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The generalized BCS theory with the Zeeman effect.
8.1 Let us consider the following Hamiltonian for a superconductor under a magnetic field,

H = HBCS + HZ.

HBCS is the same as the Hamiltonian in the problem 4.1 in Serie 4 (the notations are also
the same):

HBCS =
∑

k

C
†
kε̌kCk,

C
†
k = ( c

†
k↑, c

†
k↓, c−k↑, c−k↓ ) , ε̌k =

1

2

(

ξkσ̂0 ∆̂k

∆̂†
k −ξkσ̂0

)

, Ck =











ck↑

ck↓

c
†
−k↑

c
†
−k↓











.

The Zeeman term HZ is written with the Pauli matrices ~̂σ and the magnetic field ~H as

HZ = −µB

∑

k,s1,s2

c
†
ks1

(~σs1s2
· ~H)cks2

=
∑

k

C
†
k

1

2

(

−µB(~̂σ · ~H) 0

0 µB(~̂σ
T
· ~H)

)

Ck,

where we have omitted the c-number term in the last line.
Hence,

H = HBCS + HZ

=
∑

k

C
†
k

1

2

(

ξkσ̂0 ∆̂k

∆̂†
k −ξkσ̂0

)

Ck +
∑

k

C
†
k

1

2

(

−µB(~̂σ · ~H) 0

0 µB(~̂σ
T
· ~H)

)

Ck

=
∑

k

C
†
k

1

2

(

ξkσ̂0 − µB(~̂σ · ~H) ∆̂k

∆̂†
k −

(

ξkσ̂0 − µB(~̂σ
T
· ~H)

)

)

Ck

≡
∑

k

C
†
k

1

2

(

T̂1k ∆̂k

∆̂†
k −T̂2k

)

Ck

≡
∑

k

C
†
kε̌

′
kCk,

where

T̂1k = ξkσ̂0 − µB(~̂σ · ~H),

T̂2k = ξkσ̂0 − µB(~̂σ
T
· ~H).

Here, T̂1,−k = T̂1k and T̂2,−k = T̂2k because ξ−k = ξk. One can also confirm easily that

T̂ ∗
2k = T̂1k because ξk and ~H are real. From now on, let us assume that ~H = (0, 0, Hz) ‖ ẑ

and ûk = u0
kσ̂0 + uz

kσ̂z. When ~H ‖ ẑ, T̂1k = T̂2k.
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The Hamiltonian H is diagonalized as

H =
∑

k

(

C
†
kǓk

)(

Ǔ
†
k ε̌

′
kǓk

)(

Ǔ
†
kCk

)

=
∑

k

A
†
kĚkAk,

with

Ěk =
1

2

(

Êk 0
0 −Ê−k

)

and Êk =
(

Ek,+ 0
0 Ek,−

)

,

by the Bogoliubov transformation:

Ak = Ǔ
†
kCk, Ǔk =

(

ûk v̂k

v̂∗
−k û∗

−k

)

, Ǔ
†
k =

(

û
†
k v̂T

−k

v̂
†
k ûT

−k

)

.

Here, Ǔ
†
kǓk = ǓkǓ

†
k = 1̌.

a) Show that in the case of the singlet state ∆̂k = Ψiσ̂y, the eigen values are given as

Ek,+ =
√

ξ2
k + |∆k|2 − µBHz, and Ek,− =

√

ξ2
k + |∆k|2 + µBHz.

b) Show that in the case of the unitary triplet state ∆̂k = ~dk · ~̂σiσ̂y with ~d ⊥ ~H, namely

with ~d = (dx, dy, 0), the eigen values are given as

Ek,+ =
√

(ξk − µBHz)2 + |∆k|2, and Ek,− =
√

(ξk + µBHz)2 + |∆k|2.

c) Show that in the case of the unitary triplet state ∆̂k = ~dk · ~̂σiσ̂y with ~d ‖ ~H, namely

with ~d = (0, 0, dz), the eigen values are given as

Ek,+ =
√

ξ2
k + |∆k|2 − µBHz, and Ek,− =

√

ξ2
k + |∆k|2 + µBHz.

Hint: Considering the equation ε̌′kǓk = ǓkĚk, four equations will be obtained. Only two of
them are independent equations:

T̂1kûk + ∆̂kv̂
∗
−k = ûkÊk,

∆̂†
kûk − T̂2kv̂

∗
−k = v̂∗

−kÊk.

From the former equation, one can calculate v̂∗
−k using the property of the singlet and unitary

triplet states: ∆̂k∆̂
†
k = ∆̂†

k∆̂k = |∆k|
2σ̂0 with |∆k|

2 ≡ 1

2
Tr[∆̂k∆̂

†
k]. Substituting v̂∗

−k into the
latter equation, one will obtain the following equation.

|∆k|
4ûk − ∆̂kT̂2k∆̂

†
k

(

ûkÊk − T̂1kûk

)

= |∆k|
2
(

ûkÊk − T̂1kûk

)

Êk.

Assume that ~H = (0, 0, Hz) ‖ ẑ and ûk = u0
kσ̂0 + uz

kσ̂z. Then, for each case of the pairing
states, calculating each term by explicitly considering the matrix elements, one will obtain
equations for Ek,±.
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8.2 Let us consider the same situation as in the problem 8.1.

Calculate ûk and v̂k for the singlet state, the unitary triplet state with ~d ⊥ ~H , and the
unitary triplet state with ~d ‖ ~H.

Hint:
As mentioned above, one can express v̂∗

−k by ûk from the equation:

T̂1kûk + ∆̂kv̂
∗
−k = ûkÊk.

Then, v̂k and v̂
†
k are obtained from v̂∗

−k.

Owing to ǓkǓ
†
k = 1̌, two independent equations are obtained:

ûkû
†
k + v̂kv̂

†
k = σ̂0,

v̂∗
−kû

†
k + û∗

−kv̂
†
k = 0.

From these equations, one can determine ûk and v̂k for each pairing state.
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