
Prof. H.R. Ott/M. Sigrist WS 05/06

Unkonventionelle Supraleitung

Serie 9

Verteilung: 10.Januar Abgabe: 17.Januar

9.1 The condensation energy at zero temperature T = 0. First of all, for the singlet state
and the unitary triplet state, the superconducting ground-state energy E0 at T = 0 is given
by

E0(T = 0) =
∑

k

(

ξk − Ek(T = 0)
)

+
1

2

∑

k,s,s′

|∆k,ss′(T = 0)|2
2Ek(T = 0)

,

where Ek =
√

ξ2

k + |∆k|2 and |∆k|2 = 1

2
Tr[∆̂k∆̂

†
k]. s, s′ = {↑, ↓}. ∆k,ss′ is the (s, s′)-th matrix

element of ∆̂k. ξk is the energy dispersion in the normal state. The derivation of the above
equation, which is rather lengthy, will be shown in Lösungen. Instead, here, let us consider
the condensation energy by just utilizing the above equation.

The condensation energy Fcond at a certain temperature is defined as the difference of
the free energies between the superconducting and normal states, Fcond = Fsuper − Fnormal.
Here, the free energy in the normal state is estimated by setting the superconducting order
parameters zero.

At T = 0, the free energy (F = E − TS) is equal to the ground-state energy. One can
obtain the ground-state energy in the normal state Enormal

0
(T = 0) from the above equation

by setting the order parameters zero.

a) Show that at T = 0 the condensation energy, Fcond = E0(T = 0) − Enormal
0

(T = 0), is
given as

Fcond =
∑

k

(

|ξk| − Ek(T = 0)
)

+
1

2

∑

k,s,s′

|∆k,ss′(T = 0)|2
2Ek(T = 0)

.

b) Show that Fcond at T = 0 is given as follows, for the singlet state ∆̂k = Ψkiσ̂y (Ψk ≡
Ψk(T = 0)) and the unitary triplet state ∆̂k = ~dk · ~̂σiσ̂y (~dk ≡ ~dk(T = 0)), respectively,

Fcond = −1

2
N0

∫ dΩk

4π
|Ψk|2, and Fcond = −1

2
N0

∫ dΩk

4π
|~dk|2.

Here, N0 is the density of states at the Fermi level per spin projection.

Hint: Replace the k summation as

∑

k

→ N0

∫

dΩk

4π

∫ ∞

−∞
dξk.

Introduce the cut-off energy εc (≫ |Ψk|, |~dk|):
∫ ∞

0

dξk →
∫ εc

0

dξk.

Assume that Ψk and ~dk do not depend on the energy ξk in the k-space, but depends only on
the sense of ~k (i.e., on Ωk). This is the weak-coupling approximation.
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There are integration formulas:
∫

dx
√

x2 + a2 =
x

2

√
x2 + a2 +

a2

2
ln(x +

√
x2 + a2),

∫

dx
1√

x2 + a2
= ln(x +

√
x2 + a2).

9.2 Prove the mathematical formula which appears in Eq. (3.14) of the German theory
lecture notes:

1

2ξ
tanh

( ξ

2kBT

)

= 2kBT
∞
∑

m=0

1

ω2
m + ξ2

,

where ωm = πkBT (2m + 1).

Hint:
Consider the right hand side.

2kBT
∞
∑

m=0

1

ω2
m + ξ2

=
1

β

∞
∑

m=−∞

−1

(iωm − ξ)(iωm + ξ)
≡ 1

β

∞
∑

m=−∞

F (iωm).

Here, β ≡ 1/kBT . Note that F (z) has the poles at z = ±ξ.
On the other hand, exp[β(iωn)] = −1, for the arbitrary integer n. Therefore, for a

function f(z),

1

2πi

∫

C1

dz
f(z)

exp(βz) + 1
=

−1

β

∞
∑

n=−∞

f(iωn),

owing to the residue theorem. Changing the integration path from C1 to C2,

1

2πi

∫

C1

dz
f(z)

exp(βz) + 1
=

1

2πi

∫

C2

dz
f(z)

exp(βz) + 1
= −

∑

ν

R(zν)

exp(βzν) + 1
.

Here, zν are the poles of the function f(z), and R(zν) is the residue of f(z) at the pole zν .
Hence,

1

β

∞
∑

n=−∞

f(iωn) =
∑

ν

R(zν)

exp(βzν) + 1
.

C1

ωn

ωn

C2

−ξ ξ−ξ ξ
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