Unkonventionelle Supraleitung

Serie 6
Verteilung: 6.Dezember
Abgabe: 13.Dezember
The density of states per both spin projections and per unit volume is defined as

$$
N(E)=\frac{1}{V} \sum_{k} \delta\left(E_{k}-E\right)
$$

where E_{k} is the quasiparticle energy spectrum in the superconducting state, and V is the volume of the system. For the spin-triplet unitary states (and the spin-singlet states), $E_{k}(\geq 0)$ is given by

$$
E_{k}=\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}, \quad \text { with } \quad\left|\Delta_{k}\right|^{2}=\frac{1}{2} \operatorname{Tr}\left[\hat{\Delta}_{k} \hat{\Delta}_{k}^{\dagger}\right]
$$

where ξ_{k} is the energy spectrum in the normal state, $\left(\xi_{k}=0\right.$ at the Fermi level). Then, $N(E)$ (for $E \geq 0$) is

$$
\begin{aligned}
N(E) & =\frac{1}{V} \sum_{k} \delta\left(\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}-E\right) \\
& =\int \frac{d \Omega_{k}}{4 \pi} \int_{-\infty}^{\infty} d \xi_{k} D\left(\xi_{k}\right) \delta\left(\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}-E\right) \\
& \approx D(0) \int \frac{d \Omega_{k}}{4 \pi} \int_{-\infty}^{\infty} d \xi_{k} \delta\left(\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}-E\right) \\
& =\frac{N_{0}}{2} \int \frac{d \Omega_{k}}{4 \pi} \int_{-\infty}^{\infty} d \xi_{k} \delta\left(\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}-E\right) \\
& =N_{0} \int \frac{d \Omega_{k}}{4 \pi} \int_{0}^{\infty} d \xi_{k} \delta\left(\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}-E\right)
\end{aligned}
$$

where N_{0} is the density of states in the normal state at the Fermi level per both spin projections and per unit volume. $\left(D\left(\xi_{k}\right)\right.$ is the density of states in the normal state per spin projection and per unit volume. In the above integrand, only the vicinity of the Fermi surface $\left(\xi_{k} \sim 0\right)$ is important, because we are interested in the low-energy excitations E. Therefore, we have approximated $D\left(\xi_{k}\right) \approx D(0)$.)
6.1 Show that $N(E)$ (for $E \geq 0$) is written as

$$
N(E)=N_{0} \int \frac{d \Omega_{k}}{4 \pi} \operatorname{Re} \frac{E}{\sqrt{E^{2}-\left|\Delta_{k}\right|^{2}}}
$$

Here, "Re" means taking the real part.
Hint: Note that $\xi_{k}^{2}=E_{k}^{2}-\left|\Delta_{k}\right|^{2}$ and ξ_{k} is a real number.
6.2 Show that for the following three spin-triplet unitary states, the density of states $N(E)$ (for $E \geq 0)$ is given as follows. $\left(\hat{k}=\left(\hat{k}_{x}, \hat{k}_{y}, \hat{k}_{z}\right)=\vec{k} /|\vec{k}|\right)$
(1) For the ABM state $\vec{d}_{k}=\Delta_{0}\left(0,0, \hat{k}_{x}+i \hat{k}_{y}\right)$,

$$
N(E)=N_{0} \frac{E}{2\left|\Delta_{0}\right|} \ln \left|\frac{E+\left|\Delta_{0}\right|}{E-\left|\Delta_{0}\right|}\right|
$$

(2) For the BW state $\vec{d}_{k}=\Delta_{0}\left(\hat{k}_{x}, \hat{k}_{y}, \hat{k}_{z}\right)$,

$$
N(E)=\left\{\begin{array}{cc}
N_{0} \frac{E}{\sqrt{E^{2}-\left|\Delta_{0}\right|^{2}}} & \left(E>\left|\Delta_{0}\right|\right) \\
0 & \left(0 \leq E<\left|\Delta_{0}\right|\right)
\end{array}\right.
$$

(3) For the polar state $\vec{d}_{k}=\Delta_{0}\left(0,0, \hat{k}_{z}\right)$,

$$
N(E)=\left\{\begin{array}{cc}
N_{0} \frac{E}{\left|\Delta_{0}\right|} \arcsin \left(\frac{\left|\Delta_{0}\right|}{E}\right) & \left(E>\left|\Delta_{0}\right|\right) \\
N_{0} \frac{E}{\left|\Delta_{0}\right|} \frac{\pi}{2} & \left(0 \leq E<\left|\Delta_{0}\right|\right)
\end{array}\right.
$$

Hint: One may utilize the formulas:

$$
\begin{aligned}
& \int d t \frac{1}{\sqrt{t^{2}+a}}=\ln \left|\left(t+\sqrt{t^{2}+a}\right)\right| \\
& \int d t \frac{1}{\sqrt{b^{2}-t^{2}}}=\arctan \left(\frac{t}{\sqrt{b^{2}-t^{2}}}\right) . \quad\left(|b| \geq|t|, \quad-\frac{\pi}{2} \leq \arctan (\cdots) \leq \frac{\pi}{2}\right)
\end{aligned}
$$

