Unkonventionelle Supraleitung WS 05/06 Lösungen zur Serie 2

2.1 Assuming that liquid ³He — of atomic mass m_3 — may be described as a Fermi gas (FG), with a molar volume of 37 cm³, we estimate the following:

ia) The density ρ of ³He, Fermi wave number $k_{\rm F}$, Fermi energy $E_{\rm F}$, density of states $N(E_{\rm F}) = 2D(E_{\rm F})$, and Fermi temperature $T_{\rm F}$

$$\rho = \frac{N}{V} = \frac{N_{\rm A}}{37 {\rm cm}^3} = \frac{6.022 \times 10^{23}}{37 {\rm cm}^3} = 0.1628 \times 10^{23} {\rm cm}^{-3}$$
(1)

$$k_{\rm F} = (3\pi^2 \rho)^{1/3} = 7.838 \times 10^7 {\rm cm}^{-1}$$
 (2)

$$E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m_3} = 6.827 \times 10^{-16} {\rm erg}$$
 (3)

$$N(E_{\rm F}) = \frac{3\rho}{2E_{\rm F}} = 3.577 \times 10^{37} \text{states} \cdot \text{cm}^{-3} \cdot \text{erg}^{-1}$$
(4)

or
$$N(E_{\rm F}) = \frac{3N_{\rm A}}{2E_{\rm F}} = 1.323 \times 10^{39} {\rm states} \cdot {\rm mol}^{-1} \cdot {\rm erg}^{-1}$$
 (5)

$$T_{\rm F} = \frac{E_{\rm F}}{k_{\rm B}} \approx 4.9 {\rm K}. \tag{6}$$

ib) Magnetic susceptibility per unit volume in cgs units

$$\chi_{\rm FG} = \beta^2 N(E_{\rm F}) \approx 3.6 \times 10^{37} \beta^2.$$
 (7)

Here, β is the ³He nuclear magnetic moment in cgs units ($\beta = 2.13$ nuclear magnetons = 2.13×10^{-24} erg/Gauss).

ic) Specific heat $C_{\rm FG}$ (with $R = N_{\rm A}k_{\rm B}$, the gas constant)

$$C_{\rm FG}(\rm per \ mol) = \frac{\pi^2}{3} k_{\rm B}^2 N(E_{\rm F}) T.$$

$$\rightarrow \frac{C_{\rm FG}}{RT} = \frac{\pi^2}{3} k_{\rm B}^2 \left(\frac{3N_{\rm A}}{2E_{\rm F}}\right) \frac{1}{N_{\rm A} k_{\rm B}}$$

$$= \frac{\pi^2}{2} \frac{k_{\rm B}}{E_{\rm F}} \approx 1 {\rm K}^{-1}.$$
(8)
(9)

ic) Sound velocity $S_{\rm FG}$

$$S_{\rm FG}^{2} = \frac{1}{\kappa m_{3}\rho} = \frac{1}{m_{3}\rho} N \rho \frac{\partial \mu}{\partial N} = \frac{N}{m_{3}} \frac{\partial E_{\rm F}}{\partial N} = \frac{N}{m_{3}} \frac{\hbar^{2}}{2m_{3}} \frac{\partial}{\partial N} \left(3\pi^{2} \frac{N}{V}\right)^{\frac{2}{3}} = \frac{1}{m_{3}} \frac{\hbar^{2}}{2m_{3}} \frac{2}{3} \left(3\pi^{2} \frac{N}{V}\right)^{\frac{2}{3}} = \frac{1}{m_{3}} \frac{2}{3} E_{\rm F} = \frac{2}{3} \frac{p_{\rm F}^{2}}{2m_{3}^{2}}$$
(10)

$$\rightarrow \qquad S_{\rm FG} = 9533 {\rm cm} \cdot {\rm s}^{-1} \approx 95 {\rm m} \cdot {\rm s}^{-1} \tag{11}$$

A comparison of the estimates with the observed low-temperature (between 2 and 100 mK) values at atmospheric pressure, is given in the following table.

	Fermi gas (FG)	Experimental (Exp)	Ratio (Exp/FG)
$T_{\rm F}$ (K)	4.9	1.77	0.36
χ (cgs)	$3.6 \times 10^{37} \beta^2$	$3.3 \times 10^{38} \beta^2$	9.2
$C/RT ({\rm K}^{-1})$	1	2.78	2.8
$S (\mathrm{ms}^{-1})$	95	183	1.9

Here, the experimental $T_{\rm F}$ is obtained from the relation $C/RT = \pi^2/2T_{\rm F}$.

Because of the significant discrepancies between the experimental results and the estimates, one concludes that the Fermi gas model is not satisfactory for the liquid ³He. The interactions between the ³He atoms have to be taken into account (the Fermi-liquid effect).

ii) How well localized in real space are the ³He atoms? We use two rough estimates.

a) From $\Delta x \cdot \Delta k \sim 1$ with $\Delta k \sim k_{\rm F}$ it follows $\Delta x \sim 1$ Å.

b) Δx is identified with the de Broglie wavelength for a particle with a mass of m_3 , the ³He atom mass and momentum $p = (2m_3k_{\rm B}T_{\rm F})^{1/2}$. One finds $\Delta x \sim \hbar/p \sim 1$ Å. We conclude that the ³He atoms are delocalized on the scale of inter-atomic distances. Since further localization in real space implies an extra cost of kinetic energy, the total energy of an ensemble of ³He atoms reaches a minimum at considerably greater atomic volume than expected from the minimum of the Lennard-Jones potential. This results for ³He in a very shallow potential, with a large compressibility and a kinetic energy dominated by quantum effects. Therefore, the liquid does not solidify at ambient pressure.

- **2.2** Considering liquid 3 He to be a Fermi liquid. (see the above table.)
- i) The effective mass is $m_3^*/m_3 = C_{\rm exp}/C_{\rm FG} = 2.8$.

ii) The Fermi-liquid parameters F_1 and Z_0 are as follows.

$$\left(1 + \frac{F_1}{3}\right) = \frac{m_3^*}{m_3} = 2.8 \qquad \rightarrow \qquad F_1 = 5.4.$$
 (12)

$$\frac{\chi_{\exp}}{\chi_{FG}} = \frac{m_3^*}{m_3} \left(1 + \frac{Z_0}{4} \right)^{-1} = 9.2 \qquad \to \qquad Z_0 = -2.8.$$
(13)

iii) The comparison of the observed values of the thermal conductivity K and viscosity η , at 2 mK and atmospheric pressure, with those of other familiar liquids is given in the following table.

	^{3}He (0.002 K)	^{4}He (4.2 K)	$N_2 (77 \text{ K})$	Water (300 K)	Oil (300 K)
$K \; (\mu W/m)$	0.25	0.03	0.14	0.6	20
$\eta (\times 10^{-3} \text{ poise})$	625	0.036	1.5^{\dagger}	10	$100 - 1000^{\dagger}$

 † These values are strongly temperature dependent because of the closeness to the liquid-solid phase transition. It is interesting that although it is far from solidification, the liquid ³He at 0.002 K is more viscous than many oils.