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We investigate the quantum Heisenberg model on the pyrochlore lattice for a generic spin S in the
presence of nearest-neighbor J1 and second-nearest-neighbor J2 exchange interactions. By employing the
pseudofermion functional renormalization group method, we find, for S ¼ 1=2 and S ¼ 1, an extended
quantum-spin-liquid phase centered around J2 ¼ 0, which is shown to be robust against the introduction of
breathing anisotropy. The effects of temperature, quantum fluctuations, breathing anisotropies, and a J2
coupling on the nature of the scattering profile, and the pinch points, in particular, are studied. For the
magnetic phases of the J1-J2 model, quantum fluctuations are shown to renormalize phase boundaries
compared to the classical model and to modify the ordering wave vectors of spiral magnetic states, while no
new magnetic orders are stabilized.
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I. INTRODUCTION

The classical nearest-neighbor Heisenberg antiferromag-
net on the pyrochlore lattice stands as an epitome of
geometric frustration in three dimensions as shown by
its failure to develop magnetic long-range order down to
absolute zero temperature, realizing what has been dubbed
a “cooperative paramagnet” [1]. This failure is a conse-
quence of the extensive classical ground-state degeneracy
[1–4] which proves severe enough to prevent a thermal
“order-by-disorder” mechanism [5–7] from selecting a
unique ground-state ordering pattern [3,4,8,9]. In contrast
to thermal fluctuations, the impact of quantum fluctuations

remains much less understood and constitutes a critically
outstanding problem. In the regime of large spin S, using an
effective Hamiltonian approach [10], it is known that at
harmonic order in 1=S, the extensive classical ground-state
degeneracy exp½OðL3Þ� (L is the linear dimension of the
system) is partly lifted, yielding a subset of collinear states
with a massive, albeit subextensive, degeneracy exp½OðLÞ�
[11–14]. It turns out that the consideration of higher-order
terms in a 1=S expansion also fails to select a unique
ground state [15]. Indeed, while quartic corrections in
boson operators do break the degeneracy of the harmonic
ground states, there still remains a family of (almost)
degenerate (exp½OðLÞ�) states [16]. Thus, the fate of the
semiclassical (1=S) approach remains unsettled due to
weak selection effects at the anharmonic level. In the
opposite extreme quantum limit of small S, there is
reasonably strong evidence for a quantum paramagnetic
ground state. Investigations of the S ¼ 1=2 antiferromagnet
claim for either a valence-bond crystal [17–24] or a
quantum-spin-liquid [25–31] ground state. We note that

*yiqbal@physics.iitm.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 011005 (2019)

2160-3308=19=9(1)=011005(34) 011005-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.011005&domain=pdf&date_stamp=2019-01-08
https://doi.org/10.1103/PhysRevX.9.011005
https://doi.org/10.1103/PhysRevX.9.011005
https://doi.org/10.1103/PhysRevX.9.011005
https://doi.org/10.1103/PhysRevX.9.011005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


a J1-J2-J3 S ¼ 1=2 model derived from a strong-coupling
expansion of a one-band half-filled Hubbard model on the
pyrochlore lattice has been proposed to host a quantum spin
liquid [32,33]. In the much-less-investigated case of S ¼ 1
[19,34–36], there have been suggestions of a ground state
with tetrahedral symmetry breaking [37].
The “cooperative paramagnet” ground state of the

classical nearest-neighbor Heisenberg antiferromagnet is
known to be extremely fragile, in that magnetic long-range
order is induced upon the inclusion of various perturba-
tions, such as further neighbor Heisenberg interactions
[2,38–41], dipole interactions [42], Dzyaloshinsky-Moriya
anisotropy [43,44], single-ion anisotropy [45,46], lattice
distortions [47–52], and bond disorder [53–55]. In particu-
lar, further neighbor Heisenberg interactions are found to
stabilize a plethora of intricate classical magnetic orders
[56,57]. However, in the low-spin-S regime, where the
strong possibility of a quantum paramagnetic ground state
for the nearest-neighbor quantum Heisenberg antiferro-
magnet exists, the impact of the above-mentioned pertur-
bations on the paramagnet remains largely unexplored.
This topic is of high significance and importance when
considering the behavior of real materials. In this paper, we
carry out a broad investigation of the J1-J2 Heisenberg
model for a generic spin S on the pyrochlore lattice:

Ĥ ¼ J1
X
hi;ji

Ŝi · Ŝj þ J2
X
⟪i;j⟫

Ŝi · Ŝj; ð1Þ

where Ŝi is a quantum spin-S operator at a pyrochlore
lattice site i. The indices hi; ji and ⟪i; j⟫ denote sums over
nearest-neighbor and second-nearest-neighbor pairs of
sites, respectively [see Fig. 1]. The investigation of the
low-temperature properties of this Hamiltonian in the
small-S regime is notoriously difficult. This is a methodo-
logical challenge for which numerically exact and unbiased
methods are not yet available. Indeed, traditional quantum
many-body numerical methods such as density-matrix

renormalization group and tensor network approaches
[58,59], while successful in one and two dimensions,
become unfeasible in three dimensions due to entanglement
scaling and system-size limitations. Quantum Monte Carlo
methods [60,61], while able to reach sufficiently large
system sizes, are, in principle, restricted to unfrustrated
systems, while variational Monte Carlo approaches [62,63],
which are shown to be extremely successful in two dimen-
sions [64–66], require very large correlation volumes to
extract reliable estimates in the thermodynamic limit.
Finally, the bold diagrammatic Monte Carlo method can
reach down only to moderately low temperatures [31]. Thus,
one is essentially left with only mean-field approaches based
on Schwinger bosons [67], semiclassical analysis based
on spin waves, or linked-cluster expansion methods [68],
which capture magnetic order accurately but are unsuitable
for studying paramagnetic behavior deep in the collective
paramagnetic (spin-liquid) regime. In this respect, the
pseudofermion functional renormalization group (PFFRG)
framework has an important feature in the form of a built-in
balance towards the treatment of ordering and disordering
tendencies for three-dimensional frustrated magnets [69].
By employing PFFRG for the spin-S J1-J2 Heisenberg

model, we find for S ¼ 1=2 an extended quantum-spin-liquid
regime centered around J2 ¼ 0, with an extent of−0.25ð3Þ ≤
J2=J1 ≤ 0.22ð3Þ while, for S ¼ 1, its span is reduced by
approximately a factor of 2, −0.11ð2Þ ≤ J2=J1 ≤ 0.09ð2Þ.
For S ¼ 1=2 and S ¼ 1, the spin susceptibility profile of the
nearest-neighbor antiferromagnet in the ½hhl� plane features a
bow-tie pattern, characteristic of the well-known Coulomb
spin-liquid phase [70]. The bow ties are found to be robust up
to temperatures T=J1 ∼ 1. However, the inclusion of even a
small J2 coupling is shown to shift the spectral weight
away from the pinch points, causing the bow ties to rapidly
disappear upon cooling, similar to the findings for the
corresponding classical model [71]. In the opposite limit of
large S, quantum fluctuations lift the extensive degeneracy of
the classical ground-state manifold either only partially to a
subextensive one or completely (whichwould then potentially
induce long-range magnetic ordering). The J1-J2 parameter
space is known to host seven different classical magnetic
orders [56], which we also find in the S ¼ 1=2 model.
Moreover, we show that quantum fluctuations do not stabilize
any new phases, such as long-range dipolar or quadrupolar
magnetic orders, and valence-bond-crystal states.
The paper is organized as follows: In Sec. II, we describe

the PFFRG method (Sec. II A) employed for the quantum
treatment of the model, starting with a description of its
formalism (Sec. II A 1) followed by details of its numerical
implementation in Sec. II A 2. In Secs. II B and II C, we
discuss schemes used to obtain the ground state of clas-
sical spin models, namely, the Luttinger-Tisza method
[Sec. II B] and the iterative minimization of the energy
[Sec. II C] (the reader interested mainly in the results can
directly jump to Secs. III and IV). Employing these

FIG. 1. The nearest-neighbor (J1) and next-nearest-neighbor
(J2) bonds in the pyrochlore lattice.
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methods, we begin with a treatment of the ground-state and
low-energy physics of the nearest-neighbor Heisenberg
antiferromagnet in Sec. III, starting first with a classical
analysis [Sec. III A 1] of the isotropic and breathing lattices
and then moving on to the quantum treatment of the
S ¼ 1=2 [Sec. III B] and S ¼ 1 [Sec. III C] models for
both isotropic and breathing lattices. Finally, the section
ends by addressing the problem of the ground state of the
large-S quantum Heisenberg antiferromagnet [Sec. III D].
Next, in Sec. IV, we deal with the J1-J2 Heisenberg model,
by first revisiting the classical phase diagram [Sec. IVA],
and subsequently present the results for the quantum model
in Sec. IV B. We also discuss the impacts of quantum
fluctuations on the nature of phases and phase boundaries.
We end the paper with a summary of the results in Sec. V,
followed by an outlook and discussion of future directions
in Sec. VI.

II. METHODS

A. Pseudofermion functional renormalization
group method

1. Formalism

The key idea of the PFFRG method [72] is to express the
spin-1=2 operators in terms of pseudofermions [73],

Ŝμi ¼
1

2

X
α;β

f̂†iασ
μ
αβf̂iβ; ð2Þ

where σμαβ are Pauli matrices (μ ∈ fx; y; zg) and f̂iα (f̂†iα)
denote spin-α fermionic annihilation (creation) operators.
For the implementation for spin systems with local S > 1=2
spins, we adopt the approach of Ref. [74], where multiple
copies of spin-1=2 degrees of freedom (d.o.f.) are intro-
duced at each lattice site; i.e., the local spin operators are
replaced by

Ŝi →
XM
κ¼1

Ŝiκ; ð3Þ

while the couplings Jij remain independent of the fermion
“flavor” κ. If all individual Ŝiκ “spins” (κ ∈ f1;…;Mg)
align ferromagnetically (see below for details), they realize
the largest possible magnitude S ¼ M=2 on each site, thus
implementing the desired effective magnetic moment.
In terms of pseudofermions, the substitution in Eq. (3)
amounts to equipping the fermion operators with an addi-
tional index κ:

Ŝμiκ ¼
1

2

X
αβ

f̂†iακσ
μ
αβf̂iβκ: ð4Þ

Pseudofermionic representations for spin operators gener-
ally require some caution, since they introduce additional

spurious states with zero (Qi ≡ f†i↑fi↑ þ f†i↓fi↓ ¼ 0) or
two (Qi ¼ 2) fermions at a site i. Such states carry no spin
(S ¼ 0), and the physical spin-1=2 d.o.f. are realized in the
singly occupied subspace with Qi ¼ 1. The pseudofer-
mionic approach is guaranteed to be faithful only if the
contribution from the S ¼ 0 states is negated. For a proper
implementation of spins S > 1=2, one additionally needs to
ensure that the spin flavors κ combine to the largest local
moment S ¼ M=2 while smaller spins with S¼M=2−1;…
are eliminated from the Hilbert space. A convenient
approach that simultaneously fulfills both constraints is
to add an on-site local level repulsion term AðPM

κ¼1 ŜiκÞ2 to
the Hamiltonian. For negative A, this term reduces the
energies of all levels with finite magnetic moments, where
the largest reduction occurs in the sector with the highest
spin. An jAj chosen sufficiently large guarantees that the
low-energy subspace of the Hamiltonian is the one without
any nonoccupied or doubly occupied states for each κ.
Furthermore, the M spin-1=2 copies combine into an
effective spin S ¼ M=2. We emphasize, however, that,
for the ground states of generic Heisenberg spin models
(such as the pyrochlore systems studied here), a vanishing
level repulsion term A ¼ 0 turns out to be sufficient to
fulfill both pseudoparticle constraints. This simplification is
because, for two-body spin interactions, the energy natu-
rally scales with the spin length squared such that
the largest local moment is energetically favored even
for A ¼ 0 (note, however, that counterexamples can be
constructed [75]).
Rewriting the spin Hamiltonian in terms of Eq. (4), the

resulting fermionic model is treated within the standard
FRG framework for interacting fermion systems [76–78].
A somewhat unusual situation arises here: the system is
purely quartic in the fermions without any quadratic kinetic
terms that could be used as a noninteracting starting point
in a perturbative expansion. Within FRG, this situation is
addressed by summing up infinite-order diagrammatic
contributions in different interaction channels as well as
accounting for vertex corrections between them. Parti-
cularly, as explained in more detail below, the summation
is such that, in the large-S and the large-N limits, where N
generalizes the spin symmetry group from SU(2) to SUðNÞ,
the leading diagrammatic contributions in 1=S and 1=N
are both treated exactly [79]. As a consequence, classical
magnetically ordered states (typically favored at large S)
and nonmagnetic spin liquids or dimerized states (as
obtained at large N) [80] may both be described within
the same methodological framework.
Because of the absence of fermion kinetic hopping

terms, the bare fermionic propagator is strictly local and
takes the simple spin-independent form

G0ðiωÞ ¼
1

iω
; ð5Þ
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where iω denotes a frequency on the imaginary Matsubara
axis. Within the standard PFFRG scheme [72], this propa-
gator is dressed with an infrared steplike regulator function:

G0ðiωÞ → GΛ
0 ðiωÞ ¼

Θðjωj − ΛÞ
iω

; ð6Þ

which interpolates between the limits Λ → ∞ (where the
fermionic propagation is completely suppressed) and the
original cutoff-free theory at Λ ¼ 0. This modification
generates a Λ dependence of all one-particle irreducible m-
particle vertex functions as described by the FRG flow
equations. For the self-energy ΣΛðiωÞ and the two-particle
vertexΓΛð10; 20; 1; 2Þ (the label “X” stands for site, frequency,
and spin variables, respectively, i.e., X ≡ fi; iω; αg).
A diagrammatic version of these equations is illustrated in
Fig. 2, where the arrows denote dressed and Λ-dependent
propagators

GΛðiωÞ ¼ Θðjωj − ΛÞ
iω − ΣΛðiωÞ ð7Þ

and slashed lines denote the single-scale propagator

SΛðiωÞ ¼ δðjωj − ΛÞ
iω − ΣΛðiωÞ : ð8Þ

Because of the locality of fermion propagators, the two-
particle vertex ΓΛð10; 20; 1; 2Þ effectively depends on two site
indices only, i.e.,ΓΛð10; 20; 1; 2Þ ∼ δi1i10 δi2i20 . As illustrated in
Fig. 2, this restriction allows one to connect incoming and
outgoing arrows of ΓΛð10; 20; 1; 2Þ in a way that on-site
variables remain constant along fermion lines.
The FRG equations in Fig. 2 show a systematic interplay

between the RG flows of different vertex functions where
the Λ derivative of each m-particle vertex couples to all m0-
particle vertices with m0 ≤ mþ 1. To reduce this infinite

hierarchy of intertwined equations to a finite and numeri-
cally solvable set, we neglect the three-particle vertex in
Fig. 2(b) albeit not in entirety, as certain three-loop terms
obtained from the Katanin truncation scheme are included
and which amount to self-energy corrections [81], as
described below; however, all higher vertices are com-
pletely discarded. However, this approximation effectively
amounts to discarding three-body spin correlations such
that the description of spin phases with chiral order
parameters hŜi · ðŜj × ŜkÞi is not possible [82]. Still, parts
of the three-particle vertex can be included by applying the
so-called Katanin truncation [81], which replaces the single
scale propagator by the full Λ derivative of the dressed
propagator

SΛ → −
d
dΛ

GΛ ¼ SΛ − ðGΛÞ2 d
dΛ

ΣΛ: ð9Þ

While the additional Katanin terms formally have the
structure of the three-particle term [the last term in
Fig. 2(b)], they should rather be understood as self-energy
corrections [81]. Indeed, the Katanin truncation ensures full
self-consistency at the two-particle level in the sense that
the self-energy is completely fed back into the flow of ΓΛ.
This feedback is particularly important for the description
of strongly fluctuating spins which requires two-particle
vertex renormalizations beyond the bare ladder summa-
tions. Together with the initial conditions defined in the
limit Λ → ∞ (where the self-energy vanishes and the two-
particle vertex reduces to the bare couplings Jij), the closed
set of differential equations is now amenable to numerical
treatment.
According to standard diagrammatic Feynman rules, the

implementation of spins S > 1=2 via the local replication
of S ¼ 1=2 d.o.f. [see Eq. (3)] introduces additional
sums over flavor indices κ for all closed fermion loops
in the PFFRG equations. Since the bare couplings Jij are

(a)

(b)

FIG. 2. Diagrammatic representation of the PFFRG equations for (a) the self-energy ΣΛðiωÞ (gray disk) and (b) the two-particle vertex
ΓΛð10; 20; 1; 2Þ (gray squares). Arrows denote the fully dressed propagator GΛðiωÞ, and slashed arrows denote the single-scale
propagator SΛðiωÞ. The gray hexagon in (b) is the three-particle vertex. Note that the right-hand side of (b) contains additional terms
where the slashes in the first to fifth terms appear in the respective other propagator. For a spin-S generalization, the first term on the
right-hand side of (a) and the second term in (b) are multiplied with a factor of 2S.
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independent of κ, this summation simply leads to an extra
factor M ¼ 2S in the Hartree contribution for the self-
energy [the first term on the right-hand side of Fig. 2(a)]
and in the RPA contribution for the two-particle vertex [the
second term on the right-hand side of Fig. 2(b)]. Increasing
S consequently strengthens the RPA term with respect to
the other terms, indicating that these diagrams are respon-
sible for the formation of classical magnetic long-range
order. Indeed, one can show that, in the absence of finite-
temperature divergencies of subleading 1=S diagrams, the
bare RPA channel (which accounts for only leading 1=S
diagrams) correctly reproduces the classical limit S → ∞
where the PFFRG becomes identical to the Luttinger-Tisza
method [74]. We mention that a correct treatment of the
classical nearest-neighbor Heisenberg antiferromagnet
indeed requires accounting for the effects of subleading
1=S diagrams as discussed in Appendix A. In a similar way,
the PFFRGmethod can be generalized to treat SUðNÞ spins
withN > 2. In such a scheme, the ladder channels [first and
fifth terms on the right-hand side of Fig. 2(b)] contribute
with an additional factor of approximately N, indicating
that these terms describe nonmagnetic spin liquids or
dimerized states. In analogy to a large S generalization,
they become exact in the limit N → ∞. This built-in
balance between large-S and large-N terms represents
the key property of the PFFRG that allows one to study
magnetic order and disorder tendencies on fair footing. The
PFFRG was initially developed in two dimensions [72];
however, subsequent refinements have made it capable of
handling a wide spectrum of frustrated magnetic Hami-
ltonians for multilayer systems and in three dimensions
[69,83–102].

2. Numerical solution of PFFRG flow equations
and probing the nature of the ground state

To solve the PFFRG equations numerically, we approxi-
mate the spatial dependence of ΓΛð10; 20; 1; 2Þ by discard-
ing all vertices with a distance between sites i1 and i2
greater than some maximal value. In our calculations, we
use a distance of approximately 11.5 nearest-neighbor
lattice spacings, which corresponds to a total volume of
2315 correlated spins. Likewise, the continuous frequency
arguments of the vertices are approximated by discrete
meshes, for which we typically use a combination of linear
and logarithmic grids consisting of 64 discrete frequency
points.
By fusing the external legs ð1; 10Þ and ð2; 20Þ of the two-

particle vertex ΓΛð10; 20; 1; 2Þ, one can calculate the static
spin-spin correlator

χzzij ¼
Z

∞

0

dτhTτS
z
i ðτÞSzjð0Þi; ð10Þ

where Tτ (with τ being the imaginary time) is the imaginary
time-ordering operator.

Transforming χzzij into k space yields the wave-vector-
resolved susceptibility χðkÞ:

χðkÞ ¼ 1

4

X4
i¼1

X
j

χzzij e
ik·ðri−rjÞ; ð11Þ

which is the central outcome of the PFFRG to probe the
system’s magnetic properties. Note that, since in the
Heisenberg case the susceptibility is always isotropic,
we omit the component indices xx=yy=zz in the suscep-
tibility χðkÞ. Here, the first summation is carried out over
the four sites of a given primitive unit cell, and the prefactor
of 1=4 is the inverse of the total number of sites in the unit
cell. This quantity has the periodicity of the extended
Brillouin zone but not of the first Brillouin zone, and thus
the susceptibilities are always presented in the former.
Henceforth, all wave vectors k are expressed in units where
the edge length of the pyrochlore cubic unit cell is one. The
onset of long-range dipolar magnetic order is signaled by a
divergence in theΛ flow of the susceptibility as observed in
the thermodynamic limit. This divergence is a manifesta-
tion of the fact that the spin-spin correlations do not decay
in the limit of long distances, which would ultimately cause
the Fourier transform χðkÞ to diverge. However, in the
numerical calculations, we employ a frequency discretiza-
tion and keep only a limited spatial range of the two-
particle vertices; hence, the Fourier transform amounts to a
finite site summation that no longer diverges. Thus, these
divergences end up being regularized, manifesting them-
selves as kinks or cusps at some critical Λc in the Λ
evolution of the susceptibility (henceforth referred to as
“breakdown of the RG flow”) [see Appendix B for a
discussion on the detection of magnetic instabilities in the
RG flow].
The type of magnetic order is characterized by the wave

vector at which the breakdown of the RG flow occurs. In
3D, the PFFRG ordering scales, i.e., Λc, are directly related
to the ordering temperatures Tc via ðTc=JÞ ¼ ½2πSðSþ
1Þ=3�ðΛc=JÞ [69]. The conversion factor 2πSðSþ 1Þ=3
between the RG scale Λ and the temperature T can be
obtained by comparing the limit of PFFRG where only the
RPA diagrams contribute [74], i.e., a mean-field descrip-
tion, and the conventional spin mean-field theory which is
formulated in terms of the temperature instead of Λ [103].
On the other hand, nonmagnetic (absence of dipolar
magnetic order) ground states are signaled by a suscep-
tibility flow that continues to evolve smoothly down to the
(numerical) limit Λ → 0. Even in the absence of long-range
dipolar magnetic order, the momentum profile of χðkÞ at
Λ ≪ 1 allows one to determine the dominant types of short-
range spin correlations or to identify competing ordering
tendencies.
In the absence of long-range dipolar magnetic order in

the ground state, we can further probe for possible spin-
nematic [3,4,104] and valence-bond-crystal orders [17–24]
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by computing the corresponding nematic and dimer response
functions. Here, we are particularly interested in studying the
tendency of the quantum paramagnet towards spontaneous
breaking of either spin rotation symmetry, i.e., nematic order,
or translational symmetry, i.e., dimer order. The onset of
these orders is marked by the divergence of the correspond-
ing order-parameter susceptibility, which is given by a four-
spin correlator. For spin-nematic order, this correlator is the
standard nematic correlation function

P
μ;νhOμν

ij O
μν
kl i, where

Oμν
ij ¼ Ŝμi Ŝ

ν
j − ðδμν=3ÞŜi · Ŝj [105,106] (with μ, ν ¼ x, y, z

denoting the three directions in spin space and i, j
representing the lattice sites) is a symmetric traceless tensor.
For dimer order, it is the singlet-singlet correlation function
Dijkl ¼ hðŜi · ŜjÞðŜk · ŜlÞi − hŜi · Ŝji2. In PFFRG, such
correlators are represented by the fermionic four-particle
vertex, and, while the PFFRG formalism could, in principle,
be straightforwardly extended to obtain the RG flow
equation for the four-particle vertex, their numerical solution
is, at present, not feasible due to limitations posed by
computational complexity limitations and memory require-
ments. The fact that the four-particle vertex is a priori
excluded from the RG equations implies that the RG flow of
the spin susceptibility [Eq. (11)] is unaffected by the possible
presence of competing nematic and dimer orders. Hence,
we adopt a simple recipe within the PFFRG framework to
calculate the nematic (dimer) response function ηSN (ηVBC)
which measures the propensity of the system to support
nematic (valence-bond-crystal) order. It amounts to adding a
small perturbation to the bare Hamiltonian which enters the
flow equations as the initial condition for the two-particle
vertex. The perturbing term for probing spin-nematic order is

ĤSN ¼ δ
X
hiji

ðŜxi Ŝxj þ Ŝyi Ŝ
y
jÞ − δ

X
hiji

Ŝzi Ŝ
z
j; ð12Þ

which strengthens (weakens) the xx and yy (zz) component
of the couplings Jij on all nearest-neighbor bonds and where
0 < jδj ≪ J. This term induces a small bias towards the
lowering of spin-rotational symmetry in such a way that spin
isotropy is always retained for spin rotations in the xy plane;
i.e., the spin-rotational symmetry is broken down from
SU(2) to U(1). Similarly, the perturbing term for probing
dimer order is

ĤVBC ¼ δ
X
hi;ji∈S

Ŝi · Ŝj − δ
X

hi;ji∈W
Ŝi · Ŝj; ð13Þ

which strengthens the couplings Jij on all bonds in S
[Jij → Jij þ δ for hi; ji ∈ S] and weakens the couplings
in W [Jij → Jij − δ for hi; ji ∈ W]. The bond pattern P≡
fSp;Wpg (the subscript “p” labels the strong and weak
bonds corresponding to a pattern “P”) employed here
specifies the spatial pattern of symmetry breaking one
wishes to probe.

These modifications amount to changing the initial
conditions of the RG flow at large cutoff scales Λ. As Λ
is lowered, we keep track of the evolution of all nearest-
neighbor spin susceptibilities χij. We then define the
nematic response function for a given pair of nearest-
neighbor sites by

ηSN ¼ J
δ

ðχxxij ÞΛ − ðχzzij ÞΛ
ðχxxij ÞΛ þ ðχzzij ÞΛ

; ð14Þ

where χxxij (χzzij ) are the correlators on the strengthened
(weakened) bonds. Similarly, the dimer response function
is given by

ηPVBC ¼ J
δ

ðχSPÞΛ − ðχWP
ÞΛ

ðχSPÞΛ þ ðχWP
ÞΛ

; ð15Þ

where χSp (χWp
) denotes χij ∈ Sp (χij ∈ Wp). The nor-

malization factor J=δ ensures that the RG flow starts with
an initial value of ηSN=VBC ¼ 1. If the absolute value
ηSN=VBC decreases or remains small under the RG flow,
the system tends to equalize, i.e., to reject the perturbation
on that link, while, if ηSN=VBC develops a large value under
the RG flow, it indicates that the system is tending to
develop an instability towards the probed nematic or
valence-bond-crystal order.

B. Luttinger-Tisza method

The classical limit of a system of n quantum spins
described by a Heisenberg model is achieved by first
normalizing the spin operators by dividing them by their
angular momentum S and then taking the limit S → ∞
[107,108]. This procedure yields the corresponding
classical spin system wherein the spin operators in
Eq. (1) are replaced by ordinary vectors of unit length at
each lattice site i. For general interactions, the classical
Hamiltonian to be minimized reads as

H ¼
X
i;j;α;β

JαβðRijÞSi;α · Sj;β; ð16Þ

where by i=j we denote the primitive lattice site separated
by the lattice translation vectors Rij and α=β denotes the
sublattice site index. The underlying primitive lattice of the
pyrochlore lattice is the face-centered cubic lattice, and
the pyrochlore structure is composed of four interpenetrating
face-centered cubic lattices. The Luttinger-Tisza method
[109–111] attempts to find a ground state of Eq. (16) by
enforcing the spin-length constraint only globally,

P
ijS2

i j ¼
S2n, where n is the total number of lattice sites, which is
termed the weak constraint. This relaxed constraint implies
that site-dependent average local moments are now permis-
sible, which, strictly speaking, take us beyond the classical
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limit by approximately incorporating some aspects of quan-
tum fluctuations [112].
To solve this relaxed problem, we decompose the spin

configuration into its Fourier modes S̃αðkÞ on the four
sublattices of the pyrochlore lattice

Si;α ¼
1ffiffiffiffiffiffiffiffiffi
N=4

p X
k

S̃αðkÞe{k·ri;α : ð17Þ

Inserting this equation into Eq. (16) results in

H ¼
X
k

X
α;β

J̃αβðkÞS̃αðkÞ · S̃βð−kÞ; ð18Þ

with the interaction matrix given by

J̃αβðkÞ ¼
X
i;j

JαβðRijÞe{k·Rij : ð19Þ

The optimal modes satisfying the weak constraint are
then given by the wave vector k, for which the lowest
eigenvalue of Eq. (19) has its minimum. The eigenvector
corresponding to this eigenvalue gives the relative weight
of the modes on the sublattices [113], which means that the
optimal modes do not fulfill the strong constraint (jS2

i j ¼
S2, i.e., fixed spin-length constraint on every site) if the
components of the eigenvector do not have the same
magnitude. If, however, this condition is met, the true
ground state of the classical model is a coplanar spiral
determined by the optimal Luttinger-Tisza wave vector
[114]. There are also cases where one can construct an
explicit parametrization of the ground state purely from the
optimal modes in the pyrochlore lattice, as is the case with
the cuboctahedral stack state described in Sec. III A 1.

C. Iterative minimization of the classical Hamiltonian

To find the ground state of the classical Heisenberg
Hamiltonian in parameter regions where the Luttinger-
Tisza method is not exact—i.e., a state constructed solely
from the optimal modes does not fulfill the strong con-
straint—we employ an iterative minimization scheme
which preserves the fixed spin-length (strong) constraint
at every site [56]. Starting from a random spin configura-
tion on a lattice with periodic boundary conditions, we
choose a random lattice point and rotate its spin to point
antiparallel to its local field defined by

hi ¼
∂H
∂Si

¼
X
j

JijSj: ð20Þ

This rotation results in the energy being minimized for
every spin update and thereby converging to a local
minimum. We choose a lattice with L ¼ 32 cubic unit
cells in each direction, and thus a single iteration consists of
16L3 sequential single-spin updates. One can therefore
view this scheme as a variant of classical Monte Carlo with

Metropolis updates at zero temperature, where we accept
only optimal updates. This iterative scheme is carried out
starting from ten up to 50 different random initial configu-
rations per parameter set to maximize the likelihood of
having found a global energy minimum. The exact number
depends on convergence of the resulting energies. From the
minimal energy spin configuration, the spin structure factor

F ðkÞ ¼ 1

16L3

����X
i

Sie{k·ri
����2 ð21Þ

is computed, which is, up to a normalization constant, the
same as the susceptibility defined in Eq. (11), but now for a
finite system. Although it is not guaranteed that this scheme
ends up in the global energy minimum, we find that, in all
cases where an exact ground state is known, the iterative
minimization scheme recovers the ground state, even when
there exist nonoptimal states corresponding to local energy
minima and having the same wave-vector content as the
true ground state. This scheme also provides us with the
opportunity to use spin configurations built from various
(which can be arbitrarily chosen) parametrizations as a
starting point of the minimization to check the quality of
these parametrizations and also compare the competition
between two states directly at a phase boundary.
As the iterative minimization works in direct space, we

naturally see lattice symmetry breaking inherent to the
ordered ground state, which cannot be captured by sym-
metry-preserving Fourier-space-based methods such as
Luttinger-Tisza.
In the following section, we investigate the ground state

of the general J1-J2 Heisenberg model, both in the small
spin-S regime (employing PFFRG) as well as the corre-
sponding classical model using a combination of the
Luttinger-Tisza method and iterative energy minimization
schemes. We first begin with a discussion of the nearest-
neighbor Heisenberg antiferromagnet.

III. THE NEAREST-NEIGHBOR HEISENBERG
ANTIFERROMAGNET

We begin by investigating the ground state and behavior
of the spin-spin correlation functions of the Heisenberg
model with only a nearest-neighbor antiferromagnetic
interaction and for a general pyrochlore lattice with nonzero
breathing anisotropy

Ĥ ¼ Jup
X
hi;jiup

Ŝi · Ŝj þ Jdown
X

hi;jidown
Ŝi · Ŝj; ð22Þ

where Jup > 0 and Jdown > 0 are two different antiferro-
magnetic couplings on the nearest-neighbor bonds within
the up and down tetrahedra, i.e., hi; jiup and hi; jidown,
respectively. Hereafter, we parametrize these couplings in
terms of a single angle φ and an overall energy scale J̃:
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Jup ¼ J̃ cosðφÞ; Jdown ¼ J̃ sinðφÞ: ð23Þ

From a material perspective, the isotropic version of the
model, i.e., φ ¼ π=4, proves to be of relevance in under-
standing the low-temperature dynamics in chromium spinels
[57,115]. On the other hand, the spatially anisotropic version
of the model, wherein the up and down tetrahedra feature
different exchange couplings, i.e., Jdown=Jup ≠ 1, the so-
called breathing pyrochlore is realized in the recently syn-
thesized spinels LiGaCr4O8, LiInCr4O8, LiInCr4S8,
LiGaCr4S8, CuInCr4S8, and CuInCr4Se8 [116–130] and in
a pseudospin S ¼ 1=2 Yb-based compound Ba3Yb2Zn5O11

[131–133]. In these compounds, the magnetic Cr3þ (Yb3þ)
ions, which carry S ¼ 3=2 (S ¼ 1=2), form an alternating
array of small and large tetrahedra, resulting in different
exchange couplings for the two sets of tetrahedra. We begin
by reviewing the established results for the classical
Heisenberg antiferromagnet on the isotropic and breathing
[130] pyrochlore lattices.While a number of the results given
below have previously been published in the literature,
reestablishing them here sets the stage for our own original
results.

A. Classical model

1. Isotropic case

At the isotropic point of Eq. (22), we have Jup ¼
Jdown ¼ J̃=

ffiffiffi
2

p ≡ J1. Henceforth, all temperatures for the
isotropic classical and quantum models are expressed in
units of J1SðSþ 1Þ and J1, respectively (and we omit the
factor of

ffiffiffi
2

p
), while for the breathing model they are

expressed in units of J̃SðSþ 1Þ and J̃ for the classical
and quantum models, respectively. In the classical limit of
Eq. (22), the Heisenberg spin operators Ŝi reduce to
standard three-component vectors Si. In the ensuing
analysis, it proves convenient to introduce the magnetiza-
tion MT of the T th tetrahedron,

MT ¼
X4
α¼1

ST ;α; ð24Þ

where the index α ¼ 1, 2, 3, and 4 labels the four spins
within the T th tetrahedron. In terms ofMT , the Heisenberg
Hamiltonian can be recast as a disjoint sum of the square
of the magnetizations MT over the “up” and “down”
tetrahedra,

Hisotropic ¼
J1
2

X
T

M2
T − const: ð25Þ

From Eq. (25), it follows that any state which satisfies
the condition MT ¼ 0 on each tetrahedron T is a classical
ground state. The dimension of the ground-state manifold
turns out to be countably infinite, which is best illustrated via
a “Maxwellian counting argument” [3,4], which proceeds as

follows: For a system of Ns classical Heisenberg spins, we
have the number of d.o.f. F ¼ 2Ns (three d.o.f. with one
spin-length normalization constraint). In the ground state, all
three components of MT should be zero on every tetrahe-
dron, which gives the number of constraints K ¼ 3Nc,
where Nc is the number of tetrahedral clusters, and Ns ¼
2Nc (each tetrahedron has four spins, but each spin is shared
between two tetrahedra). Hence, under the assumption that
all constraints can be satisfied simultaneously and are all
linearly independent, we arrive at the number of ground-
state d.o.f. D ¼ F − K ¼ 4Nc − 3Nc ¼ Nc which is an
extensive quantity. If the constraints are not all linearly
independent, then one underestimates D; however, for the
pyrochlore Heisenberg antiferromagnet, it is known [3,4]
that the corrections to the estimate for D are at most
subextensive. The extensive (exp[OðL3Þ]) degeneracy of
the ground-state manifold proves severe enough to preclude
a finite-temperature phase transition, thus realizing a zero-
temperature “cooperative paramagnet” [1] with nonzero
entropy [134], referred to as a “classical spin liquid”
[3,4,8,9,135]. Indeed, at low temperatures, the Heisenberg
model not only fails to develop long-range dipolar magnetic
order of the Néel type but also does not have conventional
nematic order [3,4] of the type characterized by an order
parameter which takes on its maximal value in a perfectly
collinear state [104]. At T ¼ 0, the classical spin liquid
features critical, i.e., algebraic, spin-spin correlations of
dipolar character [136], which is a consequence of the local
constraint that the magnetizationMT on each tetrahedron is
identically zero for any ground state [137–141]. These
dipolar correlations most visibly show up in the Fourier
transform of the two-spin correlator, where they form a
pattern of bow ties [see Fig. 3(a)] with sharp singularities
termed pinch points [see the encircled point in Fig. 3(a)]
[3,9,27,70,142]. The dipolar nature of the correlations in the
T → 0 regime is, in fact, a common feature of all classical
OðNÞ nearest-neighbor antiferromagnets for which the
system remains paramagnetic down to T ¼ 0 [140]. This
feature excludes the N ¼ 2 (XY-spins) case, as this case is
known to show a thermal order-by-disorder transition to
collinear ordering for spins which have a global easy plane
[3,4] as well as those with local sublattice-dependent easy
planes which are perpendicular to the local h111i axes
[45,143–147]. The limit N ¼ 1 (Ising spins) is realized in
various spin-icematerialsA2B2O7 (A≡ Dy,Ho andB≡ Ti,
Sn) which, at low but nonzero temperatures, host a classical
spin liquid featuring dipolar correlations and the associated
pinch points [148]. Coming back to the case of N ¼ 3
(Heisenberg spins) at finite temperatures, we note that
thermal fluctuations lead to violations of the MT ¼ 0
constraint and generate a finite correlation length ξ which,
at low temperatures, diverges as T−1=2 [4]. At distances
r ≫ ξ, the algebraic nature of the real-space spin-spin
correlations changes into an exponential. Consequently, at
finite temperatures the pinch points acquire a finite width
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∼1=ξ [71] [see Figs.3(a)–3(c)] which, at low temperatures,
goes to zero as T1=2 [4] [see Fig. 4].

2. Breathing case

As in the case of the isotropic pyrochlore lattice, the
Heisenberg Hamiltonian in the presence of breathing
anisotropy [Eq. (22)] can be straightforwardly recast as a
disjoint sum of terms, each involving the magnetization
MT [Eq. (24)] of a tetrahedron T :

Hbreathing ¼ Jup
X
T ∈up

M2
T þ Jdown

X
T ∈down

M2
T − const: ð26Þ

It is clear that when Jup and Jdown are both antiferro-
magnetic, any state in which MT ¼ 0 on every up and

down tetrahedron T is a classical ground state. Thus, in the
presence of a breathing anisotropy, the extensive degen-
eracy of the isotropic model remains intact, and, conse-
quently, the ground state at low temperatures remains a
classical spin liquid [130]. However, as one moves away
from the isotropic point φ ¼ π=4, the appearance of the
bow-tie pattern with a decreasing temperature, and the
development of the pinch-point singularities in the limit
T → 0, becomes progressively slower on approaching the
decoupled tetrahedron limit, which is because the correla-
tion length is proportional to the product JupJdown=J̃2 ¼
cosϕ sinϕ [130], and, hence, the development of the
correlations is slower when closer to the decoupled
tetrahedron limit. In Fig. 3, we show the spin susceptibility
profile for two values of the breathing anisotropy,

[ ] [ ] [ ]
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. For the classical (S → ∞) nearest-neighbor Heisenberg antiferromagnet, the spin susceptibility profile (in units of
1=½J̃SðSþ 1Þ�) in the ½hhl� plane obtained using PFFRG and evaluated for (a)–(c) the isotropic model, (d)–(f) the breathing model
for φ ¼ 3π=16, and (g)–(i) the breathing model for φ ¼ π=16 at three different temperatures: T=½J̃SðSþ 1Þ� ¼ 0.5 [(a),(d),(g)],
T=½J̃SðSþ 1Þ� ¼ 2 [(b),(e),(h)], and T=½J̃SðSþ 1Þ� ¼ 5 [(c),(f),(i)]. In (a), we encircle the pinch point at k ¼ ð0; 0; 4πÞ. Each plot has
its own color scale, where the red corresponds to the maximum of each plot and blue is fixed to zero.
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φ ¼ 3π=16 and φ ¼ π=16, to enable a comparison with
Fig. 8 in Ref. [130]. As expected, the development of the
bow-tie pattern of scattering with sharp singularities as
T → 0 becomes progressively slower as one moves towards
the decoupled tetrahedron limit.
In the following section, we consider the regime of small

spin S where strong quantum fluctuations are expected
to significantly alter the ground state and nature of the spin-
spin correlations.

B. Spin-1=2 model

1. Isotropic case

The investigation of the low-temperature (T ≪ J1)
physics of Eq. (22) in the small spin-S regime proves to
be of utmost physical interest by virtue of the fact that in
this limit the model harbors strong correlations which con-
spire with amplified quantum fluctuations to set the stage
for a potential realization of a quantum spin liquid. How-
ever, it is precisely in this regime that the model acquires a
notorious reputation for difficulties due to its nonperturba-
tive character which makes the conclusions obtained from
perturbative approaches unreliable [17–31,149]. Herein,
we address this problem within the PFFRG framework,

which is particularly suited for addressing this regime due
to its nonperturbative character.
To probe the propensity of the system towards devel-

oping long-range magnetic order at any wave vector k, we
track the evolution of the susceptibility χðkÞ with Λ for all
wave vectors k in the extended Brillouin zone (EBZ) of the
pyrochlore lattice. As discussed in Sec. II A, the onset of
magnetic long-range order at a particular k is signaled by
the presence of kinks or cusps in the Λ flow of χðkÞ,
whereas a smooth monotonically increasing behavior of
χðkÞ down to Λ → 0 points to a quantum-disordered
ground state. For S ¼ 1=2, we observe that the Λ evolution
of the susceptibility χðkÞ ∀ k ∈ EBZ [see Fig. 5(a) for the
EBZ] is smooth and displays a monotonically increasing
behavior down to Λ → 0 with no detectable signatures of
an instability or a kink [see also Appendix B]. A numerical
maximization of the susceptibility function in the EBZ
finds feeble maxima at the high-symmetryW points, i.e., at
k ¼ 2πð2; 1; 0Þ [see Fig. 5(a)]. The RG flow of the
susceptibility evaluated at the W point is shown in
Fig. 5(b), wherein the smooth nature of the flow gives
strong evidence in favor of a quantum paramagnetic ground
state of the S ¼ 1=2 quantum Heisenberg antiferromagnet
on the pyrochlore lattice, in agreement with previous works
[17–27,29,30].

[ ]

FIG. 4. The PFFRG data (dotted curve) showing the full width
at half maximum (FWHM) (along the ½00l� cut, white line in the
inset) of the pinch point as a function of the temperature in the
classical isotropic nearest-neighbor Heisenberg antiferromagnet.
The calculation is done in the bare RPA limit [see Appendix A],
wherein the exact pinch-point pattern shown in the inset [plotted
using the numerator in Eq. (A5)] naturally occurs due to the
flat modes in the interaction matrix [see Eq. (19)]. However,
this approximation (which accounts for only leading 1=S dia-
grams) contains a methodological artifact which manifests in the
form of a divergence of the susceptibility at a finite temperature
T=½J̃SðSþ 1Þ� ¼ ffiffiffi

2
p

=3 [produced by the denominator of
Eq. (A5)], at which the ½hhl� plane susceptibility shown in the
inset is evaluated. Above this temperature, the width of the pinch
points is seen to reproduce the T1=2 behavior [4]. In Appendix A,
we show how the inclusion of higher-order diagrammatic con-
tributions in 1=S cure this spurious divergence.

(a)

(c) (d)

(b)

FIG. 5. (a) The EBZ (a truncated octahedron) of the pyrochlore
lattice labeled with the high-symmetry points. (b)–(d) For the
S ¼ 1=2 isotropic nearest-neighbor Heisenberg antiferromagnet,
the RG flow of the susceptibility evaluated at theW point (b), the
k-space-resolved magnetic susceptibility profiles (in units of
1=J1) evaluated at T=J1 ¼ 1=100 and shown in the EBZ (c) and
projected onto the ½hhl� plane (d).
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The corresponding reciprocal space spin susceptibility
profile in the EBZ evaluated at the lowest simulated temper-
ature T=J1 ¼ 1=100 is shown in Fig. 5(c). The profile
appears to be of a highly diffusive character along the edges
and surfaces of the EBZ. So as to reveal the nature of the
correlations, we plot χðkÞ in the ½hhl� plane (i.e., kx ¼ ky
plane) [see Fig. 5(d)], wherein one clearly sees the character-
istic bow-tie pattern, albeit with a softening and broadening
of the pinch points due to quantum fluctuations [31,149–
153]. Indeed, in the small spin-S regime, the spin-flip
exchange processes in the Heisenberg Hamiltonian become
important and generate quantum fluctuations which
dynamically violate the zero magnetization per tetrahedron
constraint. Since it is this constraint which is ultimately
responsible for the singular and perfectly sharp pinch points
observed in the classical model, its violation in the quantum
spin-1=2model leads to a regularization or a softening of the
pinch-point amplitude as their singular character disappears.
In addition, quantum fluctuations also generate a finite
correlation length ξ for the direct-space spin-spin correla-
tions, such that at distances r ≫ ξ the dipolar nature of the
correlations changes into an exponential. Consequently, the
pinch points undergo “broadening,”which can be quantified
by their FWHM. Indeed, the FWHM is determined by the
inverse of this correlation length, i.e., FWHM ∼ 1=ξ. In
Fig. 7, we show the variation of χðkÞ along the width of the
pinch point, i.e., along thewhite vertical line in Fig. 6(a), and
for S ¼ 1=2 the FWHM of the pinch point is determined to
be 1.6π at the lowest simulated temperature T=J1 ¼ 1=100.
Our finding of relatively rounded pinch points is in agree-

mentwith the results of Refs. [25,26,31], which also observe
pinch points of a similar nature. The fact that the overall
bow-tie pattern of susceptibility appears rather intact
(despite relatively rounded pinch points) lends support to
the view that the low-temperature (T=J1 ¼ 1=100) para-
magnetic phase of theS ¼ 1=2 nearest-neighborHeisenberg
antiferromagnet respects to a good degree the zero net
magnetic moment per tetrahedron constraint, i.e., the “ice
rules”—as also found in Ref. [31]. The temperature evolu-
tion of the susceptibility in the ½hhl� plane is shown in
Fig. 6. To obtain a quantitative picture, we plot in
Fig. 8 the susceptibility along a 1D cut (white line in the

T=J1 ¼ 1=100 plot of Fig. 6) across the width of the pinch
point in the bow-tie structure. On increasing the temperature
by even an order of magnitude, i.e., up to T=J1 ¼ 1=10, it is
found that the susceptibility profile and the width of the
pinch points remain essentially unchanged. In the temper-
ature range T=J1 ¼ 1=10 till T=J1 ∼ 1, the pinch-point
width is seen to increase (approximately) linearly (see the
inset of Fig. 8) in contrast to the T1=2 behavior expected
classically (see Fig. 4). However, the fact that the overall
bow-tie structure remains relatively intact up till T ∼ J1
seems to suggest that the ice rules govern the physics (to a
good degree of accuracy) over a surprisingly large temper-
ature range as also found in Ref. [31]. We also study the
behavior of the direct-space spin-spin correlations with the
temperature and find that, for any given distance, it is only
their amplitude that varies with the temperature, while their
signs remain constant over the entire temperature range, in
agreement with the findings of Ref. [26]. Also, the signs of
all correlators up to the 16th neighbor as obtained from
PFFRG agree with those obtained in Table I of Ref. [26].

FIG. 6. The spin susceptibility profile (in units of 1=J1) in the ½hhl� plane at different temperatures for the S ¼ 1=2 isotropic nearest-
neighbor Heisenberg antiferromagnet.
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FIG. 7. The susceptibilities of the S ¼ 1=2 and S ¼ 1 isotropic
nearest-neighbor Heisenberg antiferromagnet plotted along the
1D cut (see the white line in the T=J1 ¼ 1=100 plot in Fig. 6)
across the bow-tie width at the lowest simulated temperature
T=J1 ¼ 1=100.

QUANTUM AND CLASSICAL PHASES OF THE … PHYS. REV. X 9, 011005 (2019)

011005-11



This agreement is interesting in light of the fact that Ref. [26]
evaluates the equal-time spin-spin correlators, i.e., Sðq;ωÞ
integrated over the frequency, whereas we compute only the
ω ¼ 0 correlator, which implies that an integration over
frequencies does not change the sign.
Early investigations into the nature of the ground state of

the S ¼ 1=2 nearest-neighbor Heisenberg antiferromagnet,
predominantly based on perturbative approaches in the
intertetrahedra coupling, found the ground state to be a
valence-bond crystal [17–24]. Using PFFRG, we probe for
possible instabilities of the quantum paramagnet towards
valence-bond-crystal formation. We consider three simple
dimerization patterns which, respectively, break the trans-
lational symmetry along (i) all three tetrahedral axis direc-
tions (VBC3D), (ii) two tetrahedral axis directions (VBC2D),
and (iii) one tetrahedral axis direction (VBC1D). The dimer
response functions ηPVBC [Eq. (15)] of all three VBCs are
found to decrease under the RG flow [see Fig. 9(a) for the
RG flow of ηPVBC], which lends support towards the scenario
of a symmetric quantum-spin-liquid ground state as opposed
to the previously proposed scenario of a VBC ground state.
The disagreement between our findings and those of
previous studies [17–24], which argue for a VBC ground
state, is likely explained by the fact that a common thread of
these approaches is the inherent symmetry breaking already
built in to the scheme considered therein, which then biases
the conclusion towards aVBCground state. That being said,
here we investigate VBCs only up to an eight-site unit cell,
and the possibility of VBCs with larger unit cells cannot, in
principle, be ruled out.
The possibility of the occurrence of spin-nematic order in

the classical nearest-neighbor Heisenberg antiferromagnet is
discussed in Refs. [3,4], wherein it is found that the system
evades such nematic order [104]. Here, we investigate for the

possibility of nematic order [see Sec. II A 2] in the S ¼ 1=2
nearest-neighbor Heisenberg antiferromagnetic model. We
plot the RG flow of the nematic response function ηSN
[Eq. (14)] in Fig. 10, wherein one observes that ηSN remains
less than one throughout the RG flow (albeit displaying
nonmonotonic behavior) and sharply decreases at low
temperatures (T ≪ J1). This result indicates that the system
tends to reject spontaneous breaking of SU(2) spin rotational
symmetry via a quadrupolar order parameter in the ground
state of the S ¼ 1=2 nearest-neighbor isotropic Heisenberg
antiferromagnet. Though our results are at variance with
Ref. [154], which argues for a nematic quantum spin liquid
featuring spin-nematic order in the S ¼ 1=2 nearest-
neighbor Heisenberg antiferromagnetic model, we mention
that, since we a priori exclude the fermionic four-particle
vertex from the RG equations and hencewe cannot calculate
the nematic susceptibility, our calculation of the nematic
response function by applying symmetry breaking is approx-
imative in character. Thus, we do not definitively exclude the
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FIG. 8. The susceptibility of the S ¼ 1=2 isotropic nearest-
neighbor Heisenberg antiferromagnet plotted along the 1D cut
(see the white line in the T=J1 ¼ 1=100 plot in Fig. 6) across the
bow-tie width at different temperatures. The inset shows the
FWHM of the curves as a function of the temperature.
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FIG. 9. The RG flows of the dimer response functions ηPVBC
[Eq. (15)] of different valence-bond crystals for (a) S ¼ 1=2
and (b) S ¼ 1 isotropic nearest-neighbor Heisenberg antiferro-
magnets.
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FIG. 10. The RG flows of the spin-nematic response function
ηSN [Eq. (14)] for the S ¼ 1=2 isotropic nearest-neighbor
Heisenberg antiferromagnet.
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possibility of the realization of a nematic quantum-spin-
liquid ground state.

2. Breathing case

In a breathing pyrochlore system, the ratio of the inter- to
intratetrahedra coupling Jdown=Jup provides a convenient
interpolation parameter which connects the decoupled tetra-
hedron and the isotropic limits. It is of interest to investigate
the stability of the isotropic model ground state and the
evolution of the spin-spin correlations as a function of
Jdown=Jup. The RG flow of the dominant susceptibility for
different values of the breathing anisotropy is shown in
Fig. 11(a), wherein we observe a smooth flow down to
Λ → 0, in similarity with the finding for the isotropic model
[see Fig. 5(b)]. Our results thus point to an extended region of
parameter space (accessible by tuning Jdown=Jup) overwhich
a quantum paramagnetic phase is stabilized. We also assess
the stability of the paramagnetic phase against dimerization
into the type of VBC orders considered for the isotropic
model and find that the system rejects the applied symmetry
breaking under the RG flow, hinting at a possible quantum-
spin-liquid state. In the strongly anisotropic limit, we cannot
totally exclude the possible scenario of a ground state with
more involved patterns of symmetry breaking, e.g., lattice
nematic order or VBC with a larger unit cell. Indeed, in the
S ¼ 1=2 breathing kagome Heisenberg antiferromagnet, the
situation is contentious: with one work finding VBC [155]
while the other finds lattice nematic order [156]. So, further
work on the (strongly) anisotropic breathing pyrochlore is
probably warranted to ascertain whether it remains without
VBC or lattice nematic order down to the limit of the
decoupled tetrahedron. Furthermore, we find that the bow-
tie pattern of scattering seen in the ½hhl� plane is remarkably
robust with regard to the introduction of breathing
anisotropy, and thewidth of the bow tie increases onlymargi-
nally even for strong values of anisotropy [see Fig. 12(a)].
This result shows that in the quantum paramagnetic ground

state the low-energy physics is approximately governed by
the ice rules.

C. Spin-1 model

1. Isotropic case

Increasing the spin S from S ¼ 1=2 to S ¼ 1 renders the
effects of quantum fluctuations less pronounced, thus favor-
ing conditions amenable for stabilizing long-range magnetic
order. Previous investigations of the S ¼ 1 Heisenberg
antiferromagnet have not been able to reach an unambiguous
conclusion regarding the presence or absence of magnetic
order [19,157]. TheΛ evolution of the susceptibility at the k
vector where it has its maximum value, i.e., the high-
symmetry W point, is shown in Fig. 13(a). The RG flow
is not seen to exhibit any instabilities as would be signaled
by the presence of kinks and, on the contrary, appears to be
of a smooth character [see Appendix B for an analysis on
the detection of possible magnetic instabilities in the S ¼ 1
RG flow]. Similar flow behaviors of the susceptibility are
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FIG. 12. For the breathing nearest-neighbor Heisenberg
antiferromagnet, we plot the susceptibility along the 1D cut
(see the white line in the T=J1 ¼ 1=100 panel in Fig. 6) at the
lowest simulated temperature T=J1 ¼ 1=100 for (a) S ¼ 1=2 and
(b) S ¼ 1.

(a) (b)

FIG. 11. The RG flow of the susceptibility tracked at the
dominant wave vector for different values of the breathing
anisotropy for (a) S ¼ 1=2 and (b) S ¼ 1 nearest-neighbor
Heisenberg antiferromagnet.

(a) (b) (c) (d)

FIG. 13. For the isotropic nearest-neighbor Heisenberg anti-
ferromagnet, we show, for different values of the spin S, the RG
flow of the susceptibility tracked at the dominant wave vector.
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exhibited for allwave vectors k ∈ EBZ. These observations
lead us to the interesting conclusion that in increased spatial
dimensionality (here, 3D) if geometric frustration is severe
enough, such as on the pyrochlore lattice, then even forS ¼ 1
quantum fluctuations are able to prevent the onset of long-
range magnetic order in the Heisenberg antiferromagnet,
thereby stabilizing a quantum paramagnetic ground state.
The susceptibility profile in the ½hhl� plane is qualitatively
similar to the one obtained for S ¼ 1=2; however, the pinch
points become slightly sharper as reflected by the decrease in
FWHM to 1.42π compared to 1.6π for S ¼ 1=2, evaluated at
the lowest simulated temperatureT=J1 ¼ 1=100 [see Fig. 7].
To assess the stability of this paramagnetic phase against

spontaneous dimerization, we study the dimer response
functions of three candidate VBC states described in
Sec. III B. The Λ evolution of the dimer response functions
for the three VBCs [see Fig. 9(b)] shows that, similar to the
S ¼ 1=2 case, the system strongly rejects the corresponding
applied symmetry breaking. With the present data, we
cannot, as in the S ¼ 1=2 case, rule out the possibility of
VBCs with larger unit cells and more complicated patterns
of symmetry breaking being stabilized. Nonetheless, from
the current PFFRG results, the predicted ground state
would be a quantum spin liquid.

2. Breathing case

Upon tuning a breathing anisotropy, i.e., Jdown=Jup ≠ 1,
we observe that the RG flows [see Fig. 11(b)] do not develop
any signatures of a kink or an instability [as inferred from an
analysis based on the method of detection of instabilities as
explained in Appendix B] down to the strongly anisotropic
limit and remain smooth as Λ → 0, pointing to the absence
of magnetic long-range order. Thus, our results show that
even for S ¼ 1, where quantum fluctuations are expected to
be less pronounced, there exists an extended region in
parameter space hosting a quantum paramagnet which
can be accessed from the isotropic point (Jdown=Jup ¼ 1)
by tuning the breathing anisotropy. We probe this para-
magnetic phase for possible VBC instabilities and find
that the system rejects the applied symmetry breaking;
however, as in the case of S ¼ 1=2, we do not exclude
the possibility of a ground state featuring a more elaborate
pattern of symmetry breaking [37]. We also observe that the
bow-tie pattern and the pinch-point width remain essentially
unchanged compared to the isotropicmodel [see Fig. 12(b)],
indicating that the ice rules continue to dictate the low-
energy physics of the quantum paramagnetic ground state
even for strong breathing anisotropy.

D. Large spin-S regime

As quantum fluctuations decrease in strength with
increasing spin S, magnetic long-range order might be
expected to ultimately prevail. Indeed, we find that, for
S ¼ 3=2, the RG flow of the dominant susceptibility [see

Fig. 13(b)] shows feeble signatures of the development of
an instability or kink at the point marked by an arrow. This
faint feature, appearing in the S ¼ 3=2 RG flow, develops
into a pronounced kink (marking the breakdown of the RG
flow) for increasing values of S [see Figs. 13(c) and 13(d)].
The details of the scheme employed to detect the instability
or kink are given in Appendix B. Based on this analysis
[see Fig. 25], we conclude that for S ¼ 3=2 and beyond
there is an onset of magnetic long-range order in the
nearest-neighbor isotropic Heisenberg antiferromagnet. It
is worth emphasizing that, for the finite S values studied in
our manuscript, the correct balance between leading 1=S
terms and subleading contributions is already incorporated
in the PFFRG [see Sec. II A]. For this reason, the PFFRG at
any finite S is still well justified even if plain RPA in the
large-S limit, i.e., treating only leading 1=S diagrams,
produces the aforementioned artifact of finite-temperature
divergence of the susceptibility [see Fig. 4]. However, with
increasing S, the PFFRG becomes numerically more
challenging (and also more sensitive to errors), because
it becomes progressively difficult to account for the proper
interplay between (large) leading 1=S and (much smaller
but still important) subleading terms in our numerical
algorithm. For this reason, we applied the PFFRG only
to “moderate” spin magnitudes smaller than eight and use
plain RPA in the infinite-S limit [see Appendix A].
Therefore, we are unable to comment on the long-standing
issue of the presence or absence of long-range magnetic
order in the large-S quantum Heisenberg antiferromagnet.
Determining the precise nature of the magnetic order

(if any) for intermediate values of S constitutes an in-
triguing and challenging question which has remained
unanswered to date. The problem of the ground state of
the large-S quantum antiferromagnet on the pyrochlore
lattice is addressed extensively using effective Hamiltonian
approaches [10–16]. However, due to the weak selection
effects operating at both the harmonic and anharmonic
level, no definitive conclusion on the nature of the ground
state has yet been reached. Addressing this problem within
the PFFRG scheme, we study the evolution of the spin
susceptibility profile with increasing values of S in order to
figure out whether quantum fluctuations are successful in
distilling a unique (magnetically ordered) ground state with
a given wave vector k ∈ EBZ out of the extensively
degenerate classical ground-state manifold. In Fig. 14,
we show the variation in the susceptibility along a path
passing through the high-symmetry points [see Fig. 5(a)]
for increasing S values. One observes that, while the
susceptibility increases with increasing S, there is no clear
enhancement at any given wave vector, and the suscep-
tibility profile evaluated at and above the critical break-
down temperature in Fig. 13(b)–(d) remains essentially
unchanged compared to that of the S ¼ 1=2 and S ¼ 1
paramagnetic phase, with just an overall enhancement. The
absence of pronounced Lorentzian peaks points to the fact

YASIR IQBAL et al. PHYS. REV. X 9, 011005 (2019)

011005-14



that the quantum order-by-disorder selection effects as
captured by one-loop PFFRG [72] may be extremely feeble
down to the lowest cutoff or temperature considered, even
upon the inclusion of higher orders in 1=S embedded
within the PFFRG calculation framework [74]. It will be
interesting to investigate the large-S limit beyond one loop
formulations of PFFRG, e.g., by employing the recently
formulated multiloop PFFRG which sums up all parquet
diagrams to arbitrary order in the interaction [158–160].

IV. J1-J2 HEISENBERG MODEL

A. Classical phase diagram

Given the absence of long-range order at a nonzero
temperature in the classical nearest-neighbor Heisenberg
pyrochlore antiferromagnet, any weak perturbations to that
model have strong effects on the thermodynamic and
magnetic properties of the system that may result in,
e.g., magnetic long-range ordering. Indeed, the inclusion
of a second-nearest-neighbor Heisenberg coupling J2 to the

classical nearest-neighbor Heisenberg model on the pyro-
chlore lattice is known to stabilize a plethora of intricate
magnetic orders [see Table I and Fig. 15], part of which is
investigated in Refs. [38–41], with a full exploration of the
J1-J2 parameter space reported in Ref. [56]. Despite the fair
number of results available in the literature for this classical
J1-J2 model, we find and report below some corrections
and/or amendments to the current knowledge about the
classical phases of this system.
We find the J1-J2 model to host seven different classical

magnetic orders, in addition to a classical spin-liquid
(cooperative paramagnetic) phase found for the nearest-
neighbor antiferromagnetic model. Employing an approach
which combines a Luttinger-Tisza analysis with an iterative
energy minimization on large system sizes of 32 × 32 × 32
cubic unit cells (i.e., 524 288 spins), we present a refined
analysis of the classical phase diagram and the nature of its
magnetic orders. The principal differences in our findings
compared to those presented in Ref. [56] can be attributed
to the substantially reduced finite-size effects in our
calculations compared to those of Ref. [56], which are
based on a 4 × 4 × 4 cubic unit cell (1024 sites) system.
In addition, we identify within the EBZ of the pyrochlore
lattice the ordering wave vectors of the classical magnetic
orders [see Table I] as would be determined in neutron-
scattering experiments. It is important to discuss these
states in detail here, since, as we will see in the next section,
the quantum (S ¼ 1=2 and S ¼ 1) models harbor the same
long-range ordered states.
The pure nearest-neighbor Heisenberg antiferromagnet

(J2 ¼ 0) features an extensively degenerate manifold of
classical ground states whose sole shared feature is that the
sum of the spins on every tetrahedron is identically zero
[see Sec. III A 1]. It is shown in Ref. [2] that an infini-
tesimal amount of antiferromagnetic second-nearest-
neighbor coupling J2 > 0 proves sufficient to partially lift
this degeneracy by selecting a nonextensive subset of the
ground states of the pure nearest-neighbor antiferromagnet.
These states are such that the spins within each of the
four face-centered cubic (fcc) sublattices of the pyrochlore

FIG. 14. The susceptibility of the isotropic nearest-neighbor
Heisenberg antiferromagnet plotted along the high-symmetry
path evaluated at the lowest simulated temperature (T=J1 ¼
1=100) for S ¼ 1=2 and S ¼ 1 and at the critical breakdown
temperature (Tc) (marked by arrows) in the RG flows in Fig. 13
for S > 1.

TABLE I. Classical magnetic long-range ordered phases stabilized in the J1-J2 Heisenberg model. The ordering is labeled as coplanar
if there exists a subset of states which are coplanar. The wave-vector components marked by an asterisk have slight incommensurate
deviations within the phase away from the given rational values [see the text for details].

State Wave vector Ordering Classical domain Quantum S ¼ 1=2 domain

Paramagnet ½345.6°� 1.8°; 12.6°� 1.8°�
k ¼ 0 2πð2; 0; 0Þ Coplanar (0°, 26.56°] ½12.6°� 1.8°; 26.56°�
Planar spiral 2πðk; 0; 0Þ Coplanar [26.56°, 145.78°] ½26.56°; 151.74°� 0.36°�
Double-twist 2πð3

4
; 3
4
; 0Þ Noncoplanar [145.78°, 154.59°] ½151.74°� 0.36°; 160.83°� 0.09°�

Multiply modulated spiral 2πð3
4
�; 1

2
; 1
4
�Þ Noncoplanar [154.59°, 158.37°] ½160.83°� 0.09°; 161.91°� 0.09°�

Cuboctahedral stack 2πð1
2
; 1
2
; 1
2
Þ Noncoplanar [158.37°, 170.30°] ½161.91°� 0.09°; 171.27°� 0.27°�

Ferromagnet 2πð0; 0; 0Þ Coplanar [170.30°, 312.53°] ½171.27°� 0.27°; 308.61°� 0.27°�
Kawamura 2πð5

4
�; 5

4
�; 0Þ Noncoplanar [312.53°, 0°) ½308.61°� 0.27°; 345.6°� 1.8°�

QUANTUM AND CLASSICAL PHASES OF THE … PHYS. REV. X 9, 011005 (2019)

011005-15



lattice order ferromagnetically, and therefore this state is
dubbed k ¼ 0. However, the sublattices are not aligned
parallel to each other, but the state preserves the constraint
of zero spin sum per tetrahedron, resulting in an ordering
wave vector at k ¼ 2πð2; 0; 0Þ and symmetry-related
points in the EBZ. This result can perhaps be most easily
understood by noting that a second-nearest-neighbor inter-
action J2 is equivalent to a third-nearest-neighbor inter-
action J3 of the opposite sign, i.e., J3 ¼ −J2, as long as
every tetrahedron satisfies the zero spin sum (“ice rule”)
constraint [40]. Since J3 couples only spins on the same
sublattice, it is straightforwardly optimized by selecting
states with ferromagnetic ordering within each sublattice.
This state turns out to be an exact Luttinger-Tisza eigen-
state of the J̃kαβ matrix in Eq. (19) with an energy per spin
E ¼ −2J1 − 4J2. Given that the ordering is fixed only
within each sublattice separately, there remains the freedom
of choosing the relative orientation of the individual
ferromagnetically aligned sublattices while respecting the
zero spin sum per tetrahedron constraint. Hence, at T ¼ 0
there exists a ground-state degeneracy characterized by
three angular d.o.f. Therefore, the distribution of spectral
weight between the dominant k ¼ 2πð2; 0; 0Þ-type vectors
is not fixed. At T ¼ 0, the breaking of the cubic pyrochlore
symmetry is not energetically determined by the inter-
actions; however, for finite temperatures entropic effects
could select a unique ground state. The relative weights of
the dominant peaks in the structure factor then serve as a

measure of the collinearity of the sublattices, with the case
of only one of them being present corresponding to a fully
collinear state. Irrespective of the relative orientation of the
sublattices, the ferromagnetic correlations within each of
these manifest themselves in the spin structure factor by
subdominant peaks of equal intensity at all of the
2πð1; 1; 1Þ points at the edge of the EBZ. The spectral
weight of any one of the given subdominant peaks is
exactly one-eighth of the total weight of the dominant
peaks.
The aforementioned k ¼ 0 state minimizes the energy

only in the regime where antiferromagnetic J1 > 0 is
dominant over sufficiently weak antiferromagnetic J2.
Since the J2 bonds are twice as many as the J1 bonds,
the J2 interaction becomes dominant when J2=J1 > 1=2
(θ ≳ 26.56°), resulting in a phase transition to a planar
spiral ground state with one of the symmetry-related
k ¼ 2πðk; 0; 0Þ-type wave vectors as the ordering wave
vector. This state is also an eigenstate of the Luttinger-Tisza
matrix Eq. (19), thus giving the exact expression k ¼
ð2=πÞ arccos½−J1=ð4J2Þ − 1=2� for the wave vector and an
energy per spin of E ¼ −J21=ð2J2Þ − 6J2. This wave vector
differs from the one given in Ref. [56] by a factor of 2,
which is due to the fact that the transformation done on this
state to map it into an equivalent spin-chain model [161]
was apparently not performed correctly. The pure second-
nearest-neighbor antiferromagnet (J1 ¼ 0, J2 ¼ 1) also
falls into this region and has a 120° spiral structure on
each fcc sublattice. Taking into account the relative phases
of the spirals between the sublattices, we find a resulting
ordering wave vector k ¼ 2πð4=3; 0; 0Þ in the EBZ of the
pyrochlore lattice. In the planar spiral, and corresponding to
the aforementioned dominant peaks at k ¼ 2πðk; 0; 0Þ-type
ordering wave vectors, there also exist subdominant peaks
at ordering wave vectors of the k ¼ 2πð3 − k; 1; 1Þ type in
the EBZ. The k and 3 − k entries of the dominant and
subdominant ordering wave vectors, respectively, always
appear in the same component for each of these wave-
vector pairs. The subdominant peaks are a signature of the
correlations within the fcc sublattices of the pyrochlore
lattice and have a fixed relative amplitude of one-quarter of
the dominant peak.
The planar spiral order is stable against J1 < 0 now

becoming ferromagnetic (keeping J2 > 0 antiferromag-
netic), up to J2=J1 ¼ −0.68 (θ ≈ 145.78°). Beyond that
point, the ground state changes to a noncoplanar structure,
the so-called double-twist (DT) state, first uncovered in a
frustrated antiferromagnet on an octahedral lattice [161]. Its
name derives from the fact that the spins form two different
kinds of spirals in two perpendicular directions but both
governed by the same type of wave vector. In reciprocal
space, this state features two pairs of k ¼ 2πð3=4; 3=4; 0Þ-
type wave vectors on different reciprocal space planes; the
first pair, e.g., could be located in the kx-ky plane with
k ¼ 2πð3=4; 3=4; 0Þ and k ¼ 2πð3=4;−3=4; 0Þ, while the

FIG. 15. The classical phase diagram of the J1-J2 Heisenberg
model on the pyrochlore lattice. The couplings are parametrized
as J1 ¼ J cosðθÞ and J2 ¼ J sinðθÞ with J an overall energy
scale. See Table I for a description of the phases and the location
of the phase boundaries.
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second pair, e.g., could be located in the ky-kz plane with
k ¼ 2πð0; 3=4; 3=4Þ and k ¼ 2πð0; 3=4;−3=4Þ. In the first
plane, e.g., the kx-ky plane, two dominant peaks in the
structure factor are located at the aforementioned wave
vectors and have identical spectral weight. In the second
plane, e.g., the ky-kz plane, subdominant peaks with
approximately 59% of the spectral weight of the dominant
ones are located at the aforementioned wave vectors. An
approximate parametrization of such a state is given in
Ref. [56]. Both pairs of wave vectors control the ordering
on the individual fcc sublattices. The relative orientations
of the spins on the sublattices lead to the appearance of
additional subdominant peaks at k ¼ 2πð5=4; 5=4; 0Þ-type
wave vectors. For example, corresponding to the pair of
dominant peaks in the kx-ky plane, there appear a pair of
subdominant peaks at wave vectors k ¼ 2πð5=4; 5=4; 0Þ
and k ¼ 2πð5=4;−5=4; 0Þ carrying approximately 29% of
the amplitude of the dominant peaks. Similarly, corre-
sponding to the pair of subdominant peaks in the ky-kz
plane, there appear a pair of weaker peaks at wave vectors
k ¼ 2πð0; 5=4; 5=4Þ and k ¼ 2πð0; 5=4;−5=4Þ carrying
approximately 13% of the amplitude of the dominant peaks
(in the kx-ky plane). The particular choice of planes chosen
for the dominant and subdominant planes is not fixed by the
Heisenberg model but is determined by the spatial sym-
metry breaking when entering this phase.
Decreasing antiferromagnetic J2 > 0 further, we encoun-

ter a phase transition at J2=J1 ≈ −0.475ð5Þ (θ ≈ 154.59°) to
a state which is similar to the multiply modulated commen-
surate spiral of Ref. [56], for which the transition point is
estimated to be J2=J1 ≈ −0.43. In reciprocal space,
this state is characterized by the presence of four domi-
nant commensurate ordering wave vectors of the k ¼
2πð3=4; 1=2; 1=4Þ type in the EBZ, for all of which the
1=2 component is in a common direction. We also find
subdominant ordering vectors of the k ¼ 2πð3=4; 0;−3=4Þ
type; the zero component is the one which is 1=2 in the
dominant k ¼ 2πð3=4; 1=2; 1=4Þ wave vectors. This result
is a consequence of a magnetic structure wherein the spins
trace out multiple spirals in different directions in direct
space which are controlled by the above wave vectors. Our
refined analysis reveals that the observed commensurability
of the wave vectors found in Ref. [56] is an artifact of large
finite-size effects at play in that work. The imposition of
periodic boundary conditions in the simulation of a L ×
L × L cubic unit cell system allows only those k vectors
whose components are integer multiples of 2π=L. This
restriction implies that an incommensurate ordering wave
vector which is proximate to a commensurate one leads to
an observed peak at the commensurate position. Indeed,
we find that, for J2=J1 ≈ −0.47, the four incommensurate
ordering wave vectors of k ¼ 2π½0.81ð2Þ; 0.50ð2Þ;
0.19ð2Þ� type evolve continuously (at least within the used
k-space numerical resolution of 2π=32) towards the com-
mensurate values which are taken on at the transition point

to the cuboctohedral stack (CS) state in Fig. 15. At the same
time, the subdominant ordering vector stays unchanged, but
its weight relative to the weight of the dominant peak varies
from approximately 26% at its border with the DT state to
approximately 32% at its border to the CS state. Our
calculations show that, while the manner in which dominant
and subdominant wave vectors control this state does not
change, the dominant wave vector it is composed of does
evolve as a functionofJ2=J1. Our findings are also supported
by a Luttinger-Tisza analysis, which shows that there are
incommensurate wave vectors with slightly lower energy
close to the commensurate point. In this parameter regime,
the Luttinger-Tisza state does not fulfill the strong spin-
length constraint [see Sec. II B] but needs to be supported by
the subdominant wave vectors we find, in order to be able to
construct a normalized state. Because of the incommensu-
rability of the dominant wave vector, we simply refer to this
state as a multiply modulated spiral (MMS).
At J2=J1 ¼ −0.3965ð5Þ (θ ≈ 158.37°), the MMS state

evolves into the CS state [56,161]. Its name derives from
the fact that, in a construction of the pyrochlore lattice as a
stacking of alternating kagome lattice and triangular lattice
layers in a ½111� direction, the spins in each kagome layer
are arranged such that they point towards the 12 vertices of
a cuboctahedron, forming a 12-sublattice magnetic struc-
ture first found on the kagome lattice [162,163]. At the
same time, the spins on the triangular layers point to the
eight midpoints of the triangular faces of the same
cuboctahedron. This noncoplanar state is built up from
any three wave vectors of the k ¼ 2πð1=2; 1=2; 1=2Þ type,
e.g., k ¼ 2πð1=2; 1=2; 1=2Þ, k ¼ 2πð−1=2; 1=2; 1=2Þ, and
k ¼ 2πð1=2;−1=2; 1=2Þ with identical spectral weight,
and is stacked along the [111] direction parallel to the
fourth wave vector of this type, e.g., k ¼ 2πð1=2;
1=2;−1=2Þ. The spin configuration in this state can be
expressed analytically (see Ref. [56]). Each of the dominant
ordering vectors is accompanied by a subdominant wave
vector of k ¼ 2πð1=2; 1=2; 3=2Þ type with approximately
18% of the spectral weight of the dominant vectors. From
the parametrization, it follows that the average energy per
spin, E ¼ J1ð3=4þ

ffiffiffi
6

p
=2Þ, is independent of J2 (an

extensive discussion how this originates from the state
can be found in Ref. [56]). Thus, decreasing J2 further does
not change the energy of this state but, rather, lowers the
energy of competing states.
At J2=J1 ¼ ð−3=8þ ffiffiffi

6
p

=12Þ (θ ≈ 170.30°), the energy
of the ferromagnet becomes lower than that of the CS state
and occupies the largest extent of the J1-J2 parameter
space. Just as for the k ¼ 0 state, the ferromagnetic
ordering within the sublattices features subdominant order-
ing wave vectors at all the k ¼ 2πð1; 1; 1Þ-type points in
the EBZ, which have a spectral weight of one-quarter of the
dominant k ¼ 2πð0; 0; 0Þ vector. The pure J2 ferromagnet
proves to be fairly robust against moderately strong
antiferromagnetic J1 coupling.
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For J2=J1 ≳ −1.09 (θ ≈ 312.53°), the antiferromagnetic
J1 exchange destroys the ferromagnetic order, and a phase
transition occurs to a family of states dubbed the
Kawamura states after the group which investigated them
in great detail [38]. This phase is made up of a family of
degenerate ground states with dominant incommensurate
wave vectors around the k ¼ ðk; k; 0Þ points with k ≈
2πð5=4Þ and subdominant ones at k ≈ 2πð3=4Þ having
approximately 22% of the spectral weight of the dominant
vectors. In addition, we find stronger subdominant ordering
at k ≈ 2πð1; 1=4; 7=4Þ-type vectors with approximately
55% spectral weight. There are two classes of ground
states, composed of either four or all six of the ordering
wave vectors, the latter therefore respecting the cubic
symmetry of the pyrochlore lattice. In the case of a ground
state composed of four of the six wave vectors, the
Heisenberg model a priori does not determine which four
are selected. A common feature of both these states is that
they are superpositions of spirals with the pertinent wave
vectors which, when combined, realize a noncoplanar state.
The parameter k for the dominant ordering starts with a
value k ≈ 2πð1.31Þ at the phase boundary to the ferromag-
netic state J2=J1 ¼ −1.09 and approaches k ¼ 2πð5=4Þ as
J2 → 0. The Kawamura states also approximately fulfill the
zero spin sum per tetrahedron constraint, so they can
likewise be considered as perturbed eigenstates of the pure
J1-only antiferromagnetic model.

B. Quantum phase diagram

The regime of small spin S in highly frustrated magnets
harbors strong quantum fluctuations which display in-
triguing effects such as (i) melting magnetic orders to
potentially realize a quantum spin liquid, (ii) fostering the
birth of new kinds of magnetic orders, (iii) shifting the pitch
vector of spiral magnetic states, and (iv) shifting the phase

boundaries relative to that found for the same Hamiltonian
in its classical S → ∞ limit. With the aim of investigating
these possibilities, we carry out a study of the quantum
phase diagram of the J1-J2 Heisenberg pyrochlore model
for low values of spin S, which, to the best of our
knowledge, had not been performed before the present
work. We first address the important question concerning
the possibility of stabilizing a quantum paramagnetic phase
in the presence of a J2 coupling. At the classical level, and
as discussed in the previous section, it is shown [2] that the
presence of an infinitesimal further neighbor J2 coupling
induces long-range magnetic order at low temperatures.
However, strong quantum fluctuations in the small-S
regime may destabilize those classical magnetic orders.
Therefore, the question arises, in what range of J2=jJ1j,
with either antiferromagnetic J1 > 0 or possibly even ferro-
magnetic J1 < 0, may a quantum-spin-liquid phase be
potentially realized.
By employing PFFRG,wemap out the full J1-J2 quantum

phase diagram for S ¼ 1=2, S ¼ 1, and S ¼ 3=2, which is
shown in Fig. 16. Our most important finding, which is the
main result of our work, is the presence of an extended
quantum paramagnetic phase for the S ¼ 1=2 model [see
Fig. 16(a)] and, perhaps surprisingly, also for the S ¼ 1
model [see Fig. 16(b)]. In Figs. 16(a) and 16(b), quantum
fluctuations are seen to melt away a significant portion
(around J2 ¼ 0) of the classical domain of existence of the
k ¼ 0 and Kawamura magnetic orders. For S ¼ 1=2, the
paramagnet ranges from −0.25ð3Þ ≤ J2=J1 ≤ 0.22ð3Þ,
while, for S ¼ 1, its span is reduced by half to −0.11ð2Þ ≤
J2=J1 ≤ 0.09ð2Þ but remains nonetheless appreciable. For
S ¼ 1=2, we show the representative RG flows within the
paramagnetic regime for a point in the antiferromagnetic J2
regime [Fig. 17(a)] and one in the ferromagnetic J2 regime
[Fig. 17(b)]. These display a smooth and monotonically
increasing behavior with no signatures of a kink, pointing to

FIG. 16. The outer rings show the quantum phase diagrams of the J1-J2 Heisenberg model on the pyrochlore lattice for different values
of the spin S. An extended quantum paramagnetic regime is stabilized for S ¼ 1=2 and S ¼ 1. The inner rings correspond to the classical
phase diagram. The Heisenberg couplings are parametrized as ðJ; θÞ defined by J1 ¼ J cosðθÞ and J2 ¼ J sinðθÞ.
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the absence of magnetic long-range order. The paramagnetic
character of the ground state also shows up in the spin
susceptibility profile in the form of an absence of sharp
maxima in the EBZ which would be a signature of incipient
Bragg peaks (IBPs) marking the onset of magnetic long-
range order, along with a diffuse spectral weight caused by
quantum fluctuations. Indeed, the antiferromagnetic J2 spin
susceptibility profile [see Fig. 17(c) for the S ¼ 1=2 result]

displays weak maxima at k ¼ 2πð2; 0; 0Þ (and symmetry-
related points), which correspond to the dominant Bragg
peak wave vectors of the underlying k ¼ 0 parent classical
magnetic order (see Sec. IVA). Similarly, the spin suscep-
tibility profile for ferromagnetic J2 [see Fig. 17(d) for the
S ¼ 1=2 result] features a smeared distribution of spectral
weight forming homogeneous ringlike features on the sur-
face of the Brillouin zone (see Fig. 18 for the ½hhl� plane
scattering profiles). Classically, this parameter regime
hosts the Kawamura magnetic order with dominant and
subdominant Bragg peaks at k ≈ 2πð5=4; 5=4; 0Þ and k ≈
2πð3=4; 3=4; 0Þ (and symmetry-related points). A compari-
son of the S ¼ 1=2 paramagnetic spin susceptibility profiles,
i.e., Fig. 17(c) for J2 antiferromagnetic and Fig. 17(d) for J2
ferromagnetic, with those of the respective parent classical
magnetic orders, i.e., k ¼ 0 [Fig. 19(b)] and Kawamura
[Fig. 19(h)] states, lends support to theview that the quantum
paramagnetic ground state may be viewed as a molten
version of the parent magnetic orders under the action of
quantum fluctuations.
The inclusion of a J2 coupling also substantially modifies

the nature of the paramagnetic scattering profile at low
temperatures (see Fig. 18 for the ½hhl� plane scattering). We
find that for antiferromagnetic J2 > 0 there is an enhance-
ment of the pinch-point scattering amplitude as found in the
corresponding classical model [71], while for ferromagnetic
J2 the scattering intensity at the pinch points is strongly
suppressed and instead redistributes to form a hexagonal
cluster pattern of scattering [71]. In Fig. 20, we plot the
relative weight of the susceptibility (at T=J ¼ 1=100) with
respect to its value at the pinch point, i.e., (χ=χpinch point)
along a 1D cut (marked by a white line in Fig. 18). This plot
clearly reveals the degree of enhancement at the pinch point
as an antiferromagnetic J2 coupling is cranked up, while, for

FIG. 18. The spin susceptibility profile (in units of 1=J) in the ½hhl� plane shown at different temperatures for the S ¼ 1=2 J1-J2
Heisenberg model. The first row is for antiferromagnetic J2 (evaluated at J2=J1 ¼ 0.1) and the second row for ferromagnetic J2
(evaluated at J2=J1 ¼ −0.1).

(a)

(c) (d)

(b)

FIG. 17. The RG flow of the dominant susceptibility (in units of
1=J) inside the paramagnetic regime of the S ¼ 1=2 J1-J2 model
shown for (a) J2=J1 ¼ 0.1, (b) J2=J1 ¼ −0.1 [marked by black
circles in Fig. 16(a)], and (c),(d) their respective spin suscep-
tibility profiles evaluated at the lowest simulated temperature
T=J ¼ 1=100.
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ferromagnetic J2, we see clearly the drifting of the maxima
of susceptibility away from the pinch point and its enhance-
ment at the wave vectors of the Kawamura state. The overall
structure of the paramagnetic scattering profile is seen to
be robust up to high temperatures T=J ∼ 1 [see Fig. 18].
Although the above results and discussions are for the
quantum paramagnet in the S ¼ 1=2 model, the findings

for the S ¼ 1 model differ only quantitatively, and the entire
discussion for S ¼ 1=2 holds true for S ¼ 1, albeit for the
smaller collective paramagnetic regime of the S ¼ 1 model.
We now move on to the discussion of the magnetically

ordered phases in the low-spin regime of the J1-J2 model.
A comparison of the classical and quantum phase diagrams
in Fig. 16 shows that all the classical magnetic orders are
present in the low-spin regime of the model and that no new
magnetic orders are found to be stabilized by quantum
fluctuations, as is found for the Heisenberg model on the
square lattice [164]. Starting our discussion with the k ¼ 0
order, we find that its span is considerably diminished for
the S ¼ 1=2 model [see Table I for phase boundaries],
due to the fact that it gives way to an extended spin liquid
phase around the J2 ¼ 0 point. TheRG flow of the dominant
susceptibility evaluated in the middle of the k ¼ 0 phase
[J2=J1 ≈ 0.36, marked by a black disk in Fig. 16(a)] clearly
shows signature of an instability [see Fig. 21], indicating the
onset of k ¼ 0 magnetic order with a Néel temperature of
Tc=J ≈ 0.39ð2Þ which is given by the position of the
instability, marked by an arrow in Fig. 21. The spin
susceptibility profile evaluated for J2=J1 ¼ 0.36 at the
instability point is shown in Fig. 19(b), wherein one
observes the dominant IBP at the high-symmetry X points
[Fig. 19(a)], i.e., k ¼ 2πð2; 0; 0Þ (and symmetry-related
points), and the subdominant peaks at the L points
[Fig. 19(a)], i.e., k ¼ 2πð1; 1; 1Þ, and symmetry-related
points, are also seen to be clearly resolved. Although both
thermal and quantum order from fluctuation effects (order
by disorder) are in principle captured in our simulations
[102], we cannot make a statement about the collinearity of
the ground state, as the PFFRG in its current formulation
does not allow for lattice symmetry breaking; i.e., all
symmetry-related IBPs have the same height. As discussed
in Sec. IVA, classically, the collinear k ¼ 0 state is selected

(a)

(c) (d)

(e) (f)

(g) (h)

(b)

FIG. 19. Representative reciprocal-space-resolved magnetic
susceptibility profiles (in units of 1=J) for different magnetic
orders evaluated at the data points marked by black dots in the
S ¼ 1=2 quantum phase diagram in Fig. 16(a). Also shown, the
Brillouin zone, a “truncated octahedron,”with the high-symmetry
points labeled.
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FIG. 20. For the S ¼ 1=2 J1-J2 model, the susceptibility
plotted along the ½hh4π� cut (white line in Fig. 18) evaluated
at T=J ¼ 1=100 for different J2.
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by thermal fluctuations [40], and quantum fluctuations are
likely to select the same state [7].
The k ¼ 0 state undergoes a phase transition at J2=J1 ¼

1=2 to an incommensurate planar spiral magnetic order.
The RG flow of the dominant susceptibility evaluated deep
inside the spiral ordered phase [J2 ¼ 1, marked by a black
disk in Fig. 16(a)] features an instability at Tc=J2 ≈ 0.73ð3Þ
[marked by an arrow in Fig. 21] pointing to the onset of
magnetic order at this temperature. The corresponding spin
susceptibility profile evaluated at the instability point is
shown in Fig. 19(c). We find that the effect of quantum
fluctuations on the planar spiral order is twofold: (i) it leads
to a shift of the spiral wave vector compared to its classical
value [165] and (ii) is found to increase the region of
stability of the planar spiral beyond its classical domain.
First, concerning the shift in the spiral wave vector, we
show in Fig. 22 its evolution across its domain of existence
for the classical and the quantum models. The wave vector
is found to decrease monotonically as one traverses the
spiral domain starting from its boundary with the k ¼ 0 to
the DT magnetic order. Meanwhile, the shift jδkj≡ jkquj −
jkclj from the classical kcl wave vector to the quantum kqu

wave vector changes nonmonotonically across the domain
of the planar spiral ordered phase [see the inset in Fig. 22].
For the most part of the spiral ordered regime, we find
that quantum fluctuations increase the wave-vector value,
leading to more antiferromagnetic types of order. The shift
δk achieves a maximal value of approximately 4% of the
classical value near the boundary to the k ¼ 0 order.
Second, concerning the increase in the region of stability
of the planar spiral order, we find that there is a strong
renormalization of the phase boundary of the planar spiral
with the DT order, which gets shifted from its classical
value of J2=J1 ≈ −0.68 to J2=J1 ≈ −0.537ð6Þ for the
S ¼ 1=2 model [see Fig. 16(a) and Table I], implying a

significant enhancement of the domain of existence of the
planar spiral order.
At J2=J1 ¼ −0.537ð6Þ, the planar spiral gives way to the

DT magnetic order, whose RG flow evaluated at J2=J1 ≈
−0.43 [marked by a black disk in Fig. 16(a)] and tracked at
the dominant wave vector becomes unstable at Tc=J ≈
0.39ð2Þ [marked by an arrow in Fig. 21]. The correspond-
ing spin susceptibility profile is shown in Fig. 19(d),
wherein, besides the dominant one, the subdominant peaks
are also clearly resolved. We find that the DT phase in the
S ¼ 1=2 model occupies a similar extent in parameter
space as in the classical model, albeit with displaced phase
boundaries. As the ratio J2=J1 is lowered, we find that at
J2=J1 ¼ −0.347ð2Þ the susceptibility at the ordering wave
vectors of the MMS phase becomes stronger compared to
that at the DTordering wave vectors, and the MMS order is
stabilized. However, the extent of the MMS phase in the
S ¼ 1=2 model is reduced to approximately one-third of its
classical extent and thus now occupies only a tiny sliver in
parameter space. Just as in the classical model, the IBPs of
the quantum model are still located at incommensurate
wave vectors, which are, however, shifted compared to
those of the classical model. In Fig. 21, we show the RG
flow evaluated at the optimal quantum wave vectors for
J2=J1 ≈ −0.335 [marked by a black disk in Fig. 16(a)],
which reveals the onset of magnetic order at a Néel
temperature of Tc=J ¼ 0.39ð2Þ. The associated spin sus-
ceptibility profile is shown in Fig. 19(e). At J2=J1 ¼
−0.326ð2Þ, the MMS phase ends and the susceptibility
at the CS order wave vectors becomes dominant. The CS
phase for S ¼ 1=2 has an appreciable extent in parameter
space comparable to the classical model but with shifted
phase boundaries. The spin susceptibility profile evaluated
for J2=J1 ¼ −0.24 [see Fig. 19(f)] shows that the dominant
IBP is located along the line joining the origin and the high-

FIG. 21. RG flows of the spin susceptibility for S ¼ 1=2 at the
ordering wave vectors of the seven magnetically ordered phases
evaluated at the data points marked by black disks in Fig. 16(a).
The points at which the solid lines become dashed (marked by
arrows) indicate an instability in the flow, indicating an onset of
magnetic order.

FIG. 22. The behavior of the classical jkclj and quantum jkquj
ordering wave vectors as a function of θ ¼ arctanðJ2=J1Þ. Inset:
Deviation jδkj ¼ jkquj − jkclj of the ordering wave vector k from
its classical value as a function of θ.
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symmetry L point and that the peak undergoes substantial
smearing due to quantum fluctuations. The instability
feature at Tc=J ¼ 0.39ð2Þ in the RG flow [Fig. 21] appears
feeble, possibly hinting at the “weakness” of the CS
magnetic order. It is of interest to note that the analogous
cuboctohedral kagome orders [162,163] found in
Heisenberg models with long-range interactions also dis-
play an extremely feeble signal of an instability in their RG
flow [89,90].
Finally, as we lower J2=J1 further, the ferromagnetic J1

coupling becomes dominant enough to drive the system into
a ferromagnetic ordered state which onsets at J2=J1 ¼
−0.153ð5Þ. On comparison with the classical transition
boundary at J2=J1 ≈ −0.171, we see that the antiferromag-
netic CS order intrudes into a portion of the phase diagram
occupied by the ferromagnetic order at the classical level, as
expected from general considerations [93,166]. For the
J1¼−1-only model [marked by a black disk in Fig. 16(a)],
we show the RG flow of the k ¼ ð0; 0; 0Þ susceptibility in
Fig. 21, wherein we observe a strong signal of an instability.
We obtain an estimate of the critical (Curie) temperature
Tc=jJ1j ¼ 0.77ð4Þ, which is equal within two error bars to
the quantum Monte Carlo value of T=jJ1j ¼ 0.718 [167]
[see Table II for a comparison with other methods]. In
Table II, we also provide for a comparison the Curie
temperatures of the simple cubic lattice which has the same
coordination number z ¼ 6 as the pyrochlore lattice but is
bipartite. It is of interest to observe that, for both the S ¼ 1=2
and classical (S → ∞) models, the Curie temperature of the
pyrochlore lattice is lower compared to the simple cubic
lattice, a fact which can be attributed to finite temperature
frustration effects [167–171]. The spin susceptibility profile
[see Fig. 19(g)] also reveals the presence of subdominant
IBPs at theL point besides the dominant peak at the Γ point.
As expected, the ferromagnetic phase occupies an entire
quadrant of the phase diagram spanning from the limit
J1 ¼ −1 till J2 ¼ −1 and gets destabilized only when a
significant antiferromagnetic J1 coupling is added to the
J2 ¼ −1 ferromagnetic model. Our PFFRG calculations

identify the value of J2=J1 ¼ −1.252ð5Þ when the ferro-
magnetic order gives way to the antiferromagnetic
Kawamura state, whereas classically the transition occurs
at J2=J1 ≅ −1.09. Herein, similar to the CS state, we
observe that quantum fluctuations extend the region of
stability of the antiferromagnetic Kawamura order at the
cost of the ferromagnetic state [93,166]. The optimal wave
vectors of the Kawamura state evolve within the region it
occupies in the phase diagram; however, their value remains
close to 2πð5=4; 5=4; 0Þ. In Fig. 21, we show the RG flow of
the susceptibility evaluated at the optimal wave vectors for
J2=J1 ¼ −0.634ð4Þ [marked by a black disk in Fig. 16(a)].
The signature of an instability is not very pronounced and
appears to be located around Tc=J ¼ 0.54ð2Þ. The corre-
sponding spin susceptibility profile is shown in Fig. 19(h),
wherein one observes that quantum fluctuations cause a
significant diffusing of the spectral weight for both the
dominant and subdominant IBPs [99].
The quantum phase diagram for the S ¼ 1 model [see

Fig. 16(b)] appears qualitatively similar to the one for
S ¼ 1=2, with the only differences being quantitative ones,
such as the location of the phase boundaries, value of
optimal wave vectors, etc. As we gradually increase the
value of the spin S, we see that the quantum phase diagram
starts going over into the classical one, as is already
manifestly apparent for S ¼ 3=2 [see Fig. 16(c)].

V. SUMMARY

In this paper, we employed the PFFRG method to
investigate the long-standing problem of the effects of
quantum fluctuations on the pyrochlore lattice for generic
spin S in a Heisenberg model with nearest-neighbor J1 and
second-nearest-neighbor J2 couplings. For the spin S ¼
1=2 nearest-neighbor Heisenberg antiferromagnetic model
with spatially isotropic couplings, we find a quantum
paramagnetic ground state [Sec. III B 1]. The paramagnet
appears robust against potential instabilities towards the
formation of either a valence-bond crystal [Fig. 9(a)] or
spin-nematic order [Fig. 10], thus providing evidence in

TABLE II. The ordering (Curie) temperatures for the S ¼ 1=2 nearest-neighbor quantum Heisenberg ferromagnet (in units of Tc=jJ1j)
(columns 2 and 3) and its corresponding classical (S → ∞) model (in units of Tc=½jJ1jSðSþ 1Þ�) (columns 5 and 6) on the pyrochlore
and simple cubic lattices as obtained by PFFRG and compared with estimates obtained from quantum Monte Carlo (QMC), classical
Monte Carlo (CMC), high-temperature expansion (HTE), rotation-invariant Green’s function method (RGM), and random-phase-
approximation (RPA). The fact that Tpyro

c =TSC
c < 1 can be attributed to finite-temperature frustration effects [167]. We also quote the

result in the mean-field approximation (MFA), which is insensitive to the difference between the pyrochlore and simple-cubic lattice,
since it depends only on the coordination number.

Method Pyrochlore Simple cubic Tpyro
c =TSC

c Pyrochlore Simple cubic Tpyro
c =TSC

c

PFFRG 0.77(4) 0.90(4) 0.86
QMC=CMC 0.7182(3) [167] 0.839(1) [172,173] 0.86 1.31695(2) [174] 1.443 [175,176] 0.91
HTE (Padé) 0.724–0.754 [167] 0.827 [168] 0.88 1.316–1.396 [167] 1.438 [168] 0.92
RGM 0.778 [167] 0.926 [167] 0.84 1.172 [167] 1.330 [167] 0.88
RPA 0.872 [177] 0.989 [178] 0.88
MFA [179] 3=2 3=2 1 2 2 1
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support of a quantum-spin-liquid ground state. The recip-
rocal space susceptibility plotted in the ½hhl� plane displays
the characteristic bow-tie pattern [Fig. 5(d)]. However, the
dynamic violation of the zero magnetization per tetrahedron
constraint due to quantum fluctuations manifests itself as
(i) a regularization or softening of the pinch-point amplitude
which loses its singular character and (ii) the generation of a
finite-correlation length ξ which endows the pinch points
with a finite width ∼1=ξ [Fig. 7]. The fact that the bow-tie
structure of susceptibility appears intact indicates that the
low-temperature phase of the S ¼ 1=2 nearest-neighbor
Heisenberg antiferromagnet respects the ice rules to a good
degree of accuracy. An increase in temperature is seen to be
associated with an overall decrease in the scattering inten-
sity, while the bow-tie pattern appears to be remarkably
robust up till T ∼ J1 [Figs. 6 and 8], suggesting that the ice
rules govern the physics over a surprisingly large temper-
ature range.We find that, within a significant segment of this
temperature range up till T ∼ J1, the width of the bow tie as
measured by its full width at half maximum increases
(approximately) linearly [Fig. 8].
For the spin S ¼ 1 nearest-neighbor Heisenberg antifer-

romagnet with spatially isotropic couplings [Sec. III C 1],
we find that, strikingly, the ground state remains mag-
netically disordered [Fig. 13(a)] with no instability
towards dimerizing into a valence-bond-crystal structure
[Fig. 9(b)], pointing to the realization of a rare scenario of
a S ¼ 1 quantum spin liquid in three dimensions. The
formation of the bow-tie pattern of scattering now features
relatively sharper pinch points, as seen by a decrease in
their full width at half maximum compared to S ¼ 1=2
[Fig. 7]. This decrease is as expected, since with increas-
ing spin, quantum fluctuations decrease in strength, and
the ice rules are better fulfilled. We find that the bow-tie
structure remains robust up till T ∼ J1, similar to what is
observed for S ¼ 1=2.
In the presence of breathing anisotropy (of arbitrary

strength) in the nearest-neighbor Heisenberg antiferromag-
net, we find that, for both S ¼ 1=2 [Sec. III B 2] and S ¼ 1
[Sec. III C 2], the quantum paramagnetic nature of the
ground state remains intact [Fig. 11]. The reciprocal space
spin susceptibility profile is still characterized by bow ties
and the associated “rounded” pinch points, whose width is
found to remain essentially unchanged from the isotropic
point down to the strongly anisotropic limit [Fig. 12]. Our
results thus point to the presence of an enlarged region in
parameter space over which the low-temperature physics is
approximately governed by the ice rules.
For the nearest-neighbor isotropic Heisenberg antiferro-

magneticmodelwith spin S > 1 [Sec. III D], we find that for
S ¼ 3=2 and beyond long-range dipolar magnetic order
finally sets in [see Figs. 13 and 25]. We mention that, for the
finite S values studied in our manuscript, the correct balance
between leading 1=S terms and subleading contributions is
already incorporated in the PFFRG [see Sec. II A].However,

with increasing S, the PFFRG becomes numerically more
challenging (and also more sensitive to errors), because it
becomes progressively difficult to account for the proper
interplay between (large) leading 1=S and (much smaller but
still important) subleading terms in our numerical algorithm.
For this reason,we applied the PFFRGonly tomoderate spin
magnitudes smaller than eight and use plain RPA in the
infinite S limit [see Appendix A]. Therefore, we are unable
to unambiguously address the question of the nature of the
ground state (presence or absence of long-range magnetic
order) in the large-S nearest-neighbor quantum Heisenberg
antiferromagnet.
Upon inclusion of a J2 coupling [Sec. IV], the complete

parameter space of the J1-J2 Heisenberg model is shown to
host seven different kinds of magnetic orders in the classical
model [Fig. 15]. We have reported some corrections and/or
amendments to previously known results [56] concerning the
nature of themagnetic orders and the classical phase diagram
[Table I]. For low values of spin, i.e., S ¼ 1=2 and S ¼ 1,
quantum fluctuations are shown to stabilize an extended
domain of quantum-spin-liquid behavior centered around
the point J1 > 0 and J2 ¼ 0, i.e., the nearest-neighbor
Heisenberg antiferromagnet [Fig. 16]. For S ¼ 1=2, the
quantum spin liquid ranges from −0.25ð3Þ ≤ J2=J1 ≤
0.22ð3Þ, while for S ¼ 1, its span is reduced by half to
−0.11ð2Þ ≤ J2=J1 ≤ 0.09ð2Þ but remains nonetheless
appreciable. The introduction of even a small J2 coupling
is seen to substantially modify the reciprocal space scattering
profile at low temperatures such that the bow-tie structure
becomes quickly obliviated accompanied by an enhancement
(decrement) for antiferromagnetic (ferromagnetic) J2 in the
spectral weight at thewave vector (k ¼ ð0; 0; 4πÞ) where the
pinch-point did exist [Fig. 18]. Indeed, we find that for
antiferromagnetic J2 > 0 there is an enhancement of the
pinch-point scattering amplitude as found in the correspond-
ingclassicalmodel [71] [Fig. 18 (first row) andFig. 20],while
for ferromagnetic J2 the scattering intensity at the pinch
points is strongly suppressed and instead redistributes to form
a hexagonal cluster pattern of scattering [Fig. 18 (second row)
and Fig. 20] [71]. Interestingly, we do not observe the
stabilization of a paramagnetic phase by frustrating the
nearest-neighbor Heisenberg ferromagnet, i.e., in the regime
J1 < 0 (FM) and J2 > 0 (AFM). The phase boundaries
betweenmagnetically ordered phases get significantly modi-
fied compared to the classical model [Fig. 16], and the wave
vectors of spiral orders get shifted by quantum fluctuations
[Fig. 22]. Finally,weprovide theNéel andCurie temperatures
for different magnetically ordered phases, and for the S ¼
1=2 nearest-neighbor Heisenberg ferromagnet we bench-
mark our PFFRG results with available numerically exact
quantum Monte Carlo and other methods [Table II].

VI. OUTLOOK AND FUTURE DIRECTIONS

Our analysis of quantum effects on the pyrochlore lattice
lays new avenues towards further exploration in search of
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novel quantum phases in a more generic symmetry-allowed
Hamiltonian [152,153,180–183] relevant for a large class
of materials. Indeed, it has been shown at the classical
level that anisotropic nearest-neighbor spin interactions can
stabilize novel phases such as spin liquids and spin
nematics and a plethora of intricate magnetic orders
[106,149,152,182,184,185]. The simplest extension to an
XXZ model has been argued to serve as a minimal model of
quantum spin ice [181] and has recently been shown to host
spin nematic order and a variety of spin-liquid phases, albeit
considered only at the classical level [106,185]. Surprisingly,
little is known about the role of quantum fluctuations beyond
a perturbative treatment [152,153,157,186–191]. In particu-
lar, the nature of the competing ordered or disordered
quantum phases in the low spin-S regime of the XXZ model
remain open questions, and it will be interesting to investigate
if, and to what extent, the quantum-spin-liquid phase of the
isotropic model [31] found in this work remains stable in the
presence of XXZ anisotropy.
Our identification of extended regimes of quantum spin

liquid and, in general, quantum paramagnetic behavior in
the S ¼ 1=2 and S ¼ 1 models in the presence of breathing
anisotropy or J2 coupling sets the stage for future theo-
retical and numerical studies aimed at identifying the
precise nature of the quantum-spin-liquid phase, e.g.,
gapped or gapless spin liquid, and its associated gauge
structure, SU(2), U(1), Z2, etc. One promising approach
would be to carry out a fermionic projective symmetry
group (PSG) classification [192–194] of the mean-field
spin-liquid states on the pyrochlore lattice for both sym-
metric [30] and chiral spin liquids [195] similar to what has
been accomplished on other lattices [196–199]. The
ground-state energies of the corresponding projected varia-
tional wave functions could then be calculated from
variational Monte Carlo methods [200,201], enabling
one to identify the most competitive variational ground
state, which could then be improved by a subsequent
application of Lanczos steps to obtain an estimate of the
true ground-state energy [64,66,92,202,203]. Recently, the
PFFRG method has been successfully combined with a
self-consistent Fock-like mean-field scheme to calculate
low-energy effective theories for emergent spinon excita-
tions in spin-1=2 quantum spin liquids [204]. In this
approach, the two particle vertices, i.e., the effective spin
interactions from PFFRG, are taken as an input for the Fock
equation yielding a self-consistent scheme to determine
spinon band structures beyond mean field. The precise
forms of such free spinon ansätze are dictated by a PSG
classification of quantum spin liquids [192], allowing for a
systematic investigation of kinetic spinon properties. It
would be of interest and importance to apply this scheme to
the pyrochlore Heisenberg antiferromagnet and compare
the findings with those of variational Monte Carlo calcu-
lations. To address the issue of the nature of the elementary
excitations and, in particular, to reveal the possible

presence of a spinon continuum which is a manifestation
of fractionalization and a hallmark of a quantum-spin-
liquid phase, one needs a knowledge of the dynamical
structure factor Sðq;ωÞ. The PFFRG framework can also be
formulated directly in the real frequency domain employing
the Keldysh formalism, which would allow one to obtain
the complete Sðq;ωÞ. We leave the treatment of the
Keldysh formalism and its application to the pyrochlore
Heisenberg antiferromagnet as an important and exciting
future endeavor.
From a materials perspective, a fascinating class of

transition-metal-based fluorideswith the pyrochlore structure
have recently come into the limelight. This family of
materials is at the boundary between quantum spin liquid,
magnetic order, and magnetic freezing (or glassy regime).
Their importance stems from the availability of large high-
quality single crystals. Prominent candidate spin-liquid
examples include the S ¼ 1 NaCaNi2F7 [205], which may
be a first realization of a S ¼ 1 quantum spin liquid in three
dimensions [206], and the related higher-spin fluoride com-
pounds featuring a high frustration index (f ¼ ΘCW=Tc),
such asNaCaCo2F7 [207–209],NaCaFe2F7, NaSrFe2F7, and
NaSrMn2F7 [210], which, nonetheless, either show signs of
long-range magnetic order at low temperatures or undergo
spin freezing [211]. With the PFFRG formalism in place, it
would be useful in such a material context to extend the
mapping of the quantum phase diagram in the presence of
longer-ranged Heisenberg couplings which will most likely
give rise to additional novel phases compared to the seven
phases of the classical J1-J2 Heisenberg model, as, for
instance, shown in Ref. [57] for classical spins. It would
seem likely thatmost of the above-mentionedmaterials could
be placed to a good degree of approximation in the extended
phase diagram so determined.
Given that frustrated quantum spin systems are challeng-

ing to dealwith theoretically and, in three dimensions, pose a
formidable barrier to most quantum many-body numerical
methods, PFFRG is one of the very few methods that can be
used to shed light on the physics at play in these systems,
with the field now poised to benefit from the arrival of more
materials. It is in this broader context that we investigated
and presented in this paper the rich example of the J1-J2
Heisenberg model on the pyrochlore lattice.
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APPENDIX A: DIAGRAMMATIC
INVESTIGATION OF THE NEAREST-NEIGHBOR

PYROCHLORE HEISENBERG MODEL
IN THE LARGE-S LIMIT

In this Appendix, we present further details about how
the susceptibility of the nearest-neighbor pyrochlore
Heisenberg model in the infinite-S limit as depicted in
Fig. 4 is computed. Particularly, we explain why the simple
RPA-type summation which we use to obtain these results
reproduces the correct pinch-point singularity but also
results in a spurious divergence of the susceptibility at a
finite temperature T which is not expected from the exact
(numerical) solution [3,8]. We further present analytical
arguments why the summation of further diagram classes
can cure this artifact by regularizing the divergence.
We begin by reviewing the PFFRG scheme in the large-S

limit and explain that, to leading order when S → ∞, the
PFFRG becomes identical to a simple RPA-type approxi-
mation (for further details, see Ref. [74]). As briefly
mentioned in Sec. II A 1, the generalization of the
PFFRG for arbitrary spin S amounts to introducing fermion
flavors fi↑κ, fi↓κ with κ ¼ f1;…; 2Sg on each lattice site i
which add up to a total spin S. Furthermore, to avoid
diverging energy scales in the large-S limit, it is convenient
to renormalize all interactions via Jij → Jij=ð2SÞ. As a
consequence of the additional flavor index κ, the Feynman
diagrams acquire an extra factor of 2S for each closed
fermion loop. Hence, when formulating the PFFRG equa-
tions for arbitrary S, the second term on the right-hand side
in Fig. 2(b) (the so-called RPA channel) acquires a
prefactor of 2S, indicating that, among all interaction
channels in Fig. 2(b), this term is singled out at large S.
The flow equation for the two-particle vertex at S → ∞,
where only the RPA term contributes on the right-hand
side, can be readily solved [74] and leads to the RPA-type
diagram series shown in Fig. 23(a). These two-particle

vertex diagrams are precisely the ones, and no others, of
leading order in 1=S. This result is evident from the fact
that, for a given number of interaction lines, they each
maximize the number of loops. Specifically, each term of
the series has n bare interaction lines and n − 1 fermion
loops, resulting in an overall order of 1=S.
Having established that, to leading order in 1=S, the

PFFRG generically reduces to an RPA-type approximation,
we now study the structure of this approximation in the
context of the nearest-neighbor pyrochlore Heisenberg
model. In the following, we are interested only in the
static frequency components (ω ¼ 0) of the two-particle
vertex ΓΛð10; 20; 1; 2Þ. We thus omit the arguments 10; 20;…
and write ΓΛð10; 20; 1; 2Þ → ΓΛ

ij with the site indices i, j as
subscripts. Furthermore, the propagators considered are
the bare (i.e., without self-energy corrections) and Λ-
regularized ones from Eq. (6). The RPA diagram series
may be expressed in a self-consistent form [second line of
Fig. 23(a)], leading to

ΓΛ
ij ¼ −

Jij
2S

−
X
l

Jil
2S

ΠΛΓΛ
lj: ðA1Þ

Here, ΠΛ is the ω ¼ 0 component of the bare fermion loop
and is given byΠΛ ¼ S=ðπΛÞ. The solution of Eq. (A1) can
be obtained via a Fourier transform, giving

Γ̃ΛðkÞ ¼ −½ΠΛ1þ 2SJ̃−1ðkÞ�−1; ðA2Þ

(a)

(b)

(c)

FIG. 23. RPA-type approximations for the two-particle vertex
in the large-S limit. Dashed lines are the bare interactions Jij, and
lines with an arrow are the bare and Λ-regularized pseudofermion
propagators from Eq. (6). Gray boxes denote the two-particle
vertex in different approximations. (a) Plain RPA scheme sum-
ming up diagrammatic terms of the order of 1=S. (b) An example
of a contribution to the two-particle vertex of the order of ð1=SÞ2.
(c) Improved RPA scheme, RPA0, regularizing the divergence of
the two-particle vertex occurring in plain RPA. See the text for
details.

QUANTUM AND CLASSICAL PHASES OF THE … PHYS. REV. X 9, 011005 (2019)

011005-25



where J̃ðkÞ is the interaction matrix in sublattice space as
given by Eq. (19). Γ̃ΛðkÞ is also analogously defined in
sublattice space, and 1 denotes the identitymatrix in the same
space. To better understand the physical implications of
Eq. (A2), we diagonalize J̃ðkÞ via M†ðkÞJ̃ðkÞMðkÞ ¼
J̃dðkÞ, where MðkÞ is a unitary matrix and J̃dðkÞ is a
diagonal matrix whose elements are the eigenvalues of J̃ðkÞ.
It follows that

Γ̃ΛðkÞ ¼ −MðkÞ½ΠΛ1þ 2SJ̃−1d ðkÞ�−1M†ðkÞ: ðA3Þ

For the nearest-neighbor pyrochlore Heisenberg antiferro-
magnetic model, the lowest bands of J̃dðkÞ take the form of
two degenerate flat modes with an energy−2J1 [2,113]. As a
result of these flat modes, the matrix ΠΛ1þ 2SJ̃−1d ðkÞ in
Eq. (A3) becomes singular at Λ ¼ J1=π for all wave vectors
k, which leads to a diverging susceptibility at the correspond-
ing (finite) temperature T ¼ ð2π=3ÞSðSþ 1ÞΛ. However, as
explained further below, this divergence is a methodological
artifact of the plain RPA treatment within which only the
leading 1=S diagrammatic contributions are considered.
The flat modes in J̃dðkÞ are also responsible for the

pinch-point singularities in the susceptibility [140]. To see
this, we first note that (up to irrelevant overall factors from
fusing external fermion lines) the susceptibility χΛðkÞ of
Eqs. (10) and (11), rewritten in sublattice coordinates, is
related to the two-particle vertex Γ̃ΛðkÞ via

χΛðkÞ ∼
X
αβ

eikðξα−ξβÞΓ̃Λ
αβðkÞ: ðA4Þ

Here, α, β are sublattice indices and ξα denote the sublattice
displacements, i.e., site coordinates ri, unit cell coordinates
Ri, and displacements ξα fulfilling ri ¼ Ri þ ξα. Since the
lowest (flat) modes give the dominant contribution to the
susceptibility and also describe the physics of pinch points
we are interested in, we may approximate Eq. (A3) by
neglecting higher-energy bands in J̃dðkÞ. Using Eqs. (A3)
and (A4), one then obtains

χΛðkÞ ∼
P

αβ

P
γ¼fm eikðξα−ξβÞMαγðkÞM†

γβðkÞ
S
πΛ −

S
J1

; ðA5Þ

where γ ¼ fm only sums over the flat modes (fm). The
numerator in this expression (which is used to plot the inset
in Fig. 4) contains the pinch-point pattern, while the
denominator produces the aforementioned singularity at
finite Λ. This analysis shows that in plain RPA, as obtained
from PFFRG in leading order in 1=S, the pinch points are
correctly reproduced. However, their manifestation within
this plain RPA scheme is implicitly tied with a divergence
of the k-dependent susceptibility for all k that define the
flat modes. Thus, the physically correct paramagnetic
(broadened) pinch points observed in plain RPA exist only

above the instability, and so their discussion in plain RPA is
bounded from below by the instability at Λ ¼ J1=π.
We now investigate how Eq. (A5) is modified when

adding diagrams of order higher than 1=S. Within PFFRG,
such higher orders are generally described by the other
interaction channels on the right-hand side in Fig. 2(b), i.e.,
those corrections to RPA which do not contain a fermion
loop. In contrast to the leading order in 1=S discussed above,
where all diagrammatic contributions to the two-particle
vertex are exactly included in the PFFRG, higher orders are
treated only approximately. A thorough analytical discus-
sion of all subleading diagrams implicitly included within
the PFFRG computational scheme is, admittedly, very
challenging, because, already to the order of ð1=SÞ2, they
may not be represented by a simple series of diagrams such
as the one shown in Fig. 23(a). Furthermore, from a more
technical perspective, it is a rather involved task to apply the
PFFRG at large but finite S and systematically explore the
effects of different diagrammatic orders in 1=S. This hurdle
arises because of numerical difficulties in capturing the
subtle competition between large leading 1=S and much
smaller, but still important and possibly singular subleading
terms, when the frequency dependence of the vertex
functions is approximated by a finite grid (which is a
computational necessity within PFFRG).
To still be able to investigate general properties of higher

diagrammatic orders in 1=S, we, therefore, use a different
strategy. We take as a starting point the S → ∞ limit (as
described above) and then incorporate “by hand” sublead-
ing diagrams to study their effects on the spurious diver-
gence encountered in a plain RPA treatment. Subleading
diagrams of the order of ð1=SÞ2 are obtained by feeding
back the RPA two-particle vertex into a fermion loop of the
RPA series as shown in Fig. 23(b). In the following, we
discuss a generalization of such terms (dubbed RPA0)
where (i) the feedback of the RPA takes place in every
fermion loop and (ii) the insertion is performed self-
consistently as shown in Fig. 23(c). The resummation of
such diagram classes also involves contributions from
orders higher than ð1=SÞ2. This type of approximation
first amounts to replacing the bare fermion loop ΠΛ by
ΠΛ þ Π0Λ, where Π0Λ is the loop diagram with the RPA
series reinserted as depicted in Fig. 23(c). Using the fact
that only the local two-particle vertex ΓΛ

ii contributes to this
diagram, one finds

Π0Λ ¼ S
4πΛ2

ΓΛ
ii ¼

S
4πΛ2

1

ð2πÞ3
Z
BZ

d3kΓ̃Λ
11ðkÞ: ðA6Þ

Without the loss of generality, we choose the “11”-
sublattice component of the two-particle vertex, since all
sublattices are equivalent in the paramagnetic regime.
Also note that, in order for the calculation to be analytically
tractable, we perform a static approximation where
the two-particle vertex is assumed to be ω independent.
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The self-consistency for Π0Λ is closed using Eq. (A3) and
replacing ΠΛ → ΠΛ þ Π0Λ, giving

Γ̃Λ
11ðkÞ ¼ f−MðkÞ½ΠΛ1þ Π0Λ1þ 2SJ−1d ðkÞ�−1M†ðkÞg11:

ðA7Þ
Here again, we consider only the contribution from the
flat modes in JdðkÞ and neglect higher-energy bands.
Furthermore, we write the momentum integral (which is
a positive dimensionless number) as

x≡ 1

ð2πÞ3
Z
BZ

d3k
X
γ¼fm

M1γðkÞM†
γ1ðkÞ ðA8Þ

and again use ΠΛ ¼ S=ðπΛÞ, leading to

Π0Λ ¼ −
Sx

4πΛ2

1
S
πΛ þ Π0Λ − S

J1

: ðA9Þ

This is a quadratic equation for Π0Λ which can be solved to
yield the susceptibility

χΛðkÞ ∼
P

αβ

P
γ¼fm eikðξα−ξβÞMαγðkÞM†

γβðkÞ
S
πΛ þ Π0Λ − S

J1

; ðA10Þ

where, when compared to Eq. (A5), an additional con-
tribution from Π0Λ appears in the denominator. From the
two solutions for Π0Λ following from Eq. (A9), the correct
one is identified by the condition that the leading order at
large S must be a contribution ∼1=S as is the case for the
bare RPA. One then obtains

χΛðkÞ ∼
X
αβ

X
γ¼fm

e−ikðξα−ξβÞMαγðkÞM†
γβðkÞ

×
2Λ
x

��
πΛ
J1

− 1

�
− sgn

�
πΛ
J1

− 1

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
πΛ
J1

− 1

�
2

−
πx
S

s �
: ðA11Þ

Most importantly, this expression no longer has a diver-
gence in Λ while the pinch-point pattern given by the k-
dependent term [first line of Eq. (A11) and numerator of
Eq. (A5) which generate the pinch points] persists. The
Λ-dependent second and third line of Eq. (A11) is plotted in
Fig. 24 for S ¼ 1000 and S ¼ 10000. It can be seen that the
diverging susceptibility of the RPA scheme is regularized
by the higher-order terms such that χΛðkÞ becomes
bounded in the vicinity of the singularity. Yet, certain
artifacts still remain in the RPA0 scheme such as a steplike
behavior of the susceptibility and a finite interval where
χΛðkÞ becomes imaginary (the size of this interval shrinks
with increasing S). We expect that such spurious behavior
would become further regularized upon including more
diagrammatic contributions.

In summary, even though this analysis is based on an
approximate resummation of a certain class of diagrams, it
demonstrates that higher-order terms have a significant effect
even in the large-S limit and may counteract the diverging
susceptibility observed in the bareRPAcalculation leading to
Eq. (A5). This calculation also shows that—even though
counterintuitive at first sight—leading 1=S diagrams are not
sufficient to treat the classical limitS → ∞ exactly. Onemay,
therefore, conclude that, while the spatial structure of the spin
correlations at large S is already correctly described by plain
RPA, thermal fluctuations are much more intricate in
pseudofermionic formulation. This conclusionmay possibly
indicate that pseudofermions are not ideally suited to
describe the thermodynamics of spin systems in the classical
large-S limit. We also emphasize, however, that such
methodological subtleties do not affect the PFFRG at finite
(but not too large) S, where the correct balance between
classical magnetic phenomena and quantum fluctuations is
captured by the interplay between leading 1=S and leading
1=N diagrammatic contributions [where N generalizes the
spin symmetry group from SU(2) to SUðNÞ; see Sec. II A 1
for details].

APPENDIX B: DETECTING A MAGNETIC
INSTABILITY IN THE RG FLOW

Here, we present the details of the numerical procedure
[98] used to detect the onset of long-range magnetic order
in the RG flow. The expected divergence of the spin
susceptibility [Eq. (11)] at a critical Λ which would signal
the spontaneous breaking of SU(2) spin-rotation symmetry
towards long-range dipolar magnetic order is, in practice,
regularized due to two numerical approximations in the
PFFRG method: (i) the discretization of the frequencies

FIG. 24. Plot of the Λ flow of ζΛ which, in the case of (i) RPA,
refers to the denominator of Eq. (A5) and, in the case of (ii) RPA0,
refers to the k-independent expression in the second and third line
of Eq. (A11) with J1 ¼ x ¼ 1. Blue and red curves denote spin
S ¼ 1000 and S ¼ 10000, respectively. The divergence in RPA at
Λ ¼ J1=π is regularized in theRPA0 scheme.No data are plotted in
the interval where the susceptibility becomes imaginary.
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in the arguments of the vertex functions and (ii) the finite
spatial extent of the two-particle vertex function. Both these
approximations regularize the divergence to a finite maxi-
mum, or a feeble kinklike feature when the ordered
magnetic moment is small. In addition, the discretization
of the frequencies induces the artifact of oscillations in the
susceptibility flow, especially at small Λ. The distinct
advantage of the method presented here lies in its ability
to detect such kinks even in the presence of pronounced
frequency oscillations and a small ordered magnetic
moment. To illustrate the method, we focus on the
transition with increasing spin S, from the paramagnetic
into the magnetically ordered phase, for the nearest-
neighbor pyrochlore Heisenberg antiferromagnet.
The appearance of a finite maxima or a kinklike feature

in the susceptibility evolution with decreasing Λ is marked
by a change in the slope of the RG flow. However, as the
susceptibility flow is plagued by oscillations due to
frequency discretization, one encounters a difficulty in
defining the slope. As each discrete frequency grid point
produces a small peak or an upturn in the susceptibility
flow, we compute the slope in a manner that averages out
these oscillations. To this effect, one connects two adjacent
peaks via a straight line which represents a tangent of the
susceptibility and approximates χðkÞ between the two
peaks. A kink in the RG flow now manifests as a change
in the slope, i.e., a finite-angle α, between the two
neighboring tangents, as shown in Fig. 25(a), which then
serves as a measure of the size of the kink. We first choose a
fixed Λ interval wherein multiple kinks, potentially repre-
senting magnetic instabilities, appear to be located. We then
consider tangents between different pairs of adjacent peaks
and calculate the average ᾱ of the absolute value of these

angles within a given Λ interval. The angle ᾱ then serves as
a relatively robust quantitative measure of the change in
slope (i.e., the size of the kink) within this Λ interval, a
larger ᾱ implying a more pronounced kink. To locate the
phase transition, we plot ᾱ as a function of the spin S [see
Fig. 25(b)]. For S ¼ 1=2 and S ¼ 1, we observe a small and
constant value of ᾱ ≈ 1.6°, followed by a sudden increase at
S ¼ 3=2 indicating a transition point to magnetic long-
range ordered state.
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