23-28 September, 2019

Spatial Correlations and Superconductivity in Dynamical Mean-Field Theory

Junya Otsuki

Research Institute for Interdisciplinary Science, Okayama University

Outline

- 1. Heavy Fermion Superconductivity
 - Dual fermion approach: beyond DMFT
 - Role of incoherent part on superconductivities
- 2. Strong-coupling formula for $\chi(q)$
 - Physically, easy to understand; Numerically, easy to compute
 - Evaluation of Intersite interactions J_{ii} in DMFT

Collaborators

Dual fermion approach

- Hartmut Hafermann (Huawei)
- Alexander Lichtenstein (U Hamburg)

Strong-Coupling formula

- Hiroshi Shinaoka (Saitama U)
- Kazuyoshi Yoshimi (ISSP, U Tokyo)
- Yusuke Nomura (RIKEN)
- Masayuki Ohzeki (Tohoku U)

Special Thanks

- Yoshio Kuramoto (KEK)
- Hiroaki Kusunose (Meiji U)
- Dieter Vollhardt (U Augsburg)

3

Shinaoka

Nomura

Yoshimi

Introduction

Heavy fermion systems Itinerant and localized nature of f electrons

Magnetism (multipole ordering)

CeB₆ Tayama et al 1997

Superconductivity

A lot of Ce, Pr, Nd, ..., U compounds

CePd₂Si₂, CeCoIn₅, URu₂Si₂, UGe₃, UCoGe, ...

Itinerant/Localized in d-electron systems

Itinerant/Localized in f-electron systems

Similar to LaB₆ Onuki et a. 1989 Harima, Kasuya 1989, 1996

Ce³⁺ : 4f¹, La³⁺ : 4f⁰

Different from LaRu₂Si₂ Yamagami, Hasegawa 1992 H. Aoki et al. 1993 Matsumoto et al. 2010 Itinerant/Localized in f-electron systems

Itinerant/Localized in f-electron systems

Heavy fermions = itinerant + localized natures $T \oint_{p, d} \omega$ Heavy-fermion state: eg. $m^* = 100m_0$ $(z \sim m_0/m^* \approx 0.01)$ \Rightarrow 99% of spectrum are incoherent

Dynamical Mean-Field Theory (DMFT)

Local approximation

Plenary talk by Dieter Vollhardt

$$\Sigma(\boldsymbol{\omega}, \boldsymbol{k}) \approx \Sigma^{\mathrm{DMFT}}(\boldsymbol{\omega})$$

Metzner, Vollhardt 1989 Georges, Kotliar 1992 Georges et al. 1996 Solution of the impurity Anderson model by continuous-time QMC (CT-QMC)

JO in summer school textbook 2016

Local correlations exactly taken into account

 $\Delta(\omega)$

U

hybridization with "bath"

Heavy Fermion Superconductivity

PHYSICAL REVIEW B 90, 235132 (2014)

Superconductivity, antiferromagnetism, and phase separation in the two-dimensional Hubbard model: A dual-fermion approach

Junya Otsuki,¹ Hartmut Hafermann,² and Alexander I. Lichtenstein³

PRL 115, 036404 (2015)

PHYSICAL REVIEW LETTERS

week ending 17 JULY 2015

Competing *d*-Wave and *p*-Wave Spin-Singlet Superconductivities in the Two-Dimensional Kondo Lattice

Junya Otsuki Department of Physics, Tohoku University, Sendai 980-8578, Japan (Received 21 April 2015; published 15 July 2015)

Kondo lattice solved with DMFT + CT-QMC(CT-J) JO, Kusunose, Kuramoto, JPSJ 2009

Motivations

Both localized and itinerant nature should be taken into account cf. Phenomenology: 'duality model' (Kuramoto, Miyake, 1990)

Motivations

Motivations

Rubtsov, Katsnelson, Lichtenstein Radio A

(1) Dynamical mean-field theory (DMFT) (2) Auxiliary fermion (dual fermion) lattice "quasiparticles" "residual interactions" $\Delta(\omega)$ $\Sigma^{\rm DMFT}(\omega)$ $\widetilde{G}^0_{\omega \boldsymbol{k}} = G^{\rm DMFT}_{\omega \boldsymbol{k}} - g_{\omega}$ $g_{\omega}, \gamma_{\omega\omega',\nu}$ $\gamma_{\omega,\omega';\nu}$ Local correlations Spatial correlations K Δ_{ω} ω S ➔ Dynamical **Heavy fermions** pairing interactions Mott insulator

Superconductivity

U/t=8, n=0.9, T/t=0, V/t=8, N=0, N=0, V/t=8, N=0, N=0, N=0, V/t=10, N=0, N=0, N=0, N=0, N=0,

Impurity solver: CT-HYB (Werner et al. 2006) Improved vertex calculation (Hafermann et al. 2012)

Pauli principle is fulfilled (spin × parity × time-reversal) Pairing instability

Hubbard model (square lattice) JO, Hafermann, Lichtenstein, PRB 2014

(c) Hubbard, U = 8, n = 0.86(b) KLM, J = 1.0, n = 0.841 1 singlet A1g singlet A1g A2g 0.8 A2g 0.8 B1g B1g B2g B2g $\lambda_{\rm SC}$ $\lambda_{\rm SC}$ 0.6 0.6 Eu Eu 0.4 0.4 0.2 0.2 0 0 0.02 0.5 0.1 0.01 0.02 0.05 0.1Т Т

Competing d-wave and p-wave SC

OKAYAMA Kondo lattice (square lattice) **JO, PRL 2015**

Superconductivity in 2D Kondo lattice

Odd-frequency SCs: CeCu₂Si₂, CeRhIn₅, Fuseya, Kohno, Miyake, 2003 Thermodynamic stability, Solenov 2009, Kusunose et al., 2011

$\chi(q)$ in DMFT

PHYSICAL REVIEW B 99, 165134 (2019)

Strong-coupling formula for momentum-dependent susceptibilities in dynamical mean-field theory

Junya Otsuki,^{1,*} Kazuyoshi Yoshimi,² Hiroshi Shinaoka,³ and Yusuke Nomura⁴

Momentum-dependent susceptibilities in DMFT

Susceptibility matrix

calculated in the effective impurity model (very heavy!)

ОКАУАМА

Decoupling

-20

-10

ω

10

Similar approximation was addressed by...

- dual-boson approach: Stepanov et al. 2016

-20

-10

0

ω

10

- diagrama analysis: F. Krien, arXiv:1901.02832

Mathematical justification of the decoupling

Singular Value Decomposition (SVD)

$$X_{\rm loc}(i\omega, i\omega') = \sum_{i\geq 0} s_i u_i(i\omega) v_i^*(i\omega') \simeq s_0 u_0(i\omega) v_0^*(i\omega')$$

Strong-Coupling-Limit (SCL) formula

$$\boldsymbol{\chi}_{\boldsymbol{q}}^{\mathrm{SCL}} = (\boldsymbol{\chi}_{\mathrm{loc}}^{-1} - \boldsymbol{I}_{\boldsymbol{q}})^{-1}, \boldsymbol{I}_{\boldsymbol{q}} \simeq T \sum_{\omega} \boldsymbol{\phi}(i\omega) \boldsymbol{\Lambda}_{\boldsymbol{q}}(i\omega) \boldsymbol{\phi}(i\omega)$$

(ii) Local information

$$\begin{array}{ll} \text{in general} & \pmb{\phi}(i\omega) \propto \pmb{\Phi}(i\omega) & \pmb{X}_{\text{loc}}(i\omega,i\omega') \simeq \pmb{\Phi}(i\omega) \pmb{\Phi}(i\omega') \\ \text{in the atomic limit} & \phi(i\omega) \propto \frac{1}{2} \left(\frac{1}{i\omega + \mu} - \frac{1}{i\omega + \mu - U} \right) \end{array}$$

Numerical verification of the SCL formula

Phase diagram

perfect agreement even in the weak-coupling regime

Validity has been confirmed also in a two-orbital model

Effective intersite interactions

strong-coupling limit

 $I_{\boldsymbol{q}} = -\frac{4t^2}{U}(\cos k_x + \cos k_y)$ 30

OKAYAMA

UNIVERSITY

square-lattice Hubbard model

Effective intersite interactions in the atomic limit

"Modern" derivation of effective intersite interactions

UNIVERSIT

Microscopic derivation of heavy-fermion superconductivity

- Dual fermion approach: Spatial correlations beyond DMFT
- Itinerant-Localized crossovers can lead to an exotic pairing state

Strong-coupling formula on $\chi(q)$ within DMFT

This new formula has advantages...

- physically, easy to understand
- Effective intersite interactions
- numerically, easy to compute

$$\chi_{\boldsymbol{q}}^{\mathrm{SCL}} = (\chi_{\mathrm{loc}}^{-1} - I_{\boldsymbol{q}})^{-1}$$
$$I_{\boldsymbol{q}} \simeq T \sum_{\omega} \boldsymbol{\phi}(i\omega) \Lambda_{\boldsymbol{q}}(i\omega) \boldsymbol{\phi}(i\omega)$$