Unkonventionelle Supraleitung

Serie 8

Verteilung: 20.Dezember
Abgabe: 10.Januar
The generalized BCS theory with the Zeeman effect.
8.1 Let us consider the following Hamiltonian for a superconductor under a magnetic field,

$$
H=H_{\mathrm{BCS}}+H_{\mathrm{Z}}
$$

H_{BCS} is the same as the Hamiltonian in the problem 4.1 in Serie 4 (the notations are also the same):

$$
\begin{gathered}
H_{\mathrm{BCS}}=\sum_{k} C_{k}^{\dagger} \check{\varepsilon}_{k} C_{k}, \\
C_{k}^{\dagger}=\left(\begin{array}{ccc}
c_{k \uparrow}^{\dagger}, & c_{k \downarrow}^{\dagger}, & c_{-k \uparrow}, \\
c_{-k \downarrow}
\end{array}\right), \quad \check{\varepsilon}_{k}=\frac{1}{2}\left(\begin{array}{cc}
\xi_{k} \hat{\sigma}_{0} & \hat{\Delta}_{k} \\
\hat{\Delta}_{k}^{\dagger} & -\xi_{k} \hat{\sigma}_{0}
\end{array}\right), \quad C_{k}=\left(\begin{array}{c}
c_{k \uparrow} \\
c_{k \downarrow} \\
c_{-k \uparrow}^{\dagger} \\
c_{-k \downarrow}^{\dagger}
\end{array}\right) .
\end{gathered}
$$

The Zeeman term H_{Z} is written with the Pauli matrices $\hat{\vec{\sigma}}$ and the magnetic field \vec{H} as

$$
\begin{aligned}
H_{\mathrm{Z}} & =-\mu_{\mathrm{B}} \sum_{k, s_{1}, s_{2}} c_{k s_{1}}^{\dagger}\left(\vec{\sigma}_{s_{1} s_{2}} \cdot \vec{H}\right) c_{k s_{2}} \\
& =\sum_{k} C_{k}^{\dagger} \frac{1}{2}\left(\begin{array}{cc}
-\mu_{\mathrm{B}}(\hat{\vec{\sigma}} \cdot \vec{H}) & 0 \\
0 & \mu_{\mathrm{B}}\left(\hat{\vec{\sigma}}^{T} \cdot \vec{H}\right)
\end{array}\right) C_{k}
\end{aligned}
$$

where we have omitted the c-number term in the last line.
Hence,

$$
\begin{aligned}
H & =H_{\mathrm{BCS}}+H_{\mathrm{Z}} \\
& =\sum_{k} C_{k}^{\dagger} \frac{1}{2}\left(\begin{array}{cc}
\xi_{k} \hat{\sigma}_{0} & \hat{\Delta}_{k} \\
\hat{\Delta}_{k}^{\dagger} & -\xi_{k} \hat{\sigma}_{0}
\end{array}\right) C_{k}+\sum_{k} C_{k}^{\dagger} \frac{1}{2}\left(\begin{array}{cc}
-\mu_{\mathrm{B}}(\hat{\vec{\sigma}} \cdot \vec{H}) & 0 \\
0 & \mu_{\mathrm{B}}\left(\hat{\vec{\sigma}}^{T} \cdot \vec{H}\right)
\end{array}\right) C_{k} \\
& =\sum_{k} C_{k}^{\dagger} \frac{1}{2}\left(\begin{array}{cc}
\xi_{k} \hat{\sigma}_{0}-\mu_{\mathrm{B}}(\hat{\vec{\sigma}} \cdot \vec{H}) & \hat{\Delta}_{k} \\
\hat{\Delta}_{k}^{\dagger} & -\left(\xi_{k} \hat{\sigma}_{0}-\mu_{\mathrm{B}}\left(\hat{\vec{\sigma}}^{T} \cdot \vec{H}\right)\right)
\end{array}\right) C_{k} \\
& \equiv \sum_{k} C_{k}^{\dagger} \frac{1}{2}\left(\begin{array}{cc}
\hat{T}_{1 k} & \hat{\Delta}_{k} \\
\hat{\Delta}_{k}^{\dagger} & -\hat{T}_{2 k}
\end{array}\right) C_{k} \\
& \equiv \sum_{k} C_{k}^{\dagger} \check{\varepsilon}_{k}^{\prime} C_{k},
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{T}_{1 k}=\xi_{k} \hat{\sigma}_{0}-\mu_{\mathrm{B}}(\hat{\vec{\sigma}} \cdot \vec{H}) \\
& \hat{T}_{2 k}=\xi_{k} \hat{\sigma}_{0}-\mu_{\mathrm{B}}\left(\hat{\vec{\sigma}}^{T} \cdot \vec{H}\right)
\end{aligned}
$$

Here, $\hat{T}_{1,-k}=\hat{T}_{1 k}$ and $\hat{T}_{2,-k}=\hat{T}_{2 k}$ because $\xi_{-k}=\xi_{k}$. One can also confirm easily that $\hat{T}_{2 k}^{*}=\hat{T}_{1 k}$ because ξ_{k} and \vec{H} are real. From now on, let us assume that $\vec{H}=\left(0,0, H_{z}\right) \| \hat{z}$ and $\hat{u}_{k}=u_{k}^{0} \hat{\sigma}_{0}+u_{k}^{z} \hat{\sigma}_{z}$. When $\vec{H} \| \hat{z}, \hat{T}_{1 k}=\hat{T}_{2 k}$.

The Hamiltonian H is diagonalized as

$$
\begin{aligned}
H & =\sum_{k}\left(C_{k}^{\dagger} \check{U}_{k}\right)\left(\check{U}_{k}^{\dagger} \check{\varepsilon}_{k}^{\prime} \check{U}_{k}\right)\left(\check{U}_{k}^{\dagger} C_{k}\right) \\
& =\sum_{k} A_{k}^{\dagger} \check{E}_{k} A_{k}
\end{aligned}
$$

with

$$
\check{E}_{k}=\frac{1}{2}\left(\begin{array}{cc}
\hat{E}_{k} & 0 \\
0 & -\hat{E}_{-k}
\end{array}\right) \quad \text { and } \quad \hat{E}_{k}=\left(\begin{array}{cc}
E_{k,+} & 0 \\
0 & E_{k,-}
\end{array}\right)
$$

by the Bogoliubov transformation:

$$
A_{k}=\check{U}_{k}^{\dagger} C_{k}, \quad \check{U}_{k}=\left(\begin{array}{cc}
\hat{u}_{k} & \hat{v}_{k} \\
\hat{v}_{-k}^{*} & \hat{u}_{-k}^{*}
\end{array}\right), \quad \check{U}_{k}^{\dagger}=\left(\begin{array}{cc}
\hat{u}_{k}^{\dagger} & \hat{v}_{-k}^{T} \\
\hat{v}_{k}^{\dagger} & \hat{u}_{-k}^{T}
\end{array}\right) .
$$

Here, $\check{U}_{k}^{\dagger} \check{U}_{k}=\check{U}_{k} \check{U}_{k}^{\dagger}=\check{1}$.
a) Show that in the case of the singlet state $\hat{\Delta}_{k}=\Psi i \hat{\sigma}_{y}$, the eigen values are given as $E_{k,+}=\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}-\mu_{\mathrm{B}} H_{z}$, and $E_{k,-}=\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}+\mu_{\mathrm{B}} H_{z}$.
b) Show that in the case of the unitary triplet state $\hat{\Delta}_{k}=\overrightarrow{d_{k}} \cdot \hat{\vec{\sigma}} i \hat{\sigma}_{y}$ with $\vec{d} \perp \vec{H}$, namely with $\vec{d}=\left(d_{x}, d_{y}, 0\right)$, the eigen values are given as $E_{k,+}=\sqrt{\left(\xi_{k}-\mu_{\mathrm{B}} H_{z}\right)^{2}+\left|\Delta_{k}\right|^{2}}$, and $E_{k,-}=\sqrt{\left(\xi_{k}+\mu_{\mathrm{B}} H_{z}\right)^{2}+\left|\Delta_{k}\right|^{2}}$.
c) Show that in the case of the unitary triplet state $\hat{\Delta}_{k}=\overrightarrow{d_{k}} \cdot \hat{\vec{\sigma}} i \hat{\sigma}_{y}$ with $\vec{d} \| \vec{H}$, namely with $\vec{d}=\left(0,0, d_{z}\right)$, the eigen values are given as $E_{k,+}=\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}-\mu_{\mathrm{B}} H_{z}$, and $E_{k,-}=\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}+\mu_{\mathrm{B}} H_{z}$.

Hint: Considering the equation $\check{\varepsilon}_{k}^{\prime} \check{U}_{k}=\check{U}_{k} \check{E}_{k}$, four equations will be obtained. Only two of them are independent equations:

$$
\begin{aligned}
\hat{T}_{1 k} \hat{u}_{k}+\hat{\Delta}_{k} \hat{v}_{-k}^{*} & =\hat{u}_{k} \hat{E}_{k} \\
\hat{\Delta}_{k}^{\dagger} \hat{u}_{k}-\hat{T}_{2 k} \hat{v}_{-k}^{*} & =\hat{v}_{-k}^{*} \hat{E}_{k}
\end{aligned}
$$

From the former equation, one can calculate \hat{v}_{-k}^{*} using the property of the singlet and unitary triplet states: $\hat{\Delta}_{k} \hat{\Delta}_{k}^{\dagger}=\hat{\Delta}_{k}^{\dagger} \hat{\Delta}_{k}=\left|\Delta_{k}\right|^{2} \hat{\sigma}_{0}$ with $\left|\Delta_{k}\right|^{2} \equiv \frac{1}{2} \operatorname{Tr}\left[\hat{\Delta}_{k} \hat{\Delta}_{k}^{\dagger}\right]$. Substituting \hat{v}_{-k}^{*} into the latter equation, one will obtain the following equation.

$$
\left|\Delta_{k}\right|^{4} \hat{u}_{k}-\hat{\Delta}_{k} \hat{T}_{2 k} \hat{\Delta}_{k}^{\dagger}\left(\hat{u}_{k} \hat{E}_{k}-\hat{T}_{1 k} \hat{u}_{k}\right)=\left|\Delta_{k}\right|^{2}\left(\hat{u}_{k} \hat{E}_{k}-\hat{T}_{1 k} \hat{u}_{k}\right) \hat{E}_{k}
$$

Assume that $\vec{H}=\left(0,0, H_{z}\right) \| \hat{z}$ and $\hat{u}_{k}=u_{k}^{0} \hat{\sigma}_{0}+u_{k}^{z} \hat{\sigma}_{z}$. Then, for each case of the pairing states, calculating each term by explicitly considering the matrix elements, one will obtain equations for $E_{k, \pm}$.
8.2 Let us consider the same situation as in the problem 8.1.

Calculate \hat{u}_{k} and \hat{v}_{k} for the singlet state, the unitary triplet state with $\vec{d} \perp \vec{H}$, and the unitary triplet state with $\vec{d} \| \vec{H}$.

Hint:
As mentioned above, one can express \hat{v}_{-k}^{*} by \hat{u}_{k} from the equation:

$$
\hat{T}_{1 k} \hat{u}_{k}+\hat{\Delta}_{k} \hat{v}_{-k}^{*}=\hat{u}_{k} \hat{E}_{k} .
$$

Then, \hat{v}_{k} and \hat{v}_{k}^{\dagger} are obtained from \hat{v}_{-k}^{*}.
Owing to $\breve{U}_{k} \check{U}_{k}^{\dagger}=\check{1}$, two independent equations are obtained:

$$
\begin{aligned}
\hat{u}_{k} \hat{u}_{k}^{\dagger}+\hat{v}_{k} \hat{v}_{k}^{\dagger} & =\hat{\sigma}_{0} \\
\hat{v}_{-k}^{*} \hat{u}_{k}^{\dagger}+\hat{u}_{-k}^{*} \hat{v}_{k}^{\dagger} & =0
\end{aligned}
$$

From these equations, one can determine \hat{u}_{k} and \hat{v}_{k} for each pairing state.

