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SUPPLEMENTARY NOTE 1. DENSITY
FUNCTIONAL THEORY CALCULATIONS

In the main text, the orbital-resolved electronic den-
sity of states (DOS) of the d-orbitals of the Mn atoms
is shown in Fig. 1 c and e. Here we also show the total
electronic DOS in Supplementary Fig. 1, separated into
spin-up (blue) and spin-down (red) components. The
previously presented Mn d-orbitals are shown as black
thick lines (increased by a factor 5 for clarity). The black
thin horizontal line marks the Fermi energy.
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Supplementary Figure 1. Electronic DOS for the super-
cell with dMn−Mn = 3.3Å chains on Nb(110). The cal-
culation is performed with generalized gradient approxima-
tion and spin-orbit coupling (GGA+SO) with ferromagneti-
cally aligned magnetic moments of Mn and quantization axis
c, representing the DFT ground state of the system. Blue
and red DOS stand for spin minority (up arrow) and major-
ity (down arrow), respectively. The Mn DOS is shown by
black lines and multiplied by 5 for clarity.

SUPPLEMENTARY NOTE 2. 40-BAND TIGHT
BINDING AND SUPERCONDUCTING 80-BAND

MODELS

The projected 40-band tight-binding model describes
the d-orbitals of four atoms per unit cell; one atom is on
top (the “Mn atom”, shown in purple in Fig. 1a of the
main text) and three underneath, one in the center and
one on both sides (the “Nb atoms”, shown in yellow in
Fig. 1a of the main text). The model contains complex
hoppings up to fifth neighbors being spin-imbalanced due
to the spin polarization. The 40-band model contains ex-
tra hoppings in the y direction stemming from the orig-
inal DFT-based model. We remove these hoppings to
work in a purely-1D system. We justify this by inspecting
the 2D spectra (Supplementary Fig. 2). The flat bands in
the ky direction indicate the absence of any dispersion,
thus allowing us to treat the model as one-dimensional
and to dismiss any hoppings in the y-direction.

In the following, we focus on the superconducting 80-
band model (see Methods in the main text). As men-
tioned in the main text, the peculiar side features ap-
pear only for certain values of ∆, since different orbital
contributions are sensitive to the choice of ∆. In Sup-

Supplementary Figure 2. Normal state band structure
of 40-band model. We observe flat bands at low energies
when varying ky, i.e., between X and S and between Y and
Γ. A purely 1D model with k = (kx, 0) is thus justified.
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Supplementary Figure 3. Orbital-resolved real-space
LDOS plots at zero energy. The data shown here is the
same as in Fig. 2 c of the main text (for Mn52, ∆ = 270 meV),
but resolved by the contributions of the five Mn d orbitals.
Theoretical LDOS is always evaluated in the plane of the
chain.

plementary Fig. 3 we show the orbital-resolved version of
the zero-energy LDOS (always evaluated in the plane of
the chain) presented in Fig. 2 c of the main text (Mn52,
∆ = 270 meV). The manganese dz2 orbital dominates the
LDOS contribution, but also the dx2−y2 orbital has the
same characteristic structure, albeit with weaker inten-
sity. In contrast, the dxz orbital supports localized states
at the chain ends only, and the dyz orbital reveals a pe-
riodic intensity, but in the center of the chain and not
on the sides. Low-energy LDOS plots for other values of
∆ appear to have the same structure as one of the other
orbitals or a combination of multiple orbitals. That is,
MZMs can be localized in the center of the chain, can be
oscillatory in the center, or appear as side features. The
LDOS plots with side features shown in Fig. 2 c of the
main text are only one particular type of MZMs present
in the topologically non-trivial range of ∆.

In Fig. 2 of the main text we displayed chain lengths
matching the experimental systems. Numerically, we can
explore arbitrary chain lengths (up to computational lim-
its). Some examples are shown for chains with N = 128
sites in Supplementary Fig. 4; the figure is analogous to
Fig. 2 from the main text. We find cases where the MZMs
are strongly localized at the ends of the chain; cases
where the MZMs are localized at the ends but pushed
to the side of the chain; and cases where side features
oscillate.

We compute all coherence lengths vF /∆gap (stemming
from multiple bands) and compute the average coher-

ence length. In Supplementary Fig. 5 we show average,
smallest and largest coherence lengths as a function of
∆, extracted from the band structure of the 40-band
tight-binding model. In the following, we concentrate
on the average coherence length only. In general, coher-
ence lengths are long and we expect strong hybridization
effects of MZMs. Only for relatively long chains (> 100
sites) and for large ∆ (> 150 meV) do well-localized end
states appear.

SUPPLEMENTARY NOTE 3. SIMPLIFIED
SINGLE-ORBITAL MODEL

We give here the formal definition of the simplified
model introduced in the main text, in technical detail.
We then present some extra results: phase diagrams,
spectra, and a discussion on coherence lengths in this
model. Finally, we present a modified version of the
model where we have extended the substrate around the
magnetic chain.

A. Definition

We start with the standard Shiba chain model [1], and

extend to a four atom unit cell. The operators c
(i)
x =

(c
(i)
x,↑, c

(i)
x,↓) annihilate an atom of type i = 0, 1, 2, 3 on

site x; i = 0 refers to the magnetic adatom, i = 1 to
the substrate Nb atom in the centre, and i = 2, 3 to the
Nb substrate atoms on either side of the adatoms. The
Hamiltonian is

H = Ht +Hµ +Hα +H∆ +HJ . (1)

Ht is the hopping Hamiltonian. In the general case, hop-
ping amplitudes tij are defined in Supplementary Fig. 6.

Ht =
∑
i,j,x

(tijc
(i)†
x c(j)x + tijc

(i)†
x c

(j)
x+1 + H.c.). (2)

with i, j ∈ [0, 1, 2, 3]. The first term describes hopping
within the unit cell (thus i 6= j), and the second term
between neighboring unit cells. Hµ is the chemical po-
tential,

Hµ =
∑
i,x

−µc(i)†x c(i)x . (3)

Hα is Rashba spin-orbit coupling. In the general case,
Rashba amplitudes are defined by a matrix αij(x, x+1) =
αij . All hoppings are associated with iασy with α being
the Rashba amplitude.

Hα =
∑
i,j,x

(iαijc
(i)†
x σ2c

(j)
x + iαijc

(i)†
x σ2c

(j)
x+1 +H.c.) . (4)
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Supplementary Figure 4. Analysis of DFT-based superconducting 80-band model for N = 128. a, Topological phase
diagram as a function of the bare superconducting amplitude ∆ (topological region in blue withM = −1, and white is trivial).
The gap size is shown as the blue curve. b, LDOS as a function of lattice site along x and ∆ (the y-dependence has been
summed up such that LDOS appears one-dimensional). c, Examples of zero-energy LDOS(x,y) for various values of ∆, as
indicated by the dashed vertical lines in a, with pronounced side features. Chain length N = 128, the value of ∆ is given within
the panels.

H∆ represents s-wave onsite superconductivity, and is
restricted to the substrate sites i ∈ [1, 2, 3],

H∆ = ∆
∑
i,x

c
(i)†
x,↑ c

(i)†
x,↓ + H.c. (5)

Supplementary Figure 5. Spectral gap, topological in-
variant and coherence length of the superconducting
80-band model. (Top) Spectral gap and topological invari-
ant, identical to Fig. 2 a of the main text. (Bottom) Coherence
length ξ = vF /∆gap for the superconducting 80-band model;
a is the lattice spacing. Due to the multi-orbital character of
the model, we observed several band crossings at the Fermi
energy. The black line corresponds to the average coherence
length; the range between minimum and maximum coher-
ence lengths are indicated by the shaded region. For small
values of ∆ much longer chains are required to avoid strong
hybridization effects than for large values of ∆.

HJ is the ferromagnetically aligned Zeeman field, and is
restricted to the adatoms i = 0,

HJ = J
∑
x

c(0)†
x σ3c

(0)
x . (6)

By choosing different combinations of hoppings (both
spin-preserving, i.e., tij , and spin-flip hoppings, i.e., αij)
we have generated several variants of Eq. (1); all these
models generically show side features.

Supplementary Figure 6. Illustration of all hopping pro-
cesses in the single-orbital model Eq. (1). Arrow thick-
ness indicates the real hopping amplitudes between the indi-
cated atoms, defining Eq. (2). The dashed rectangle indicates
the unit cell.
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Supplementary Figure 7. Comparison of Rashba Hamil-
tonian convention for large Rashba SOC. Superconduct-
ing spectra for 1D-Rashba choice (top) and 2D-Rashba choice
(bottom) for α = 0.1t.

Supplementary Figure 8. Comparison of Rashba Hamil-
tonian convention for small Rashba SOC. Supercon-
ducting spectra for 1D-Rashba choice (top) and 2D-Rashba
choice (bottom) for α = 0.01t.

In the following, we focus on a particular version
of Eq. (1) with the hoppings defined in Supplementary
Fig. 6; Rashba spin-orbit coupling lies exclusively along
the same arrows.

1. 1D-Rashba vs. 2D-Rashba SOC

Because the unit cell of our 1D model is 2D, i.e., has
spatial dependence in both x and y directions, the def-
inition of Rashba spin-orbit coupling is ambiguous. We
could choose iασx in y direction, iασy in x direction, and
a combination for diagonal hoppings (2D choice). Alter-
natively, we could uniformly choose iασy in all directions,
and fix the sign convention of “+” for +y and “−” for
−y (1D choice).

For the 2D choice the Rashba part of the Hamiltonian

is given by

Hα =
∑

i,j ∈{0,1},x

(iαijc
(i)†
x σ2c

(j)
x + iαijc

(i)†
x σ2c

(j)
x+1)

+
∑

i=1,j ∈{2,3},x

(iαijc
(i)†
x σ1c

(j)
x + iαijc

(i)†
x σ2c

(j)
x )

+
∑

i∈{0,1},j ∈{2,3},x

(iαijc
(i)†
x σ1c

(j)
x + iαijc

(i)†
x σ2c

(j)
x+1)

+
∑

i,j ∈{0,2,3},x

(iαijc
(i)†
x σ1c

(j)
x ) + H.c. (7)

Hoppings in the x direction are associated with σ2, in
the y direction with σ1, and along diagonals ±x± y with
±iσ1 ± iσ2.

We compare superconducting spectra under the two
different implementations of Rashba SOC (Supplemen-
tary Fig. 7 and Supplementary Fig. 8) and find the spec-
tra are almost identical. Hence, the choice does not mat-
ter. Also the eigenstates are similar. In order to keep
the model as simple as possible, we chose the 1D-Rashba
convention in the main text.

B. Methods

To quantify the presence of side features, we define a
simple quantity, the side feature weight (SFW), specifi-
cally for states closest to E = 0. Consider the E = 0
LDOS,

ρ(i)
x = LDOS(c(i)x ) . (8)

We then define the side feature weight of the state |ψ〉,

S(|ψ〉) =

∑L
x ρ

(2)
x∑L

x ρ
(0)
x +

∑L
x ρ

(1)
x +

∑L
x ρ

(2)
x

. (9)

Here we sum over the spatial position x from 0 to chain
length L − 1 (unless otherwise specified L = 51 sites).
Typically we present side feature weight as a function of
the free parameters µ and J , with fixed ∆ and α. For easy
reading we multiply the side feature weight by the topo-
logical index, +1 (−1) corresponding to the topologically
trivial (non-trivial) phase. Negative side feature weights
correspond to the topologically superconducting regime,
i.e., the zero-energy state represents a MZM with side
features. The side feature weight is shown in the phase
diagrams of the following subsection.

C. Phase diagrams

We present a representative phase diagram in Fig. 3 c
of the main text. It turns out that the specific parameters
chosen are not too important: as long as the gap is small
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Supplementary Figure 9. Topological phase diagram, side-feature weight, gap size and coherence length. All panels
correspond to model (1) with ∆ and α as specified above the top panels for the entire column, and are shown as a function
of J/t and µ/t. The first column corresponds to the largest, and the third to the smallest gap sizes. First row: Topological
invariant M multiplied by side feature weight S(|ψ〉), where |ψ〉 is the state with energy closest to E = 0. Red (blue) regions
are topologically nontrivial (trivial). Strong intensities indicate large side feature weights. Note that a small gap is required
to reach high side feature weights. Grey regions correspond to lowest energy states with E > 0.04 t, which are thus not of
interest. Second row: Gap diagrams. Note that the gap closing lines can correspond to phase transitions in the first row.
Small gap sizes (10−2t . . . 10−5t) are associated with large side feature weight. Third row: Coherence length ξ = vF /∆gap of
the corresponding low-energy state. Light blue regions have insulating normal state, thus the coherence length is ill-defined.
Note that ξ can be significantly larger than 200 sites. System size for all panels is N = 51.



6

Supplementary Figure 10. Examples of wavefunctions
|ψ|2 with different coherence lengths. Shown is |ψ|2
of model (1), summed over atoms and spin, lowest-energy
state for OBC in the topological regime, thus correspond-
ing to (hybridized) MZMs. The coherence length ξ is shown
in each figure panel. a, Large gap regime; parameters used
(∆, α, µ, J) = (0.15, 0.1, 1.35, 6)t. b, Medium gap regime; pa-
rameters used (∆, α, µ, J) = (0.15, 0.1, 2.4, 4)t. c, Small gap
regime; parameters used (∆, α, µ, J) = (0.01, 0.05,−2, 4)t.
Smaller gaps are associated with longer coherence lengths and
so the MZMs hybridize and oscillate in the chain bulk.

we can find side features. We show phase diagrams and
gap diagrams for several parameters in the first and sec-
ond row of Supplementary Fig. 9, where different columns
correspond to large, medium and small gap sizes. For
“large gaps” (left column) 65% of the entire phase di-
agram shows notable side features (SFW > 0.5), and
about 9% of the topological region displays significant
side features (SFW > 0.7). For “medium gaps” (middle
column) 75% of the entire phase diagram shows notable
side features (SFW > 0.5), and about 11% of the topolog-
ical region displays significant side features (SFW > 0.7).
For “small gaps” (right column) about 75% of the entire
phase diagram shows notable side features (SFW > 0.5),
and about 15% of the topological region displays signifi-
cant side features (SFW > 0.7). Of course the topological
phase is the same for all chain lengths and it is, hence,
sufficient to show one case (N = 51). We note that the
side-feature weight is clearly chain-length dependent.

D. Coherence length

As with the 80-band model we compute the approx-
imate coherence length ξ ∼ vF /∆gap (Supplementary
Fig. 9, third row) for the simplified model (1) where ∆gap

is the effective gap size shown in the second row of Sup-
plementary Fig. 9. Due to the small gap sizes, some of the
coherence lengths are as large as 10 000 or even 100 000
sites. As a consequence, hybridization effects can be dras-
tic. We can readily see this in the zero-energy wavefunc-

tions for open boundary conditions (OBC); examples are
presented in Supplementary Fig. 10 for N = 151 where
for decreasing gap size the hybridization becomes more
and more prominent.

E. Energy spectra vs. chain length

When the gap is large the coherence length is short
and the MZMs are well localised to the ends of the chain.
Correspondingly, they are fixed to zero-energy (Supple-
mentary Fig. 11 a). When the gap is small, the coherence
length is long and the MZMs hybridize, leading to the
oscillatory pattern of the low-energy LDOS along the
chain. Correspondingly, they split in energy and also
oscillate as a function of chain length (Supplementary
Fig. 11 b,c) [2, 3]. By comparison with the experimental
Fig. 4 b in the main text, we can safely conclude that
the experimental system corresponds to the “small gap”
scenario.

F. Chain embedded in extended substrate

The results summarized in Fig. 3 of the main text are
based on a four-atomic unit cell. The observed side
features are concentrated at the sides of the unit cell

Supplementary Figure 11. Low energy spectra vs. N
for model (1) in the topologically nontrivial phase,
OBC imposed. a, Large gap case, (∆, α, µ, J) =
(0.15, 0.1, 1.35, 6)t. The MZMs do not oscillate because the
bands are well-gapped so the coherence length is short and
the MZMs do not hybridize. The MZMs are local to the ends
of the chain; the coherence length is ξ = 5. b, Medium gap
case, (∆, α, µ, J) = (0.15, 0.1, 1.4, 3.5)t. The MZMs hybridize
weakly and oscillate in energy; the coherence length is ξ = 42.
c, Small gap case, (∆, α, µ, J) = (0.05, 0.01, 2.05, 3.6)t. The
hybridization is strong and the MZMs also completely inter-
sect bulk states. This example shows a remarkable similarity
with the experiment (Fig. 4 b of the main text); the coherence
length is ξ = 170.
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Supplementary Figure 12. Zero-energy LDOS for the
simplified model on an extended substrate. The white
dashed box indicates the size of the substrate while the grey
dashed line marks the size of the chain (including the atoms
next to it). a, N = 33 chain on a substrate consisting of 57×3
unit cells. The LDOS is very similar to Fig. 3 d of the main
text. Parameters used (∆, α, µ, J) = (0.05, 0.01, 2.05, 3.8)t.
b, N = 51 chain on a 57 × 3 unit cell substrate. The LDOS
is very similar to Fig. 3 e of the main text. Parameters used
(∆, α, µ, J) = (0.05, 0.01, 2.05, 3.95)t. c, N = 51 chain on
a 57 × 3 unit cell substrate. The LDOS is very similar to
Fig. 3 g of the main text. Parameters used (∆, α, µ, J) =
(0.05, 0.01, 1.35, 6)t. OBCs are imposed in all subfigures.

which is surrounded by hard-wall boundaries. In or-
der to rule out confinement effects as the source of the
observed side features, we have extended the simplified
model, introduced in Fig. 3 of the main text and fur-
ther discussed previously, and increased the substrate
size. Essentially we have added more unit cells around
the chain with the magnetic atom omitted. In addition,
we scaled all the new hoppings by a global factor in or-
der to slightly reduce them. As the DFT results have
revealed, underneath the magnetic adatom, atomic posi-
tions are slightly contracted leading to a closer distance
between the atoms. As a lowest order effect, we assume
that the closer distance between two atoms results in a
slightly increased hopping amplitude. It seems, hence,
appropriate to slightly decrease the hoppings which are
not within the unit cell that contains the magnetic atom.
We have also varied the size of the substrate and consid-
ered asymmetric scenarios where the chain is not in the
center but slightly off the center of the substrate. More-
over, we have studied a substrate with 3 and a half unit
cells in the y-direction, but also situations with periodic
boundary conditions imposed.

The results shown in Supplementary Fig. 12 summarize
our analysis and essentially reproduce what is shown in
Fig. 3 in the main text. There are sometimes small differ-
ences and some parameter fine tuning might be necessary,
but the important finding is that side features always per-
sist and are thus not due to confinement. These results
further substantiate our previous results.

Supplementary Figure 13. Constant-current tip trajec-
tory and zero energy LDOS. a, Cross-section through
the middle of a Mn51 chain from Fig. 2 c of the main text.
Constant current contours are shown as black lines. The zero
energy LDOS is shown as filled color contours (log scale).
Atom sites are shown as black diamonds. b, dI/dV map
(linear scale) for the constant current setpoint labeled in a.
Parameters: Vstab = −30 meV, ξ = 1 Å.

SUPPLEMENTARY NOTE 4. SIDE-FEATURES
IN A CONSTANT-CURRENT FEEDBACK LOOP

In the main text, we show the LDOS evaluated in the
plane of the chain. However, as explained in the Methods
section, the height of the tip apex is controlled by sta-
bilizing the tip at a bias voltage Vstab and current Istab.
To compare the theoretical LDOS to the experimental
dI/dV , we follow a phenomenological description of the
tunneling given in Ref. [4]:

dI(r, V )

dV
∝
∑
i

w(|r − ri|)N(ri, eV ), (10)

I(r, V ) ∝
∑
i

w(|r − ri|)
∫ eV

0

dωN(ri, ω), (11)

w(r) = exp (−r/ξ) . (12)

The differential conductance, dI(r, V )/dV , is a weighted
sum of the LDOS, N(ri, eV ), weighted by an exponential
decay, w(r), depending on the distance between the tip
and site i and a decay length ξ. Similarly, the current,
I(r, V ), is a weighted sum of the integrated LDOS with
the same weight.

In Supplementary Fig. 13a, we show a cross section
through the middle of a Mn51 chain with the same pa-
rameters as Fig. 2 c in the main text. As we follow a con-
stant current line above a Nb site to the Mn site (y = 2.4
Å to y = 0), the zero energy LDOS goes from a large
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intensity to a low intensity, resulting in a side feature. In
Supplementary Fig. 13b, we show an example of a dI/dV
map using a constant-current feedback loop. Supplemen-
tary Fig. 13b has the same side-features as Fig. 2 c of the
main text.

SUPPLEMENTARY NOTE 5. EXTENDED
SPECTROSCOPIC DATA OF SUB-GAP STATES
AROUND MANGANESE AND IRON CHAINS

The experimental data in the main text only show
the spatial distributions of selected states close to zero
energy. In Supplementary Fig. 14, we show additional
dI/dV maps measured around Mn (panels a,b) and Fe
(panel c) chains at different energies. It is clearly vis-
ible that the respective lowest-energy states (at |E| <
150µeV) are all located on the sides of the chain, in agree-
ment with the conclusions of the main text. In contrast,
the higher-energy excitations can also be located on the
chain’s center as they belong to a band emerging from
the hybridizing YSR states induced by a different orbital
of Mn [5].

Notably, the LDOS at exactly zero energy around
the two Mn chains shown in this figure is dominated
by a defect-induced localized sub-gap state. The posi-
tions of the defects are marked by the green arrows in
the constant-current images. At this position along the
chain, a strong, near-zero energy state appears on the
side of the chain. It is very likely that this state is not a
property of the Mn chain itself but rather induced by the
defect, which is why we chose to show the next higher
energy excitation in the main text. A comparison of the
datasets in Supplementary Fig. 14 with the zero-energy
dI/dV map in Fig. 3 of Ref. 5 shows that the side fea-
tures are typically distributed along the entire side of
the chain (cf. Fig. 3 in Ref. 5 with Fig. 2 c and Fig. 3 d of
the main text of the present work). Thus, it is highly

likely that the zero energy states (E = 0µeV) localized
near the defect in Supplementary Fig. 14 a,b are induced
by this local perturbation. Moreover, we emphasize that
the defect could possibly act as a scattering center for the
interfering Bogoliubov-de-Gennes quasiparticles [5] at all
energies in the chain, thereby perturbing the oscillatory
pattern of the sub-gap states.

SUPPLEMENTARY NOTE 6. SUB-GAP STATES
INDUCED BY IRON ATOMS AND DIMERS

Single Mn atoms on Nb(110) have recently been found
to induce pairs of spatially anisotropic multi-orbital YSR
states [5–7], which are oriented along the high-symmetry
directions of the underlying substrate. Accordingly, the
localization of sub-gap features along the sides of Mn
chains on Nb(110) was explained by a band formed by
the hybridization of YSR states stemming from a par-
ticular orbital featuring extended lobes along the [11̄0]
direction [5]. In contrast, single Fe atoms on Nb(110)
only show resonances very close to the coherence peaks of
Nb [7, 8] at E ≈ ±∆Nb = ±1.52 meV, indicating that the
YSR states are almost merged with the coherence peaks.
These states are shown in Supplementary Fig. 15 a, b and
do not feature a distinct anisotropic spatial distribution.
Therefore, the side localization of the observed features in
Fe chains cannot be explained just by linear combination
of the YSR states of the individual constituents. How-
ever, dimers of Fe atoms [9] constructed along the [001]
direction (Supplementary Fig. 15 c) do already show pro-
nounced YSR states at lower energies, i.e., approaching
EF . But, they are still mainly located on the center of
the dimer and not on the sides. Therefore, the side fea-
tures around Fe chains shown in Fig. 4 c of the main text
are a surprising observation not obviously related to YSR
physics of the individual atoms.
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Supplementary Figure 14. Extended spectroscopic measurements of sub-gap states around linear Mn and Fe
chains. a, Constant-current image with enhanced contrast (top panel) and deconvoluted dI/dV maps (bottom panels) at
various sub-gap energies as indicated on each panel for the Mn51 chain presented in Fig. 4 a of the main text. The white bar
corresponds to 1 nm and the green arrow highlights the position of a defect on the surface inducing additional sub-gap states. b,
Constant-current image (top panel) with enhanced contrast and deconvoluted dI/dV maps (bottom panels) at various sub-gap
energies for a Mn52 chain along the [001] direction. The white bar corresponds to 1 nm and the green arrow highlights the
position of a defect on the surface inducing additional sub-gap states. c, Constant-current image (top panel) and deconvoluted
dI/dV maps (bottom panels) at various sub-gap energies for the Fe16 chain presented in Fig. 4 c of the main text. The white
bar corresponds to 1 nm. The apparent extent of the chains from the constant-current images is marked by the dark dashed
lines in all dI/dV maps. Parameters: Vstab = −6 mV, Istab = 1 nA, Vmod = 20µV.

Supplementary Figure 15. Sub-gap states induced by Fe atoms and dimers on Nb(110). a, Deconvoluted dI/dV
spectra measured on the bare Nb substrate (gray), on a single Fe atom (red) and on an Fe dimer along the [001] direction
(blue). The energetic position of the Nb substrate’s coherence peaks is marked by ±∆. b, Constant-current image (top panel)
and deconvoluted dI/dV maps (bottom panels) at sub-gap energies as indicated in the proximity of a single Fe atom (image
sizes are 2 x 2 nm2). c, Constant-current image (top panel) and deconvoluted dI/dV maps (bottom panels) at sub-gap energies
around an Fe dimer along the [001] direction. The geometry of the dimer is sketched to the right of the constant-current image
(brown spheres: Nb atoms, red spheres: Fe atoms, image sizes are 2.5 x 2.5 nm2). The apparent extent of atom and dimer,
respectively, are marked by the black dashed lines in the dI/dV maps. Parameters: Vstab = −6 mV, Istab = 1 nA, Vmod = 20µV.


