# Unkonventionelle Supraleitung <br> Serie 11 

Verteilung: 24.Januar
Abgabe: 31.Januar
11 Let us consider the superconductivity in a system with tetragonal crystal structure and strong spin-orbit coupling discussed in the theory lecture notes. For superconducting phases described by two-component order parameter $\vec{\eta}=\left(\eta_{x}, \eta_{y}\right)$ corresponding to two basis functions of the two dimensional representation [Eq. (4.20) or (166) in the theory lecture notes], the Ginzburg-Landau free energy density $f$ in the spatially uniform case under zero magnetic field is given as follows [see Eq. (4.21) or (167)].

$$
f=a(T)|\vec{\eta}|^{2}+b_{1}|\vec{\eta}|^{4}+\frac{b_{2}}{2}\left\{\eta_{x}^{* 2} \eta_{y}^{2}+\eta_{x}^{2} \eta_{y}^{* 2}\right\}+b_{3}\left|\eta_{x}\right|^{2}\left|\eta_{y}\right|^{2}
$$

Here, we have omitted the gradient terms and the magnetic field term because of the spatially uniformity assumed. The coefficients $a(T)$ and $b_{i}(i=1,2,3)$ are real numbers. $a(T)<0$ for $T<T_{\mathrm{c}}$.
a) Derive the following two coupled Ginzburg-Landau equations by taking the variation of $f$ with respect to $\eta_{x}^{*}\left(\partial f / \partial \eta_{x}^{*}=0\right)$ and $\eta_{y}^{*}\left(\partial f / \partial \eta_{y}^{*}=0\right)$.

$$
\begin{aligned}
& a(T) \eta_{x}+2 b_{1}\left\{\left|\eta_{x}\right|^{2}+\left|\eta_{y}\right|^{2}\right\} \eta_{x}+b_{2} \eta_{y}^{2} \eta_{x}^{*}+b_{3}\left|\eta_{y}\right|^{2} \eta_{x}=0, \\
& a(T) \eta_{y}+2 b_{1}\left\{\left|\eta_{y}\right|^{2}+\left|\eta_{x}\right|^{2}\right\} \eta_{y}+b_{2} \eta_{x}^{2} \eta_{y}^{*}+b_{3}\left|\eta_{x}\right|^{2} \eta_{y}=0 .
\end{aligned}
$$

b) Let us parameterize the order parameters $\eta_{x}$ and $\eta_{y}$ as

$$
\left(\eta_{x}, \eta_{y}\right)=\left(\eta_{0} \cos \alpha, \eta_{0} e^{i \gamma} \sin \alpha\right)
$$

with $\eta_{0}$ real, $\alpha(-\pi / 2<\alpha \leq \pi / 2)$, and $\gamma(0 \leq \gamma<2 \pi)$.
Derive the following expression for the Ginzburg-Landau free energy density $f$.

$$
f=a(T) \eta_{0}^{2}+\frac{1}{4}\left[4 b_{1}+\sin ^{2} 2 \alpha\left(b_{2} \cos 2 \gamma+b_{3}\right)\right] \eta_{0}^{4}
$$

c) Because $a(T)<0$, this Ginzburg-Landau free energy density $f$ has a minimum with respect to $\eta_{0}$ when the coefficient of the second term is positive, namely when

$$
4 b_{1}+\sin ^{2} 2 \alpha\left(b_{2} \cos 2 \gamma+b_{3}\right)>0
$$

Show that $\eta_{0}$ which yields a minimum of $f$ is given by

$$
\eta_{0}^{2}=\frac{-2 a(T)}{4 b_{1}+\sin ^{2} 2 \alpha\left(b_{2} \cos 2 \gamma+b_{3}\right)}
$$

Show also that the minimum value of $f$ with respect to $\eta_{0}$ is given by

$$
f=\frac{-\{a(T)\}^{2}}{4 b_{1}+\sin ^{2} 2 \alpha\left(b_{2} \cos 2 \gamma+b_{3}\right)}
$$

From now on, let us assume $b_{1}>0$.
d) Next, let us minimize $f$ with respect to the parameter $\alpha$. The free energy density $f$ in the Problem c) has a minimum when its denominator $(>0)$ is minimized.

Show the following by considering the sign of the factor $\left(b_{2} \cos 2 \gamma+b_{3}\right)$ and the value of $\alpha$.

$$
\left(\eta_{x}, \eta_{y}\right)=\left\{\begin{array}{cc}
\left(\frac{\eta_{0}}{\sqrt{2}}, \pm \frac{\eta_{0}}{\sqrt{2}} e^{i \gamma}\right) & \left(b_{2} \cos 2 \gamma+b_{3}<0, \quad 4 b_{1}+b_{2} \cos 2 \gamma+b_{3}>0\right) \\
\left(\eta_{0}, 0\right) \quad \text { or } \quad\left(0, \eta_{0} e^{i \gamma}\right) & \left(b_{2} \cos 2 \gamma+b_{3}>0, \quad 4 b_{1}>0\right)
\end{array}\right.
$$

Here, take account of also the condition, $4 b_{1}+\sin ^{2} 2 \alpha\left(b_{2} \cos 2 \gamma+b_{3}\right)>0$, mentioned in the Problem c).
e) Finally, let us minimize $f$ with respect to the parameter $\gamma$.

Show the following by considering the result of the Problem d), the factor $\left(b_{2} \cos 2 \gamma\right)$ in the denominator of $f$, and the sign of $b_{2}$.

$$
\left(\eta_{x}, \eta_{y}\right)=\left\{\begin{array}{ccc}
\left(\frac{\eta_{0}}{\sqrt{2}}, \pm i \frac{\eta_{0}}{\sqrt{2}}\right) & \left(-b_{2}+b_{3}<0,\right. & b_{2}>0, \\
\left(\frac{\eta_{0}}{\sqrt{2}}, \pm \frac{\eta_{0}}{\sqrt{2}}\right) & \left(b_{2}+b_{3}<0, \quad b_{2}+b_{3}>0\right) \\
\left(\eta_{0}, 0\right) \quad \text { or } \quad\left(0, \eta_{0} e^{i \gamma}\right) & \left(b_{2} \cos 2 \gamma+b_{3}>0, \quad b_{1}>0\right)
\end{array}\right.
$$

Comment: The superconducting phases represented by the order parameters in the last equation above correspond to the phases $\mathrm{A}, \mathrm{B}$, and C discussed in the theory lecture notes (see Fig. 7.1 or Fig. 10 therein). The phases A, B, and C correspond to the order parameters from top to bottom in the last equation above, respectively. From the above results, one can easily confirm that the free energy density $(f<0)$ in the Problem $\mathbf{c})$ is lower for the phases A and B [corresponding to the first (A) and second (B) lines in the last equation] than for the phase C [the third line]. (Consider the denominator of $f$, the value of $\alpha$, and the sign of the factor $\left(b_{2} \cos 2 \gamma+b_{3}\right)$ for each phase.) Therefore, concerning the phase diagram in the $\left(b_{2}, b_{3}\right)$ parameter space, the phase A or B is energetically more favorable than the C phase in the region where the inequalities in the first or second line in the last equation are satisfied.

