Unkonventionelle Supraleitung

Serie 7

```
Verteilung: 13.Dezember
```

Abgabe: 20.Dezember

7.1 Here we discuss the theory of the vibrating-wire viscometer used in the measurements of the viscosity of the liquid ³He. Consider a thin wire of length l along the x axis, mass per unit length μ , fixed at both ends and subjected to a tension T. The wire is immersed in a viscous fluid. A uniform and time independent magnetic field B is applied perpendicular to the wire ($\mathbf{B} \parallel \hat{z}$). The wire carries a current of the form $I_0 e^{i\omega t}$. The wire then performs small oscillations in the x-y plane.

Figure 1: Schematic figure of the system.

Consider the curve y(x,t) describing the motion of the wire. As a boundary condition, y(0,t) = y(l,t) = 0. The equation of motion for a small element of the wire is given as

$$\mu \frac{\partial^2 y}{\partial t^2} = F$$

where the force F per unit length is composed of the elastic F_e , the viscous F_v , and the magnetic F_m :

$$F = F_e + F_v + F_m,$$

$$F_e = T \frac{\partial^2 y}{\partial x^2},$$

$$F_v = -D \frac{\partial y}{\partial t} - \mu_L \frac{\partial^2 y}{\partial t^2},$$

$$F_m = -I_0 B e^{i\omega t}. \quad (\mathbf{F}_m = \mathbf{I} \times \mathbf{B})$$

Here, D is a friction coefficient related to the viscosity of the fluid, and μ_L represents the effective mass of the fluid dragged by the moving wire (G. Stokes, 1901).¹ For simplicity, we treat D and μ_L as constant parameters here.

a) First, assume $I_0 = 0$, and consider the following oscillation which satisfies the boundary condition y(0,t) = y(l,t) = 0, (*n* is the integer):

$$y(x,t) = \sin\left(\frac{n\pi x}{l}\right)e^{i\tilde{\omega}t}.$$

¹ J. T. Tough, W. D. McCormick, and J. G. Dash, Rev. Sci. Instrum. **35**, 1345 (1964).

Show that in this case, $\tilde{\omega}$ is given as

$$\tilde{\omega} = i\alpha \pm \omega_n,$$

where

$$\alpha = \frac{D}{2(\mu + \mu_L)}, \quad \text{and} \quad \omega_n = \sqrt{\frac{T}{\mu + \mu_L} \left(\frac{n\pi}{l}\right)^2 - \alpha^2}.$$

b) From now on, the current is applied, i.e., $I_0 \neq 0$. Let us consider the following solution of the equation of motion:

$$y(x,t) = \sum_{n} A_n \sin\left(\frac{n\pi x}{l}\right) e^{i\tilde{\omega}t},$$

where n is the positive integer, and we assume that A_n is independent of the time t.

Show, in this case, that the amplitude A_n is given by

$$A_n = \delta_{n,2j-1} \left(\frac{4I_0 B}{n\pi\mu} \right) \frac{1}{\left(1 + \frac{\mu_L}{\mu} \right) \omega^2 - \frac{T}{\mu} \left(\frac{n\pi}{l} \right)^2 - i \frac{D}{\mu} \omega}, \qquad (j = 1, 2, 3, \cdots)$$

and that under the above assumption (t-independence of A_n), the frequency $\tilde{\omega}$ of vibration of the wire must be identical to the frequency ω of the current, i.e., $\tilde{\omega} = \omega$.

By the way, from that result for the amplitude A_n , one can notice that owing to the viscosity of the fluid, (i) the resonance frequencies shift from Ω_n to $\Omega_n/\sqrt{1+\frac{\mu_L}{\mu}}$ and (ii) the resonances acquire a width of the order of D/μ . Here, $\Omega_n \equiv \sqrt{\frac{T}{\mu}} (\frac{n\pi}{l})$ are the resonance frequencies measured in vacuum without the viscous fluid, $(n = 1, 3, 5, \cdots)$. The resonance phenomena can be observed experimentally by an induced voltage between edges of the oscillating wire.

c) The movement of a conducting wire in a magnetic field induces a voltage between its edges. The induced voltage V(t) between edges of a wire with length L is given by

$$V(t) = \int_0^L (\mathbf{v}(t) \times \mathbf{B}) \cdot d\mathbf{l}$$

where $\mathbf{v}(t)$ is the velocity of the small line element dl of the wire.

Calculate V(t) for the present oscillating wire when its dynamics is described by y(x,t) of the problem **b**).

Figure 2: Schematic plot of A_n vs. ω .

<u>Hint</u>: One may utilize the following relations.

$$\int_0^l dx \sin\left(\frac{m\pi x}{l}\right) \sin\left(\frac{n\pi x}{l}\right) = \frac{l}{2} \delta_{m,n}.$$

(m and n are the integers.)

$$\int_{0}^{l} dx \sin\left(\frac{n\pi x}{l}\right) = \begin{cases} \frac{2l}{n\pi} & (n = 1, 3, 5, \cdots) \\ 0 & (n = 2, 4, 6, \cdots) \\ = \frac{2l}{n\pi} \delta_{n,2j-1}. & (j: \text{ the positive integer}) \end{cases}$$

7.2 Consider the following implicit equation for the depression of the critical temperature T_c in the presence of a pair breaking mechanism characterized by τ :

$$\ln\left(\frac{1}{x}\right) = \Psi\left(\frac{1}{2} + \frac{y}{4\pi x}\right) - \Psi\left(\frac{1}{2}\right),$$

which is equivalent to Eq. (3.19) given in the *German* version of the theory lecture notes and to Eq. (V.1) in the experiment lecture notes. Here, $x = T_c/T_{c0}$, $y = 2\hbar/\tau k_B T_{c0}$, and T_{c0} is the original critical temperature in the absence of pair breaking effects.

From the above equation, for each value of x ($0 \le x \le 1$), a unique value of $y = U_n(x)$ is determined. The function $U_n(x)$ is called "universal" in the sense that it contains only dimensionless and material-independent parameters. Unfortunately, there is no analytical expression for $U_n(x)$, and only numerical values of $U_n(x)$ can be obtained for general x.

Here let us consider the following two limiting situations alternatively.

a) Show that for $x \to 0$ $(T_c \to 0)$, $y = U_n(x) \to 1.76$, and $\frac{\hbar}{\tau} \sim k_B T_{c0}$. b) Show that for $x \to 1$ $(T_c \to T_{c0})$, $y = U_n(x) \to (8/\pi)(1-x)$, and $\frac{\hbar}{\tau} \sim k_B(T_{c0} - T_c)$.

 \hbar/τ represents the strength of a pair breaking effect.

<u>Hint</u>: One may utilize the following approximations for the digamma function Ψ given in Eq. (3.20),

$$\Psi\left(\frac{1}{2}+z\right) \approx \Psi\left(\frac{1}{2}\right) + \frac{\pi^2}{2}z \qquad (z \to 0),$$

$$\Psi(z) \approx \ln z - \frac{1}{2z} - \frac{1}{12z^2} \qquad (z \to \infty),$$

and $\Psi(\frac{1}{2}) = -\ln(4 \times e^{\gamma}) \approx -\ln(4 \times 1.78) \approx -1.96, (\gamma \approx 0.5772).$