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Structure— We base our calculations on the
Lu2Mo2O5N2 structure as determined by Clark et al. [S1]
using powder neutron diffraction at T = 4 K. Both 48f
and 8b positions of the pyrochlore structure are par-
tially occupied by oxygen and nitrogen [see Fig. S1]. Ri-
etveld refinement yielded O/N occupation numbers of
0.663/0.257 and 0.831/0.169 for the two Wyckoff posi-
tions. While the 8b occupations add to one, the refine-
ment indicates slight O/N deficiency on 48f . It is easily
determined that ideal occupations of 48f providing a 5:2
oxygen to nitrogen ratio would be 0.6948/0.3052. In our
calculations, we neglect the possible O/N deficiency and
adopt these ideal occupations of the 48f position. Fur-
thermore, we model the random O/N occupation of 48f
and 8b sites using the virtual crystal approximation [S2].
This means that we assign nuclear charges of Z = 7.6948
and Z = 7.831 to 48f and 8b, respectively.

Electronic structure— We perform electronic struc-
ture calculations for Lu2Mo2O5N2 using the full poten-
tial local orbital (FPLO) code [S4] using the generalized
gradient approximation (GGA) functional in its Perdew-
Burke-Ernzerhof (PBE) form [S5]. We correct for the
strong correlations on the Mo5+ 4d orbitals using the
GGA+U method [S6]. Fig. S2 shows the electronic
structure for a ferromagnetic solution calculated with
GGA+U . The Hund’s rule coupling is fixed at a value of
JH = 0.6 eV, which is typical for 4d transition metal ions.
The onsite interaction is chosen to be U = 2.5 eV because
the Heisenberg Hamiltonian parameters estimated at this
value yield a Curie-Weiss temperature which is close to
the experimentally observed value ΘCW = −121(1) K.
There are many bands as the primitive cell contains two
formula units of Lu2Mo2O5N2. Per Mo5+ ion, there is
one occupied band of 4d character in the majority chan-

nel (↑), corresponding to a magnetic moment of precisely
S = 1/2. The narrow bands around −2 eV are the oc-
cupied Lu 4f states. The other occupied bands are O/N
2p. At this value of U , Lu2Mo2O5N2 is a semiconductor
with a small gap of Eg = 0.15 eV.

Exchange couplings— Next, we calculate the total
energies for 25 different spin configurations of a 3× 1× 1
supercell of the primitive cell of Lu2Mo2O5N2. An exam-

FIG. S1. Structure of Lu2Mo2O5N2. Note that sites partially
occupied by oxygen and nitrogen are shown by partly red,
partly blue balls.
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U (eV) J1 (K) J2 (K) J3a (K) J3b (K) J5 (K) ΘCW (K)
2 102.4(6) −0.1(5) 23.2(5) −7.8(4) −1.4(2) −168(5)
2.25 88.1(6) 0.5(4) 19.9(4) −6.6(4) −1.1(2) −147(5)
2.5 74.8(5) 0.6(4) 17.2(4) −5.8(3) −0.99(11) −125(4)
2.75 62.0(5) 0.6(3) 15.0(4) −5.2(3) −0.89(10) −104(3)
3 49.8(5) 0.6(4) 13.2(4) −4.8(3) −0.81(11) −84(4)
3.25 37.8(5) 0.6(4) 11.7(4) −4.6(4) −0.74(11) −65(4)
3.5 26.0(6) 0.6(4) 10.4(4) −4.4(4) −0.69(13) −46(4)
3.75 14.2(6) 0.5(5) 9.3(5) −4.5(4) −0.64(14) −26(4)

TABLE S1. Exchange coupling constants for the oxynitride phase Lu2Mo2O5N2 determined from total energies of 25 spin
configurations in a 3×1×1 supercell using an 8×8×8 k-mesh [see Fig. 1 of main paper]. The parameters corresponding to
U = 2.5 eV (marked in bold) are used for the PFFRG simulations. We adopt the convention in which each pair 〈i, j〉
in the summation in the exchange Hamiltonian [Eq. (1)] is counted only once. Accordingly, the formula for the Curie-Weiss
temperature is ΘCW = − 1

3
S(S+1)

∑
n znJn, where the summation extends over all neighbors with which a given spin interacts,

and zn is the coordination number at the nth-nearest-neighbor [S3].

ple for this procedure is illustrated in Fig. S3. We obtain
the estimates for the Heisenberg exchange parameters
listed in Table S1 by fitting the DFT+U total energies
against the classical energies of the Heisenberg Hamilto-
nian. The evolution of exchange couplings with onsite
interaction U is shown in Fig. 2. While the next nearest
neighbor coupling J2 is negligibly small, the two inequiv-
alent third neighbor couplings J3a (connecting two Mo5+

sites with with a nearest neighbor in between) and J3b

(across an empty hexagon in one of the three interpen-
etrating kagome lattices of the pyrochlore structure) are
substantial and of different sign; J3a is antiferromagnetic
like J1, and J3b is ferromagnetic. We do not expect ex-
change couplings at Mo-Mo distances of 8 Å or more
to play a major role. The 3 × 1 × 1 supercell does not
allow us to resolve J4 (dMo−Mo = 8.02 Å) but we can
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FIG. S2. Band structure and density of states of
Lu2Mo2O5N2 calculated with GGA+U functional at U =
2.5 eV and JH = 0.6 eV for the ferromagnetic state.

determine J5 (dMo−Mo = 9.49 Å) and find it to be very
small. We derived the anisotropic exchange couplings in
the framework of a combination of relativistic DFT calcu-
lations with exact diagonalization of a generalized Hub-
bard Hamiltonian on finite clusters, detailed in Ref. [S7].
Note that U in this method does not enter in the same
way as in the GGA+U total energy calculations. We ob-
tain the estimate of |D|/J by scanning U values of up to
3.6 eV and values of the Hund’s rule coupling JH in the
range of 0.6 eV to 0.8 eV.
Pseudofermion FRG— The PFFRG scheme [S8–

S13] is a non-perturbative framework capable of han-
dling arbitrary two-body spin-interactions of both di-
agonal and off-diagonal type [S14, S15], with any given
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FIG. S3. Example for a set of 25 spin configurations of the
considered 3× 1× 1 supercell calculated with GGA+U func-
tional at U = 2.5 eV and JH = 0.6 eV. The quality of the fit
to the Heisenberg model is very good.
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spin [S16]. It is formulated in the SU(2) fermionic repre-
sentation of spins, which amounts to rewriting the physi-
cal spin operator at each site in terms of Abrikosov pseud-
ofermions,

Ŝi =
1

2

∑
α,β

f̂†i,ασσσαβ f̂i,β , (S1)

where α, β =↑ or ↓, and f̂†i,α (f̂i,α) are the pseudofermion
creation (annihilation) operators, and σσσ is the vector of
Pauli matrices. The fermionic representation is endowed
with an enlarged Hilbert space which includes the un-
physical empty and doubly-occupied sites carrying zero-
spin, and must be projected out to restore the original
Hilbert space of the Heisenberg model which has one-
fermion-per-site. One way to achieve this is to add on-
site level repulsion terms −A

∑
i S

2
i to the Hamiltonian,

where A is a positive constant [S16]. Such terms lower
the energy of the physical states but do not effect the
unphysical ones. As a consequence, at sufficiently large
A the low energy degrees of freedom of H are entirely
within the physical sector of the Hilbert space. For a
wide class of spin systems (including the models consid-
ered here) one finds that even for A = 0, the ground state
of the fermionic Hamiltonian obeys the one-fermion-per-
site constraint [S16]. This is because unphysical occupa-
tions effectively act like a vacancy in the spin lattice, and
are associated with a finite excitation energy of the order
of the exchange couplings. As a consequence, the ground
state of the fermionic system is identical to the ground
state of the original spin model where each site is singly
occupied.

Within PFFRG, a step-like infrared frequency cutoff
Λ along the Matsubara frequency axis is introduced in
the bare fermion propagator G0(iω) = 1

iω , i.e., G0(iω) is
replaced by

GΛ
0 (iω) =

Θ(|ω| − Λ)

iω
. (S2)

Implanting this modification into the generating func-
tional of the one-particle irreducible vertex function and
taking the derivative with respect to Λ yields an exact
but infinite hierarchy of coupled flow equations for the
m-particle vertex functions [S17], which constitutes the
FRG ansatz. The first two equations for the self energy
ΣΛ and the two-particle vertex ΓΛ have the forms

d

dΛ
ΣΛ (1′; 1) = − 1

2π

∑
2′ 2

ΓΛ (1′, 2′; 1, 2)SΛ (2, 2′) (S3)

and

d

dΛ
ΓΛ (1′, 2′; 1, 2) =

1

2π

∑
3′ 3

ΓΛ
3 (1′, 2′, 3′; 1, 2, 3)SΛ (3, 3′)

+
1

2π

∑
3′ 3 4′ 4

[
ΓΛ (1′, 2′; 3, 4) ΓΛ (3′, 4′; 1, 2)

−ΓΛ(1′, 4′; 1, 3)ΓΛ (3′, 2′; 4, 2)− (3′ ↔ 4′, 3↔ 4)

+ΓΛ(2′, 4′; 1, 3)ΓΛ (3′, 1′; 4, 2) + (3′ ↔ 4′, 3↔ 4)

]
×GΛ(3, 3′)SΛ(4, 4′) , (S4)

where ΓΛ
3 denotes the three-particle vertex. Here, GΛ is

the fully dressed propagator and SΛ is the so-called single
scale propagator defined by

SΛ = GΛ d

dΛ

[
GΛ

0

]−1
GΛ . (S5)

Note that the arguments 1, 2, . . . of the vertex functions
and propagators denote multi indices “1 ≡ {ω1, i1, α1}”
containing the frequency variable ω1, the site index i1
and the spin index α1.

For a numerical solution, this hierarchy of equations
is truncated to keep only the self-energy ΣΛ and two-
particle vertex ΓΛ. Particularly, the truncation on ΓΛ

3

is performed such that, via self-constistent feedback of
the self-energy into the two-particle vertex, the approach
remains separately exact in the large S limit as well as
in the large N limit [where the spins’ symmetry group is
promoted from SU(2) to SU(N)] [S16]. While the terms
representing the large S limit [second line of Eq. (S4)]
describe the long-range ordering in classical magnetic
phases, the large N terms [fourth line of Eq. (S4)] char-
acterize the system with respect to non-magnetic res-
onating valence bond or dimer crystal phases. This al-
lows for an unbiased investigation of the competition be-
tween magnetic ordering tendencies and quantum para-
magnetic behavior. Approximations due to the neglect
of the three-particle vertex ΓΛ

3 concern subleading orders
in 1/S and 1/N . Such terms are essential for probing
possible chiral correlations in paramagnetic phases, e.g.,
in chiral spin liquids with a scalar chiral order parame-
ters of the form ∼ 〈(Si×Sj) ·Sk〉. Therefore, the current
implementation of the PFFRG does not allow to describe
the possibility of a spin system to form chiral spin liquids.

The two-particle vertex in real space is related to the
static spin-spin correlator

χµνij =

∫ ∞
0

dτ〈Ŝµi (τ)Ŝνj (0)〉 (S6)

where Ŝµi (τ) = eτĤŜµi e
−τĤ. As a finite-size approxima-

tion, correlators χµνij are only calculated up to a maxi-
mal separation between sites i and j. The main physical
outcome of the PFFRG are the Fourier-transformed cor-
relators, i.e., the static susceptibility χµν,Λ(k) evaluated
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as a function of the RG scale Λ, which in three dimen-
sions (for a S = 1/2 system) is related to a temperature
T = (π2 )Λ [S18]. In our case, the maximal distance of
the correlators is ∼ 11.5 lattice spacings corresponding
to a total volume of 2315 correlated sites which ensures
a proper k-space resolution. We implement an approach
in which despite spatially limited vertices the system size
is assumed to be, in principle, infinitely large. The fre-
quency dependence of the two-particle vertex function is
discretized over 64 points. If a system develops mag-
netic order, the corresponding two-particle vertex chan-
nel anomalously grows upon decreasing Λ and eventually
causes the flow to become unstable. Otherwise, a smooth
flow behavior of the susceptibility down to Λ→ 0 signals
the absence of magnetic order.

Iterative minimization of the classical
Hamiltonian— The ground state of a classical
Heisenberg Hamiltonian is found using an iterative min-
imization scheme which preserves the fixed spin length
constraint at every site [S19]. In contrast, within the
Luttinger-Tisza method the fixed spin length constraint
is only enforced globally, i.e.,

∑
i |S2

i | = S2N , where N
is the total number of lattice sites, implying that local
moment fluctuations which are now permissible take us
beyond the classical approximation by approximately
incorporating some aspects of the quantum Hamilto-
nian [S20]. Starting from a random spin configuration
on a lattice with periodic boundary conditions, we
choose a random lattice point and rotate its spin to
point antiparallel to its local field defined by

hi =
∂H

∂Si
=
∑
j 6=i

JijSj . (S7)

This results in the energy being minimized for every spin
update and thereby converging to a local minimum. We
choose a lattice with L = 32 cubic unit cells in each
direction, and thus a single iteration consists of 16L3 se-
quential single spin updates. This iterative scheme is
repeated many times starting from different random ini-
tial configurations to maximize the likelihood of having
found a global minimum. From the minimal energy spin

configuration, the spin structure factor

F(k) =
1

16L3

∣∣∣∣∣∑
i

Sie
ık·ri

∣∣∣∣∣
2

(S8)

is computed.
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