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I. FORMATION AND DOPING ENERGIES

Total energies were evaluated using ab-initio den-
sity functional theory (DFT) calculations within an all-
electron full-potential local orbital (FPLO) [1] basis. For
the exchange-correlation functional we employ the gener-
alized gradient approximation (GGA) [2]. Total energies
were extracted from calculations converged using 83 k-
point grids.

Experimental and hypothetical crystal structures were
fully relaxed using the projector augmented wave (PAW)
method [3] implemented in GPAW [4] with a plane-wave
cutoff of 1000 eV and the GGA exchange-correlation
functional [2]. We optimized the stoichiometric struc-
tures of herbertsmithite-based compounds using 63 k-
points (43 k-points for non-stoichiometric structures) un-
til forces were below 10 meV/Å.

Hypothetical crystal structures were prepared start-
ing from the experimental crystal structure of herbert-
smithite [5], substituting zinc (Zn) atoms between the
copper kagome layers by monovalent A=Li, Na (hole-
doping) and trivalent Al, Ga, In, Sc, Y (electron-doping).
We refer to these compounds as A-herbertsmithite,
ACu3(OH)6Cl2 (case 1) and estimate their stability by
comparison to clinoatacamite [Cu2(OH)3Cl]. We directly
compare energies of A-substituted materials, where the
dopant sits in the interlayer site versus structures where
it occupied a kagome site (case 2, see Fig. 3 in main pa-
per). To analyze the phase stability, we also evaluate
total energies of 3× 1× 1 supercell structures, where ei-
ther one of the A-sites is vacant [A0.66Cu3(OH)6Cl2, case
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FIG. 1. Formation energies of the GaxZn1−xCu3(OH)6Cl2
doping series. Lines are guides to the eye.
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3] or occupied by a Cu impurity [A0.66Cu3.33(OH)6Cl2,
case 4].

In order to determine whether the presence of excess
copper in the synthesis process makes the formation of
clinoatacamite favorable compared to ACu3(OH)6Cl2,
we compare the total energies of Cu in a copper crys-
tal plus the energy of ACu3(OH)6Cl2 to the total energy
of A in a crystal of substance A plus the total energy
of clinoatacamite. Proper normalization of total ener-
gies to formula units is taken into account. The calcu-
lated energy difference determines whether the forma-
tion of metallic patches of substance A is energetically
favourable compared to forming A-substituted herbert-
smithite. The formation energy for this case is defined
as

Eform = ECu + EAH − (EA + EC) , (1)

where EA refers to the pure crystalline metal A, EAH

to A-herbertsmithite and EC to clinoatacamite. As all
total energies are negative, a negative formation energy
signals stability of the target compound ACu3(OH)6Cl2.
As a consistency check, we also prepared a structure with
copper on the interlayer site so that the chemical formula
is identical to clinoatacamite. For this structure, we find
a positive formation energy. Therefore, hypothetical Cu-
herbertsmithite is unstable with respect to the formation
of clinoatacamite, as expected.

For the formation energy of impurity or vacancy struc-
tures, we use

Eform = y · ECu + EAH − (x · EA + EAHM) , (2)

where EAHM is the total energy of the compound
A1−xCu3+y(OH)6Cl2.

Formation energies for modifications of herbert-
smithite are shown in Table I. As all calculated energy
differences are negative, formation of A-herbertsmithite
is always favorable compared to formation of clinoata-
camite. All proposed modifications are robust against
formation of vacancies or copper impurities on the (in-
terlayer) A-site.

The doping energies shown in Fig. 3 of the main pa-
per are computed from energy differences between struc-
tures with dopant atoms occupying the interlayer sites
and structures with dopant atoms on a kagome site (case
2). The values for the doping energies are given in Ta-
ble I, together with ionic radii taken from Ref. [6].

Having established the stability of stoichiometric com-
pounds, we investigate the solid solution of Zn and Ga
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TABLE I. Calculated formation and doping energies for substituted herbertsmithite. Energies are given in eV (electron volts)
per formula unit of A-substituted herbertsmithite ACu3(OH)6Cl2 (A = Li, Na, Zn, Cd, Sc, Y, Al, Ga, In). Negative values
signal stability of the stoichiometric compound against the formation of clinoatacamite (case 1), doping into the kagome layer
(case 2, see Fig. 3 in main paper), vacancies on the interlayer site (case 3) and impurities on the interlayer site (case 4). Ionic
radii in coordination number 6 are taken from Ref. [6]. In this configuration Cu2+ has an ionic radius of 72 pm.

case A-herbertsmithite, A = Li1+ Na1+ Zn2+ Cd2+ Sc3+ Y3+ Al3+ Ga3+ In3+

1 ACu3(OH)6Cl2 -2.660 -2.517 -2.082 -1.461 -7.300 -7.144 -6.257 -2.939 -3.080
2 ACu3(OH)6Cl2 -0.041 +0.257 -0.261 +0.128 -0.372 +0.043 -1.101 -0.736 -0.203
3 A0.66Cu3(OH)6Cl2 -0.847 -0.735 -0.694 n/a -2.481 -2.398 -2.141 -1.176 -1.062
4 A0.66Cu3.33(OH)6Cl2 -1.497 -1.350 -1.321 n/a -3.019 -2.878 -2.659 -1.711 -1.585

ionic radius in pm 76 102 74 95 75 90 54 62 80
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FIG. 2. Brillouin zone of herbertsmithite with high-symmetry
points. The space group is R 3̄m. The path conventionally
used for showing the bandstructure of herbertsmithite is indi-
cated in grey. A path comprising the time-reversal invariant
points is shown in green. The path on which surface states
were calculated is shown in yellow.

dopants. To accomodate non-integer dopant concentra-
tions, we use 2 × 1 × 1 and 3 × 1 × 1 super cells. The
formation energy of the target compound having total
energy ET is defined as

Eform = ET+x·(EZn−EGa)−(1−x)·EZnH−x·EGaH, (3)

where EZnH refers to herbertsmithite and EGaH to
Gallium-substituted herbertsmithite. Note that as a ref-
erence energy here we use (1−x) ·EZnH +x ·EGaH, which
is the energy that one obtains if the solid solution were
to dissociate spontaneously into herbertsmithite and Ga-
substituted herbertsmithite. Therefore, formation ener-
gies are negative if the solid solution is stable against
phase separation. Our results show that the solid so-
lution GaxZn1−xCu3(OH)6Cl2 should exist in a broad
range of doping ratios (Fig. 1).
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FIG. 3. Spin-polarized electronic bandstructure of herbert-
smithite in ferromagnetic spin-configuration calculated from
DFT+U. The interaction parameters on the Cu 3d shell are
U = 6 eV and Hund’s rule coupling JH = 1 eV. A gap
of about 2 eV is opened at the Fermi level due to electron-
electron interactions.

II. DETAILS ON PREPARATION OF
HYPOTHETICAL CRYSTAL STRUCTURES

For all cases discussed in the previous section, crys-
tal structures had to be prepared from a stoichiometric
structure of herbertsmithite [5]. We started from the
rhombohedral unit cell of space group R 3̄m, contain-
ing one formula unit. After reducing symmetry to space
group P 1, herbertsmithite allows for only one possibility
to arrange dopant atoms or defects for all compositions
investigated here, if the smallest possible supercell is con-
sidered.

Fig. 2 shows the Brillouin zone with high-symmetry
points for materials based on herbertsmithite.



3

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Γ K M Γ Z F L Z

E
-E

F
 (

e
V

)
Ga-herbertsmithite

+ - - +

+ - + -

+ - - +

FIG. 4. Fully relativistic bandstructure of Ga-
herbertsmithite. Plus and minus signs denote the pari-
ties of the three bands closest to the Fermi level at eight
inversion-symmetric points (Γ, 3 × F , 3 × L, Z) in the
Brillouin zone. In Ga-herbertsmithite the bandstructure is
more three-dimensional than in Li-herbertsmithite, which
leads to a substantial displacement of the Dirac point from
the high-symmetry point K. In turn the apparent gap at K
is exaggerated.

III. BANDSTRUCTURE OF
HERBERTSMITHITE IN FERROMAGNETIC

SPIN-CONFIGURATION

Herbertsmithite is an antiferromagnetic Mott insula-
tor with possible quantum spin liquid ground state. Al-
though density functional theory cannot describe such
a paramagnetic ground state with large fluctuating mo-
ments, a DFT+U calculation for the most simple or-
dered magnetic configuration (ferromagnetic) already re-
produces the insulating ground state of herbertsmithite
with a large band gap of about 2 eV (see Fig. 3).

IV. BANDSTRUCTURE AND TOPOLOGICAL
PROPERTIES OF ELECTRON-DOPED

HERBERTSMITHITE

We also analysed the bandstructure and topologi-
cal properties of electron-doped herbertsmithite. As
an example, in Fig. 4 we show the fully relativis-
tic non-spin-polarized electronic bandstructure of Ga-
herbertsmithite, where the parities of the three (domi-
nantly Cu dx2−y2) bands closest to the Fermi level are
indicated. Ga-herbertsmithite is more three-dimensional
than Li-herbertsmithite. Therefore, the Dirac point is
displace from K, which exaggerates the gap at K. At
the Dirac point the gap magnitude is the same as in Li-
herbertsmithite.

The paritiy eigenvalues of the bands closest to the
Fermi level are the same as in all other compounds de-
rived from herbertsmithite that we predict to be stable.
That means, topological numbers of the bands below the
Dirac point are ν0; (ν1, ν2, ν3) = 0; (111).

FIG. 5. (001) surface of herbertsmithite (shown as orange
colored plane). Here, we used the predicted structure of Li-
herbertsmithite. Ions other than Cu are omitted for clarity.
The rhombohedral unit cell is shown in black. Note how all
kagome layers are terminated with chains of copper ions at
the surface.

V. FORMALISM FOR COMPUTING SURFACE
STATES

We use the Green’s function method for the semi-
infinite system [7–9] to calculate the states on the (001)
surface of interlayer substituted herbertsmithite. In this
scheme, the crystal must be partitioned into so-called
principal layers parallel to the surface of interest. The
Hamiltonian within the principal layer is denoted as H0,
while the coupling between neighboring principal layers is
denoted as C. Note that only hoppings with components
in direction either negative or positive perpendicular to
the surface must be included into C. The corresponding
couplings in the reverse direction are taken into account
in the formalism by the adjoint matrix C†.

The surface Green’s function of a system consisting of
N principal layers can be written as

G
(N)
ij (ω) =

[(
ω −H0 − CG(N−1)C†

)−1]
ij

. (4)

The initial condition is

G
(1)
ij (ω) = (ω −H0)

−1
ij . (5)

Indices i, j denote combined site, orbital and spin vari-
ables. The Green’s function of the dual surface can be
calculated by iterating

G
(N)
ij (ω) =

[(
ω −H0 − C†G(N−1)C

)−1]
ij

. (6)

As we use Green’s functions on the real-frequency
axis, an artificial imaginary part must be added to en-
sure numerical convergence. To this end, we transform
ω → ω + iη with η = 10−5 eV in the equations above.
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FIG. 6. Schematic partitioning of the tight-binding Hamilto-
nian into layers parallel to the surface. The principal layer is
described by Hamiltonian H0, while C contains hopping el-
ements connecting two adjacent principal layers. In the real
herbertsmithite system longer range hoppings are included
and two kagome layers belong to one unit cell. For compari-
son, see Fig. 5.

Although the method in principle allows for the treat-
ment of semi-infinite systems, the numerical iteration of
Eq. (4) or (6) has to be stopped with a finite number of
layers. We use N = 105.

VI. (001) SURFACE OF HERBERTSMITHITE

In the main paper we presented topological invariants
ν0; (ν1, ν2, ν3) = 0; (111) for the herbertsmithite system.
According to Ref. [10], a material with those topological
invariants displays conducting states on a (001) surface.
The orientation of this lattice plane refers to the unit cell
in rhombohedral setting of space group R 3̄m. The (001)
surface of Li-herbertsmithite is shown in Fig. 5. Note
how the Cu ions at the surface are arranged in chains,
with all kagome layers terminated equivalently.

The unit cell of (substituted) herbertsmithite contains
in total three Cu ions. These three ions comprise the
minimal model of the herbertsmithite material. In the
(001) surface geometry we use, two of the ions are at the
surface and one is below the surface. The minimal princi-
pal layer therefore comprises Cu ions at different heights
within the unit cell. This complicates the partitioning
of hopping elements into matrices H0 and C needed for
the Green’s function method. The situation is depicted
in Fig. 6.

As mentioned in the main paper, and obvious from
Fig. 6, the semi-infinite system can be built up either in
positive or negative direction perpendicular to the sur-
face. In the kagome lattice this results in an edge termi-
nation with either chains or triangles. The case of chains
is presented in the main paper. For the dual surface (tri-
angles termination) one obtains a spectral function with
equivalent features (see Fig. 7) from Eq. (6).

Both in the main paper and in the supplement we show
the spectral function A(k, ω) only in positive k-direction

FIG. 7. Calculated states on the dual surface of substituted
herbertsmithite. Spectral function on the (001) surface of (a)
Li-herbertsmithite (hole-doped) and (b) Ga-herbertsmithite
(electron-doped) calculated using Green’s functions for the
semi-infinite system. The kagome layers are terminated with
triangles.

within the kx-ky-plane. As can bee seen from Fig. 5, the
surface unit cell of (001) herbertsmithite contains two
chains of Cu ions. The surface is mirror symmetric with
respect to the kx and the ky-direction. Therefore, the
symmetry equivalent edge states of the second kagome
layer appear in negative k-direction.

VII. DETERMINATION OF HEISENBERG
HAMILTONIAN PARAMETERS

Based on the theoretically predicted structures of Li-
herbertsmithite (see Table II, Fig. 8a), we use density
functional theory calculations to determine the most im-
portant couplings of the Heisenberg Hamiltonian. We
use the all electron full potential local orbital (FPLO)
code [1] with a generalized gradient approximation [2]
exchange and correlation functional and correct for
the strong correlations on the Cu2+ 3d orbitals using
GGA+U [11].

The results for LiCu3(OH)6Cl2 are given in Table III.

The calculation was performed with a
√

2 ×
√

2 ×
2 supercell of the rhombohedral primitive cell of Li-
herbertsmithite. With P 1 symmetry, this cell contains
four formula units, i.e. twelve inequivalent Cu sites. This
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TABLE II. Predicted structural parameters for Li-
herbertsmithite [LiCu3(OH)6Cl2]. (R 3̄m space group,
a = 6.96433 Å, c = 13.78483 Å, Z = 3)

Atom Site x y z
Cu 9d 1/2 0 1/2
Li 3a 0 0 0
O 18h -0.208833 0.208833 0.447033
H 18h -0.131973 0.131973 0.420633
Cl 6c 0 0 0.328170

FIG. 8. Predicted crystal structure and exchange paths in
Li-herbertsmithite. (a) View of the Li-herbertsmithite struc-
ture along c direction (in hexagonal setting of the R 3̄m space
group). (b) Detail of the LiCu3(OH)6Cl2 unit cell with the
first three inplane exchange paths between Cu2+ ions. Other
ions are omitted for clarity.

TABLE III. Calculated exchange couplings for predicted Li-
herbertsmithite, LiCu3(OH)6Cl2. A GGA+U functional with
JH = 1 eV and the two listed U values was used in combina-
tion with fully localized limit double counting correction.

U (eV) J1 (K) J2 (K) J3 (K) J5 (K) J6 (K)
6.0 -544(29) 7(15) 39(24) -50(13) 2(8)
8.0 -332(32) -13(16) -11(27) -75(20) 1(8)

allows for 171 out of 4096 unique spin configurations, and
the data in Table III are based on fits to total energies
for about 30 of these configurations. The exchange cou-
plings are given assuming S = 1/2. However, due to
the changed filling of the Cu bands, the moments in the
calculation are reduced from 1 µB to, on average, about
0.67 µB. The relevant exchange paths are visualized in
Fig. 8b. Based on previous work [12], we consider the
GGA+U functional with U = 6 eV, JH = 1 eV most rel-
evant for Cu in the square planar environment as realized
in herbertsmithite type crystals.

VIII. ESTIMATE FOR THE CURIE
TEMPERATURE

We estimate the Curie temperature TC from a simple
Weiss mean-field formula [13]. For 3d transition metals,
in this approximation the Curie temperature is given by
Eq. (7), where zi is the coordination number and Ji are
the exchange couplings in Kelvin (U = 6 eV), taken from
Table III.

TC = −2

3
S(S + 1)

∑
i

ziJi (7)

We obtain TC = 1160 K, where we took into account
i = {1, 3, 5} with zi = {4, 4, 6}. Instead of the spin-1/2
model used here, it is also conceivable to parametrize
the Heisenberg model with DFT effective moments for
S, which would result in a higher value for TC .
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bio, Quick iterative scheme for the calculation of transfer
matrices: application to Mo(100), J. Phys. F: Met. Phys.
14, 1205 (1984).
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