Unkonventionelle Supraleitung

Serie 9

Verteilung: 10.Januar
Abgabe: 17.Januar
9.1 The condensation energy at zero temperature $T=0$. First of all, for the singlet state and the unitary triplet state, the superconducting ground-state energy E_{0} at $T=0$ is given by

$$
E_{0}(T=0)=\sum_{k}\left(\xi_{k}-E_{k}(T=0)\right)+\frac{1}{2} \sum_{k, s, s^{\prime}} \frac{\left|\Delta_{k, s s^{\prime}}(T=0)\right|^{2}}{2 E_{k}(T=0)},
$$

where $E_{k}=\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}$ and $\left|\Delta_{k}\right|^{2}=\frac{1}{2} \operatorname{Tr}\left[\hat{\Delta}_{k} \hat{\Delta}_{k}^{\dagger}\right] \cdot s, s^{\prime}=\{\uparrow, \downarrow\} . \Delta_{k, s s^{\prime}}$ is the $\left(s, s^{\prime}\right)$-th matrix element of $\hat{\Delta}_{k}$. ξ_{k} is the energy dispersion in the normal state. The derivation of the above equation, which is rather lengthy, will be shown in Lösungen. Instead, here, let us consider the condensation energy by just utilizing the above equation.

The condensation energy $F_{\text {cond }}$ at a certain temperature is defined as the difference of the free energies between the superconducting and normal states, $F_{\text {cond }}=F_{\text {super }}-F_{\text {normal }}$. Here, the free energy in the normal state is estimated by setting the superconducting order parameters zero.

At $T=0$, the free energy $(F=E-T S)$ is equal to the ground-state energy. One can obtain the ground-state energy in the normal state $E_{0}^{\text {normal }}(T=0)$ from the above equation by setting the order parameters zero.
a) Show that at $T=0$ the condensation energy, $F_{\text {cond }}=E_{0}(T=0)-E_{0}^{\text {normal }}(T=0)$, is given as

$$
F_{\text {cond }}=\sum_{k}\left(\left|\xi_{k}\right|-E_{k}(T=0)\right)+\frac{1}{2} \sum_{k, s, s^{\prime}} \frac{\left|\Delta_{k, s s^{\prime}}(T=0)\right|^{2}}{2 E_{k}(T=0)} .
$$

b) Show that $F_{\text {cond }}$ at $T=0$ is given as follows, for the singlet state $\hat{\Delta}_{k}=\Psi_{k} i \hat{\sigma}_{y}\left(\Psi_{k} \equiv\right.$ $\left.\Psi_{k}(T=0)\right)$ and the unitary triplet state $\hat{\Delta}_{k}=\overrightarrow{d_{k}} \cdot \hat{\vec{\sigma}} i \hat{\sigma}_{y}\left(\vec{d}_{k} \equiv \vec{d}_{k}(T=0)\right)$, respectively,

$$
F_{\text {cond }}=-\frac{1}{2} N_{0} \int \frac{d \Omega_{k}}{4 \pi}\left|\Psi_{k}\right|^{2}, \quad \text { and } \quad F_{\text {cond }}=-\frac{1}{2} N_{0} \int \frac{d \Omega_{k}}{4 \pi}\left|\overrightarrow{d_{k}}\right|^{2} .
$$

Here, N_{0} is the density of states at the Fermi level per spin projection.

Hint: Replace the k summation as

$$
\sum_{k} \rightarrow N_{0} \int \frac{d \Omega_{k}}{4 \pi} \int_{-\infty}^{\infty} d \xi_{k} .
$$

Introduce the cut-off energy $\varepsilon_{\mathrm{c}}\left(\gg\left|\Psi_{k}\right|,\left|\vec{d}_{k}\right|\right)$:

$$
\int_{0}^{\infty} d \xi_{k} \rightarrow \int_{0}^{\varepsilon_{\mathrm{c}}} d \xi_{k}
$$

Assume that Ψ_{k} and \vec{d}_{k} do not depend on the energy ξ_{k} in the k-space, but depends only on the sense of \vec{k} (i.e., on Ω_{k}). This is the weak-coupling approximation.

There are integration formulas:

$$
\int d x \sqrt{x^{2}+a^{2}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right), \quad \int d x \frac{1}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

9.2 Prove the mathematical formula which appears in Eq. (3.14) of the German theory lecture notes:

$$
\frac{1}{2 \xi} \tanh \left(\frac{\xi}{2 k_{\mathrm{B}} T}\right)=2 k_{\mathrm{B}} T \sum_{m=0}^{\infty} \frac{1}{\omega_{m}^{2}+\xi^{2}}
$$

where $\omega_{m}=\pi k_{\mathrm{B}} T(2 m+1)$.

Hint:
Consider the right hand side.

$$
2 k_{\mathrm{B}} T \sum_{m=0}^{\infty} \frac{1}{\omega_{m}^{2}+\xi^{2}}=\frac{1}{\beta} \sum_{m=-\infty}^{\infty} \frac{-1}{\left(i \omega_{m}-\xi\right)\left(i \omega_{m}+\xi\right)} \equiv \frac{1}{\beta} \sum_{m=-\infty}^{\infty} F\left(i \omega_{m}\right)
$$

Here, $\beta \equiv 1 / k_{\mathrm{B}} T$. Note that $F(z)$ has the poles at $z= \pm \xi$.
On the other hand, $\exp \left[\beta\left(i \omega_{n}\right)\right]=-1$, for the arbitrary integer n. Therefore, for a function $f(z)$,

$$
\frac{1}{2 \pi i} \int_{C_{1}} d z \frac{f(z)}{\exp (\beta z)+1}=\frac{-1}{\beta} \sum_{n=-\infty}^{\infty} f\left(i \omega_{n}\right)
$$

owing to the residue theorem. Changing the integration path from C_{1} to C_{2},

$$
\frac{1}{2 \pi i} \int_{C_{1}} d z \frac{f(z)}{\exp (\beta z)+1}=\frac{1}{2 \pi i} \int_{C_{2}} d z \frac{f(z)}{\exp (\beta z)+1}=-\sum_{\nu} \frac{R\left(z_{\nu}\right)}{\exp \left(\beta z_{\nu}\right)+1}
$$

Here, z_{ν} are the poles of the function $f(z)$, and $R\left(z_{\nu}\right)$ is the residue of $f(z)$ at the pole z_{ν}. Hence,

$$
\frac{1}{\beta} \sum_{n=-\infty}^{\infty} f\left(i \omega_{n}\right)=\sum_{\nu} \frac{R\left(z_{\nu}\right)}{\exp \left(\beta z_{\nu}\right)+1}
$$

