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7.1 Here we discuss the theory of the vibrating-wire viscometer used in the measurements
of the viscosity of the liquid 3He. Consider a thin wire of length l along the x axis, mass
per unit length µ, fixed at both ends and subjected to a tension T . The wire is immersed in
a viscous fluid. A uniform and time independent magnetic field B is applied perpendicular
to the wire (B ‖ ẑ ). The wire carries a current of the form I0e

iωt. The wire then performs
small oscillations in the x-y plane.
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Figure 1: Schematic figure of the system.

Consider the curve y(x, t) describing the motion of the wire. As a boundary condition,
y(0, t) = y(l, t) = 0. The equation of motion for a small element of the wire is given as

µ
∂2y

∂t2
= F,

where the force F per unit length is composed of the elastic Fe, the viscous Fv, and the
magnetic Fm:

F = Fe + Fv + Fm,

Fe = T
∂2y

∂x2
,

Fv = −D
∂y

∂t
− µL

∂2y

∂t2
,

Fm = −I0Beiωt. (Fm = I ×B)

Here, D is a friction coefficient related to the viscosity of the fluid, and µL represents the
effective mass of the fluid dragged by the moving wire (G. Stokes, 1901).1 For simplicity,
we treat D and µL as constant parameters here.

a) First, assume I0 = 0, and consider the following oscillation which satisfies the boundary
condition y(0, t) = y(l, t) = 0, (n is the integer):

y(x, t) = sin
(nπx

l

)

eiω̃t.

1 J. T. Tough, W. D. McCormick, and J. G. Dash, Rev. Sci. Instrum. 35, 1345 (1964).
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Show that in this case, ω̃ is given as

ω̃ = iα ± ωn,

where

α =
D

2(µ + µL)
, and ωn =

√

T

µ + µL

(nπ

l

)2

− α2.

b) From now on, the current is applied, i.e., I0 6= 0. Let us consider the following solution
of the equation of motion:

y(x, t) =
∑

n

An sin
(nπx

l

)

eiω̃t,

where n is the positive integer, and we assume that An is independent of the time t.
Show, in this case, that the amplitude An is given by

An = δn,2j−1

(4I0B

nπµ

) 1
(

1 + µL

µ

)

ω2 − T
µ

(

nπ
l

)2

− iD
µ
ω

, (j = 1, 2, 3, · · ·)

and that under the above assumption (t-independence of An), the frequency ω̃ of vibration
of the wire must be identical to the frequency ω of the current, i.e., ω̃ = ω.

By the way, from that result for the amplitude An, one can notice that ow-
ing to the viscosity of the fluid, (i) the resonance frequencies shift from Ωn to
Ωn/

√

1 + µL

µ
and (ii) the resonances acquire a width of the order of D/µ. Here,

Ωn ≡
√

T
µ
(nπ

l
) are the resonance frequencies measured in vacuum without the

viscous fluid, (n = 1, 3, 5, · · ·). The resonance phenomena can be observed
experimentally by an induced voltage between edges of the oscillating wire.

c) The movement of a conducting wire in a magnetic field induces a voltage between its
edges. The induced voltage V (t) between edges of a wire with length L is given by

V (t) =
∫ L

0

(v(t) ×B) · dl,

where v(t) is the velocity of the small line element dl of the wire.
Calculate V (t) for the present oscillating wire when its dynamics is described by y(x, t)

of the problem b).
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Figure 2: Schematic plot of An vs. ω.
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Hint: One may utilize the following relations.

∫ l

0

dx sin
(mπx

l

)

sin
(nπx

l

)

=
l

2
δm,n.

(m and n are the integers.)

∫ l

0

dx sin
(nπx

l

)

=



















2l

nπ
(n = 1, 3, 5, · · ·)

0 (n = 2, 4, 6, · · ·)

=
2l

nπ
δn,2j−1. (j: the positive integer)

7.2 Consider the following implicit equation for the depression of the critical temperature
Tc in the presence of a pair breaking mechanism characterized by τ :

ln
(1

x

)

= Ψ
(1

2
+

y

4πx

)

− Ψ
(1

2

)

,

which is equivalent to Eq. (3.19) given in the German version of the theory lecture notes
and to Eq. (V.1) in the experiment lecture notes. Here, x = Tc/Tc0, y = 2h̄/τkBTc0, and Tc0

is the original critical temperature in the absence of pair breaking effects.
From the above equation, for each value of x (0 ≤ x ≤ 1), a unique value of y = Un(x)

is determined. The function Un(x) is called “universal” in the sense that it contains only
dimensionless and material-independent parameters. Unfortunately, there is no analytical
expression for Un(x), and only numerical values of Un(x) can be obtained for general x.

Here let us consider the following two limiting situations alternatively.

a) Show that for x → 0 (Tc → 0), y = Un(x) → 1.76, and h̄
τ
∼ kBTc0.

b) Show that for x → 1 (Tc → Tc0), y = Un(x) → (8/π)(1 − x), and h̄
τ
∼ kB(Tc0 − Tc).

h̄/τ represents the strength of a pair breaking effect.

Hint: One may utilize the following approximations for the digamma function Ψ given in
Eq. (3.20),

Ψ
(1

2
+ z

)

≈ Ψ
(1

2

)

+
π2

2
z (z → 0),

Ψ(z) ≈ ln z −
1

2z
−

1

12z2
(z → ∞),

and Ψ(1

2
) = − ln(4 × eγ) ≈ − ln(4 × 1.78) ≈ −1.96, (γ ≈ 0.5772).
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