Eg �+
3

orbx σ 0τ x 1 Eg �+
3

orb3 σ xτ y, σ yτ y, σ zτ y 3 T2g �+
5

sp-orb1 σ 0τ y 1 A2u �−
2

sp-orb3x (EI) σ xτ x , σ yτ x , σ zτ x 3 T1u �−
4

sp-orb3z σ xτ z, σ yτ z, σ zτ z 3 T2u �−
5

chose the parameter �/W = 1.1, where multiple fluctuation
modes are competing. It turns out that χq exhibits enhance-
ment at M point [q = (π, π ) ≡ Q]. The leading fluctuations
are the EI order, HS/LS order, AFM order, and threefold
orbital fluctuations (orb3). Other fluctuation modes exhibit
no distinguished enhancement (not shown in the figure). The
transition temperatures are determined from the divergence
of χQ [the center panel of Fig. 16(a)]. The obtained phase
diagram [the right panel of Fig. 16(a)] includes AFM phase for
�/W � 1.0, and EI and HS/LS phases for �/W � 1.0. The
HS/LS order appears only in the limited region at finite T be-
cause this state has degeneracy without additional symmetry
breaking. The orb3 order is not realized since other transition
takes place at higher T .

Let us now examine the accuracy of other approximation
schemes. Figure 16(b) shows the SCL1 result. It is quite
similar to Fig. 16(a) with only a little enhancement of the
transition temperatures, justifying the validity of our SCL
formula even for the multiorbital systems.

The SCL2 result in Fig. 16(c) also reproduces the phase
diagram very well. The qualitative feature such as the se-
vere competition between EI and HS/LS orders are correctly
reproduced. Quantitatively, the transition temperatures are
slightly underestimated, in consistent with the conclusion in
Sec. VI A.

The result in the SCL3 scheme is shown in Fig. 16(d).
In this calculation we neglected the ξ dependence of φξ (iω)
for simplicity, and employed Eq. (47). The parameter E ξ

± in
Eq. (48) was replaced with the lowest excitation energy E±,min

determined from the eigenvalues of the local Hamiltonian.
Despite these approximations, we see the diverging suscep-
tibility for the four enhanced modes. However, the estimate
of the transition temperature is less accurate than those by
SCL1 and SCL2. The phase diagram shows that the AFM
fluctuations are largely overestimated, while the fluctuations
for the HS/LS order is underestimated so that the HS/LS
order is missing (covered by the EI order). The source of these
artifacts is discussed in the next subsection in terms of the
effective nonlocal interactions.

Finally, Fig. 16(e) shows the RRPA result. Although the
RRPA reproduces the divergence of susceptibility in AFM,
EI, and orb3 orders, the HS/LS susceptibility are largely un-
derestimated and does not diverge at finite temperature. This
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FIG. 16. Comparison of different approximation schemes in the two-orbital Hubbard model: (a) The original BS equation, (b) SCL1,
(c) SCL2, (d) SCL3, and (e) RRPA. In each row, (left) q dependence of χq for fixed �/W = 1.1 and T = 0.5. For the symbols of q points,
see the caption of Fig. 1. (Center) T dependence of 1/χQ for �/W = 1.1. (Right) Transition temperatures as a function of �/W . Only four
relevant fluctuation modes out of eight are plotted.
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FIG. 17. The q dependence of Iq for fixed �/W = 1.1 and T =
0.5. (a) SCL1, (b) SCL2, (c) SCL3.

artifact suggests that, as in the single-orbital case, the usage of
the RRPA in the strong-coupling regime is not justified.

C. Effective nonlocal interactions

In our SCL formula, it is possible to derive the effec-
tive nonlocal interactions Iq, which enters in the RPA-like
susceptibility formula in Eq. (45). Figure 17 shows Iq com-
puted in the three approximate schemes. For all schemes,
the momentum dependence exhibits the simple cosine form
cos kx + cos ky as in the strong-coupling regime of the single-
band Hubbard model (U/W = 1.5 in Fig. 8). It indicates that
the effective interaction works only between nearest-neighbor
sites.

With the results of Iq in Fig. 17, we can understand
the results of each SCL scheme in Fig. 16. For SCL1 and
SCL2, the HS/LS mode has the strongest interaction, which
helps the realization of the HS/LS order around �/W = 1.1.
On the other hand, the SCL3 scheme exhibits no mode depen-
dence in Iq, and hence underestimates the HS/LS transition
temperature in Fig. 16(d).

The artificial degeneracy of Iq in the SCL3 scheme orig-
inates from the approximation that we neglected the ξ de-
pendence of E ξ

± (instead E±,min is used for all modes) in
Eq. (48). According to the SVD analysis in Appendix G,
EHS/LS

± is actually smaller than the others, so replacing EHS/LS
±

with E±,min reduces the HS/LS fluctuation. On the contrary,
the actual value of E spin

± is about two times larger than E±,min,
meaning that the use of E±,min results in an overestimate of the
spin exchange interactions. The above analysis of Iq indicates
that a proper estimation of E ξ

± is needed when the SCL3
scheme is applied to competing orders.

VIII. SUMMARY

The BS equation for the calculations of χq in the DMFT
was reduced to an RPA-like form called the SCL formula
[Eq. (22) for single-orbital cases and Eq. (45) for multiorbital
cases]. Its derivation is based on the fact that the two-particle
Green function X loc(iω, iω′) can be decoupled [Eqs. (12) and
(39)] if local moments are well defined and there exist local
fluctuations which give rise to the Curie law. Since a long-
range order often occurs in such situations, the SCL formula
is suitable for the use of investigations of phase transitions.
Indeed, the SCL formula is found to yield an accurate transi-
tion temperature over a surprisingly wide range of parameters,
though χq is overestimated at higher temperatures in the
weak-coupling region.

So far, the bottleneck in computing χq was twofold: (i)
calculations of X loc(iω, iω′) in the effective local problem
and (ii) solving the BS equation with large matrices. The
SCL formula provides the correct phase diagram in accuracy
comparable to the BS equation [see SCL1 results in Figs. 7
and 16(b)], and therefore settles the latter issue. Further-
more, approximate estimations of the function �(iω) or φ(iω)
(SCL2 and SCL3 schemes) relieve the former issue. The cost
of computing X loc(iω, iω′) is reduced from O(N2

ω ) to O(N1
ω )

in the SCL2 scheme and O(1) in the SCL3 scheme, where
Nω is the number of fermionic Matsubara frequencies. We
note that, in the SCL3 scheme, the mode dependence of the
effective excitation energy E ξ

± is relevant when different types
of fluctuation modes are competing.

By combining the three levels of approximation in the SCL
formula and the RRPA formula in the weak-coupling side, one
can evaluate χq in the DMFT without solving the BS equation.
It will enable systematic investigations of complicated spin-
orbital orders in multiorbital systems, in particular, realistic d
and f electron materials within the DFT+DMFT framework.
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APPENDIX A: HUBBARD-I APPROXIMATION

In practical computations for multiorbital models with
complicated interactions, it is difficult to solve the effec-
tive impurity problem at arbitrary temperature and interac-
tion strength without approximation. Furthermore, the self-
consistency loop of the DMFT may become unstable in the
strong-coupling regime. In this situation, it is useful to con-
sider the atomic limit expressed by

�(iω) = 0, (A1)

and plug only the one-body levels into the impurity problem.
This is called the Hubbard-I approximation in the context of
Mott gap in the single-particle excitation spectra.

With the approximation in Eq. (A1), we can compute the
local self-energy �atom(iω) and the two-particle Green func-
tion Xatom(iω, iω′; i�) by diagonalizing the atomic Hamilto-
nian explicitly. We used pomerol implementation [43] in our
calculations.

Some remarks are made on the atomic-limit calculations
for two-particle quantities. Because of the absence of self-
consistent determination of �(iω), the self-consistency con-
dition of DMFT

Gimp(iω) = 1

N

∑
k

G(k, iω) ≡ Gloc(iω) (A2)

is not fulfilled. Here Gimp(iω) denotes the Green function
computed in the impurity problem. It leads that a similar
equality for the bare two-particle Green function

X 0,imp(i�) = 1

N

∑
q

X 0(q, i�) ≡ X 0,loc(i�) (A3)

is also violated, though the self-consistently determined so-
lution of the DMFT does have this equality. Here X 0,imp(i�)
is given by [X 0,imp]ω,ω′ (i�) = −δωω′Gimp(iω)Gimp(iω + i�).
Thus, there is a choice between X 0,imp(i�) and X 0,loc(i�)
in solving the BS equation in Eq. (8). We found that using
X 0,loc(i�) gives reasonable results, because the difference
between X 0(q, i�) and X 0,loc(i�) plays an essential role in
the q dependence of the susceptibility.

APPENDIX B: FREQUENCY CUTOFF

In practical computations of the BS equation, one needs to
introduce cutoff in the fermionic frequencies. Here we present
a practical expression that is suitable for introducing cutoff.

We begin with the BS equation in the form of Eq. (16), which
is rewritten as follows:

X q = X loc + �X q, (B1)

�X q = X loc
(
�−1

q − X loc
)−1

X loc. (B2)

Here �X q describes the deviation with respect to X loc. Taking
the summations over the fermionic Matsubara frequencies, we
obtain

χq = χloc + T
∑
ω,ω′

�X q. (B3)

The infinite summations in the first term have been taken
exactly. We now introduce a frequency cutoff for the summa-
tions in the second term to evaluate the deviation from χloc.

APPENDIX C: RELATIONS BETWEEN u0(iω) AND v0(iω)

In this Appendix we derive relations between u0(iω) and
v0(iω) from symmetry properties of two-particle Green func-
tions. We first use the relation

Xloc(iω, iω′) = Xloc(iω′, iω), (C1)

which implies that u0(iω) and v0(iω) are basically equiv-
alent. Replacing Xloc(iω, iω′) with the decoupling formula
in Eq. (13), we can prove u0(iω) = Cv∗

0 (iω), where C is
a constant. Furthermore, the normalization condition for
u0(iω) and v0(iω) leads to |C| = 1, and thus the relation is
expressed as

u0(iω) = eiθv∗
0 (iω), (C2)

where θ is a real number.
Next, we use another relation that connects iω and −iω,

X ∗
loc(iω, iω′) = Xloc(−iω,−iω′). (C3)

The same procedure as above leads to a similar relation
between u0(iω) and u∗

0(−iω), namely, u0(iω) = eiθ ′
u∗

0(−iω).
Furthermore, combining with Eq. (C2), we can prove θ = θ ′,
and thus obtain

u0(iω) = eiθ u∗
0(−iω), (C4)

v0(iω) = eiθv∗
0 (−iω). (C5)

It is also possible to eliminate the phase factor by combining
Eqs. (C2) and (C4) to yield

u0(iω) = v0(−iω), (C6)

which does not depend on the choice of θ .
In practical calculations, it is convenient to fix the phase so

that θ = 0. To this end, we define ũ0(iω) ≡ u0(iω)e−θ/2 and
ṽ0(iω) ≡ v0(iω)e−θ/2, and thus ũ0(iω) and ṽ0(iω) follow the
above equations with θ = 0, namely,

ũ0(iω) = ṽ∗
0 (iω), (C7)

ũ0(iω) = ũ∗
0(−iω). (C8)
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APPENDIX D: DERIVATION OF �q(iω) IN THE
HUBBARD MODEL

We derive the analytical expression for �q(iω) in Eq. (28).
The single-particle Green function in the Hubbard model is
given by

Gk(iω) = 1

iω + μ − εk − �(iω)
. (D1)

In the atomic limit, the local Green function Gloc(iω) is

Gloc(iω) 	 1

iω + μ − �(iω)
. (D2)

We expand Gk(iω) with respect to εk and retain the first
correction

Gk(iω) 	 Gloc(iω) + Gloc(iω)εkGloc(iω). (D3)

Using this expression, X 0
q (iω; i�) is evaluated as

X 0
q (iω; i�) 	 X 0

loc(iω; i�) − X 0
loc(iω; i�)2〈εkεk+q〉k. (D4)

Here we used 〈εk〉k = 0. Inserting this approximated result
into �q(iω; i�) in Eq. (17), we obtain

�q(iω; i�) 	 −〈εkεk+q〉k. (D5)

Taking the average over k and using 〈γkγk+q〉k = γk/2 for a
nearest-neighbor hopping model, we obtain Eq. (28).

APPENDIX E: DERIVATION OF �q(iω) IN THE
PERIODIC ANDERSON MODEL

The analytical expression for �q(iω) in Eq. (31) is derived
in this Appendix. The single-particle Green function in the
periodic Anderson model is given by

Gk(iω) = 1

iω − ε f − V 2
k gc,k(iω) − �(iω)

, (E1)

where gc,k(iω) is the conduction electron Green function
defined by gc,k(iω) = 1/(iω + μ − εk). The local Green func-
tion Gloc is given by

Gloc(iω) = 1

iω − ε f − �(iω) − �(iω)
. (E2)

In the atomic limit, �(iω) is approximated into �(iω) 	
〈V 2

k gc,k(iω)〉k, and we expand G−1
k (iω) = G−1

loc (iω) − [V 2
k εk −

�(iω)] around Gloc(iω) as

Gk(iω) 	 Gloc(iω) + Gloc(iω)[V 2
k εk − �(iω)]Gloc(iω).

(E3)

Then X 0
q (iω; i�) is evaluated as

X 0
q (iω; i�) 	 X 0

loc(iω; i�)

− X 0
loc(iω; i�)2V 4[Xc,q(iω; i�) − X̄c(iω; i�)]. (E4)

Inserting this expression into �q(iω; i�) in Eq. (17) and
retaining the term of order V 4, we obtain Eq. (31).

FIG. 18. A schematic figure explaining which data in
Xloc(iw, iw′) are used in the SCL2 scheme. The thick line is on
ω′ = ω0, and points show P = (iω1,−iω0) and P′ = (−iω1, −iω0).

APPENDIX F: TECHNICAL DETAILS OF SCL2 SCHEME

Let us assume that the decoupling in Eq. (12) is exactly
satisfied, namely,

Xloc(iω, iω′) = s0u0(iω)v∗
0 (iω′). (F1)

Then u0(iω) can be determined from a one-dimensional data
of Xloc(iω, iω′) as shown in Fig. 13: u0(iω) ∝ Xloc(iω,−iω0),
where ω0 is, e.g., the lowest Matsubara frequency. In practice,
however, a good estimation is not achieved in this way,
because actual data of Xloc(iω, iω′) has a structure around
the diagonal ω = ω′, which is not included in u0(iω). For
better estimation of u0(iω), we need to extract only the broad
structure away from the diagonal. For this reason we use
only the half-data on ω > 0 side as depicted in Fig. 18, and
the negative side is recovered using the symmetry relation
in Eq. (C4). In the following, we describe how to construct
u0(iω) in this way.

We first determine θ , which is necessary to use Eq. (C4).
To this end, we input two data points P and P′ in Fig. 18 and
define

� ≡ arg[Xloc(iω1,−iω0) + Xloc(−iω1,−iω0)]

= θ

2
+ arg[v∗

0 (−iω0)]. (F2)

Here ω1 �= ω0 is, e.g., the second lowest Matsubara point.
Then we shift the phase of Xloc(iω,−iω0) by −� to define

ũ0(iω) ≡ u0(iω)e−iθ/2

= CXloc(iω,−iω0)e−i�, (F3)

where C = 1/s0|v∗
0 (−iω)| is a real number. The negative

side ω < 0 can be evaluated using the symmetry ũ0(−iω) =
ũ∗

0(iω), which can be derived from Eq. (C4). The factor C is
fixed from the normalization condition. Finally, the singular
value s0 is determined using the relation Xloc(iω0,−iω0) =
s0|u0(iω0)|2.

APPENDIX G: THE FUNCTION u0(iω) IN
A TWO-ORBITAL MODEL

In this Appendix we present explicit results for the function
uξ

0 (iω) in the two-orbital model, and provide a grounding of
the two-pole approximation introduced in Sec. VI B.
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FIG. 19. The mode dependencies of several quantities in the
two-orbital model: (a) The singular-value ratio sξ

1/sξ

0, (b) the fitting
parameters E ξ

+ = E ξ
− of the function uξ

0 (iω) (the fitting results are
depicted in Fig. 20), and (c) T χloc (circle) and s0u2

0 (square) for
verification of of Eq. (15). The horizontal line in (b) indicates the
lowest excitation energy E±,min.

We first show the mode dependence of the ratio sξ
1/sξ

0 in
Fig. 19(a). The data are taken from Fig. 12 (the lowest tem-
perature, T = 0.1). The decoupling approximation is justified
if sξ

1/sξ
0 is small, and four modes, i.e., spin, orbz, orb3, and

sp-orb3x, apply to this case as expected.
The function uξ

0 (iω) is shown for those four modes in
Fig. 20. The lines show fitting results by the two-pole func-
tion in Eq. (48), demonstrating that reasonable fitting was
achieved. The fitting parameter E+ = E− are depicted in
Fig. 19(b). The horizontal line indicates the lowest excitation
energy E±,min ≈ 3.40 from n = 2 to n = 2 ± 1. The fitting
results excepting the spin mode turn out to agree with E±,min,

FIG. 20. The function uξ

0 (iω) for the two-orbital model with
�/W = 1.1 and T = 0.1. The lines show fitting results by the
function in Eq. (48).

indicating that replacing E± with E±,min provides a good
approximation. Regarding the spin mode, this replacement is
expected to result in an overestimate of fluctuations.

Finally, we verify Eq. (15), which relates sξ
0 to χ

ξ

loc.
Figure 19(c) compares the left- and right-hand sides of
Eq. (15), demonstrating that Eq. (15) is satisfied in reasonable
accuracy. All the results above support the SCL3 approxima-
tion scheme as a simple and reasonable approximation for
solving the BS equation.
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