Unkonventionelle Supraleitung
 Serie 4

Verteilung: 22.November
Abgabe: 29.November
4.1 Generalized BCS theory. Consider the Hamiltonian given by Eq. (2.15) or (93) in the theory lecture notes:

$$
H=\sum_{k} C_{k}^{\dagger} \check{\varepsilon}_{k} C_{k}
$$

with

$$
C_{k}=\left(\begin{array}{c}
c_{k \uparrow} \\
c_{k \downarrow} \\
c_{-k \uparrow}^{\dagger} \\
c_{-k \downarrow}^{\dagger}
\end{array}\right) \quad \text { and } \quad \check{\varepsilon}_{k}=\frac{1}{2}\left(\begin{array}{cc}
\xi_{k} \hat{\sigma}_{0} & \hat{\Delta}_{k} \\
\hat{\Delta}_{k}^{\dagger} & -\xi_{k} \hat{\sigma}_{0}
\end{array}\right)
$$

where $\hat{\sigma}_{0}$ is the 2×2 unit matrix. $\xi_{-k}=\xi_{k} . \quad C_{k}^{\dagger}=\left(c_{k \uparrow}^{\dagger}, c_{k \downarrow}^{\dagger}, c_{-k \uparrow}, c_{-k \downarrow}\right) . \quad \hat{\Delta}_{k}$ possesses a symmetry: $\hat{\Delta}_{-k}=-\hat{\Delta}_{k}^{T},\left(\hat{\boldsymbol{\bullet}}^{T}\right.$ means a transpose matrix). Here, we have omitted an unimportant classical-number term K in the Hamiltonian of Eq. (2.15) or (93). As a notation, "hat" © denotes the 2×2 matrix in the spin space, and "check" • denotes the 4×4 matrix composed of the 2×2 particle-hole (Nambu) space and the 2×2 spin space.

The above Hamiltonian is known to be diagonalized as

$$
\begin{aligned}
H & =\sum_{k}\left(C_{k}^{\dagger} \check{U}_{k}\right)\left(\check{U}_{k}^{\dagger} \check{\varepsilon}_{k} \check{U}_{k}\right)\left(\check{U}_{k}^{\dagger} C_{k}\right) \\
& =\sum_{k} A_{k}^{\dagger} \check{E}_{k} A_{k}
\end{aligned}
$$

with

$$
\check{E}_{k}=\frac{1}{2}\left(\begin{array}{cc}
\hat{E}_{k} & 0 \\
0 & -\hat{E}_{-k}
\end{array}\right) \quad \text { and } \quad \hat{E}_{k}=\left(\begin{array}{cc}
E_{k,+} & 0 \\
0 & E_{k,-}
\end{array}\right)
$$

by the Bogoliubov transformation:

$$
A_{k}=\check{U}_{k}^{\dagger} C_{k} \quad \text { with } \quad \check{U}_{k}=\left(\begin{array}{cc}
\hat{u}_{k} & \hat{v}_{k} \\
\hat{v}_{-k}^{*} & \hat{u}_{-k}^{*}
\end{array}\right)
$$

Here, $\check{U}_{k}^{\dagger} \check{U}_{k}=\check{U}_{k} \check{U}_{k}^{\dagger}=\check{1}$ with the 4×4 unit matrix $\check{1}$.
Show the followings for the unitary states (i.e., for $\hat{\Delta}_{k} \hat{\Delta}_{k}^{\dagger}=\hat{\Delta}_{k}^{\dagger} \hat{\Delta}_{k}=\left|\Delta_{k}\right|^{2} \hat{\sigma}_{0}$ with $\left|\Delta_{k}\right|^{2} \equiv \frac{1}{2} \operatorname{Tr}\left[\hat{\Delta}_{k} \hat{\Delta}_{k}^{\dagger}\right]$ and $\left.\left|\Delta_{-k}\right|=\left|\Delta_{k}\right|\right):$

$$
\begin{equation*}
E_{k,+}^{2}=E_{k,-}^{2}=\xi_{k}^{2}+\left|\Delta_{k}\right|^{2} \quad\left(\equiv E_{k}^{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{u}_{k}=\frac{\left(E_{k}+\xi_{k}\right) \hat{\sigma}_{0}}{\sqrt{2 E_{k}\left(E_{k}+\xi_{k}\right)}}, \quad \hat{v}_{k}=\frac{-\hat{\Delta}_{k}}{\sqrt{2 E_{k}\left(E_{k}+\xi_{k}\right)}} \tag{2}
\end{equation*}
$$

Here, we assume $E_{k}>0$. In your calculation, assume $\hat{u}_{k}=u_{k} \hat{\sigma}_{0}$ and u_{k} is real.
4.2 Consider the gap equation given in Eq. (2.22) or (100) in the theory lecture notes

$$
\Delta_{k, s_{1} s_{2}}=-\sum_{k^{\prime}, s_{3} s_{4}} V_{k, k^{\prime} ; s_{1} s_{2} s_{3} s_{4}} \frac{\Delta_{k^{\prime}, s_{4} s_{3}}}{2 E_{k^{\prime}}} \tanh \left(\frac{E_{k^{\prime}}}{2 k_{\mathrm{B}} T}\right),
$$

and the pairing interaction in Eq. (2.23) or (101) having the form

$$
V_{k, k^{\prime} ; s_{1} s_{2} s_{3} s_{4}}=J_{k, k^{\prime}}^{0} \sigma_{s_{1} s_{4}}^{0} \sigma_{s_{2} s_{3}}^{0}+J_{k, k^{\prime}} \vec{\sigma}_{s_{1} s_{4}} \cdot \vec{\sigma}_{s_{2} s_{3}}
$$

Here, $\hat{\sigma}^{0}$ is the 2×2 unit matrix and $\hat{\vec{\sigma}}=\left(\hat{\sigma}^{x}, \hat{\sigma}^{y}, \hat{\sigma}^{z}\right)$ are the Pauli matrices. $A_{s s^{\prime}}$ denotes the $s s^{\prime}$ matrix element of $\hat{A},\left(s, s^{\prime}=\{\uparrow, \downarrow\}\right) . \hat{A}$ stands for $\hat{\Delta}_{k}, \hat{\sigma}^{0}$, and $\hat{\vec{\sigma}}$.

Show that the gap equation can be written as

$$
\Psi_{k}=-\sum_{k^{\prime}}\left(J_{k, k^{\prime}}^{0}-3 J_{k, k^{\prime}}\right) \frac{\Psi_{k^{\prime}}}{2 E_{k^{\prime}}} \tanh \left(\frac{E_{k^{\prime}}}{2 k_{\mathrm{B}} T}\right)
$$

for singlet states $\hat{\Delta}_{k}=\Psi_{k} i \hat{\sigma}^{y}$, and

$$
\vec{d}_{k}=-\sum_{k^{\prime}}\left(J_{k, k^{\prime}}^{0}+J_{k, k^{\prime}}\right) \frac{\vec{d}_{k^{\prime}}}{2 E_{k^{\prime}}} \tanh \left(\frac{E_{k^{\prime}}}{2 k_{\mathrm{B}} T}\right)
$$

for triplet states $\hat{\Delta}_{k}=\vec{d}_{k} \cdot \hat{\vec{\sigma}} i \hat{\sigma}^{y}$.

