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Structure— We base our calculations on the
LusMo2O5Ns structure as determined by Clark et al. [S1]
using powder neutron diffraction at 7" = 4 K. Both 48f
and 8b positions of the pyrochlore structure are par-
tially occupied by oxygen and nitrogen [see Fig. S1]. Ri-
etveld refinement yielded O/N occupation numbers of
0.663/0.257 and 0.831/0.169 for the two Wyckoff posi-
tions. While the 8b occupations add to one, the refine-
ment indicates slight O/N deficiency on 48f. It is easily
determined that ideal occupations of 48 f providing a 5:2
oxygen to nitrogen ratio would be 0.6948/0.3052. In our
calculations, we neglect the possible O/N deficiency and
adopt these ideal occupations of the 48 f position. Fur-
thermore, we model the random O/N occupation of 48 f
and 8b sites using the virtual crystal approximation [S2].
This means that we assign nuclear charges of Z = 7.6948
and Z = 7.831 to 48f and 8b, respectively.

Electronic structure— We perform electronic struc-
ture calculations for LusMosOsNs using the full poten-
tial local orbital (FPLO) code [S4] using the generalized
gradient approximation (GGA) functional in its Perdew-
Burke-Ernzerhof (PBE) form [S5]. We correct for the
strong correlations on the Mo®T 4d orbitals using the
GGA+U method [S6]. Fig. S2 shows the electronic
structure for a ferromagnetic solution calculated with
GGA+U. The Hund’s rule coupling is fixed at a value of
Ju = 0.6 eV, which is typical for 4d transition metal ions.
The onsite interaction is chosen to be U = 2.5 eV because
the Heisenberg Hamiltonian parameters estimated at this
value yield a Curie-Weiss temperature which is close to
the experimentally observed value Ocw = —121(1) K.
There are many bands as the primitive cell contains two
formula units of LusMosOsNsy. Per Mo®T ion, there is
one occupied band of 4d character in the majority chan-

nel (1), corresponding to a magnetic moment of precisely
S = 1/2. The narrow bands around —2 eV are the oc-
cupied Lu 4f states. The other occupied bands are O/N
2p. At this value of U, LusMosO5N5 is a semiconductor
with a small gap of E; = 0.15 eV.

Exchange couplings— Next, we calculate the total
energies for 25 different spin configurations of a 3 x 1 x 1
supercell of the primitive cell of LusMosO5Ns. An exam-

FIG. S1. Structure of LuaMo2O5N3. Note that sites partially
occupied by oxygen and nitrogen are shown by partly red,
partly blue balls.



U (eV) Jl (K) JQ (K) Jga (K) J3b (K) .]5 (K) @CW (K)
2 102.4(6) —0.1(5) 23.2(5) —7.3(4) —1.4(2) —168(5)
2.25 88.1(6) 0.5(4) 19.9(4) —6.6(4) —1.1(2) —147(5)
2.5 74.8(5) 0.6(4) 17.2(4) —5.8(3) —0.99(11) —125(4)
2.75 62.0(5) 0.6(3) 15.0(4) —5.2(3) —0.89(10) —104(3)
3 49.8(5) 0.6(4) 13.2(4) —4.8(3) —0.81(11) —84(4)
3.25 37.8(5) 0.6(4) 11.7(4) —4.6(4) —0.74(11) —65(4)
3.5 26.0(6) 0.6(4) 10.4(4) —4.4(4) —0.69(13) —46(4)
3.75 14.2(6) 0.5(5) 9.3(5) —4.5(4) —0.64(14) —26(4)

TABLE S1. Exchange coupling constants for the oxynitride phase LuaMo2OsN2 determined from total energies of 25 spin
configurations in a 3x1x1 supercell using an 8x8x8 k-mesh [see Fig. 1 of main paper|. The parameters corresponding to

U = 2.5 eV (marked in bold) are used for the PFFRG simulations.

We adopt the convention in which each pair (i, )

in the summation in the exchange Hamiltonian [Eq. (1)] is counted only once. Accordingly, the formula for the Curie-Weiss
temperature is Ocw = —%S (S41)>",, znJn, where the summation extends over all neighbors with which a given spin interacts,
and z, is the coordination number at the nth-nearest-neighbor [S3].

ple for this procedure is illustrated in Fig. S3. We obtain
the estimates for the Heisenberg exchange parameters
listed in Table S1 by fitting the DFT+U total energies
against the classical energies of the Heisenberg Hamilto-
nian. The evolution of exchange couplings with onsite
interaction U is shown in Fig. 2. While the next nearest
neighbor coupling J; is negligibly small, the two inequiv-
alent third neighbor couplings J3, (connecting two Mo®*
sites with with a nearest neighbor in between) and Jsp
(across an empty hexagon in one of the three interpen-
etrating kagome lattices of the pyrochlore structure) are
substantial and of different sign; J3, is antiferromagnetic
like Jy, and Jsp, is ferromagnetic. We do not expect ex-
change couplings at Mo-Mo distances of 8 A or more
to play a major role. The 3 x 1 x 1 supercell does not
allow us to resolve Jy (dyo—mo = 8.02 A) but we can
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FIG. S2. Band structure and density of states of

LuaMo2O5Ns calculated with GGA+U functional at U =
2.5 eV and Jg = 0.6 eV for the ferromagnetic state.

determine Jy (dyo—Mo = 9.49 A) and find it to be very
small. We derived the anisotropic exchange couplings in
the framework of a combination of relativistic DF'T calcu-
lations with exact diagonalization of a generalized Hub-
bard Hamiltonian on finite clusters, detailed in Ref. [S7].
Note that U in this method does not enter in the same
way as in the GGA+U total energy calculations. We ob-
tain the estimate of |D|/J by scanning U values of up to
3.6 eV and values of the Hund’s rule coupling Jy in the
range of 0.6 eV to 0.8 eV.

Pseudofermion FRG— The PFFRG scheme [S8-
S13] is a non-perturbative framework capable of han-
dling arbitrary two-body spin-interactions of both di-
agonal and off-diagonal type [S14, S15], with any given
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FIG. S3. Example for a set of 25 spin configurations of the
considered 3 x 1 x 1 supercell calculated with GGA+U func-
tional at U = 2.5 eV and Ju = 0.6 eV. The quality of the fit
to the Heisenberg model is very good.



spin [S16]. It is formulated in the SU(2) fermionic repre-
sentation of spins, which amounts to rewriting the physi-
cal spin operator at each site in terms of Abrikosov pseud-
ofermions,

~ 1 A ~
Si = 2 Zfif,aaaﬁfi»ﬁ ) (Sl)
a,B

where o, 8 =1 or |, and fj o ( fi,a) are the pseudofermion
creation (annihilation) operators, and o is the vector of
Pauli matrices. The fermionic representation is endowed
with an enlarged Hilbert space which includes the un-
physical empty and doubly-occupied sites carrying zero-
spin, and must be projected out to restore the original
Hilbert space of the Heisenberg model which has one-
fermion-per-site. One way to achieve this is to add on-
site level repulsion terms —A >~ S? to the Hamiltonian,
where A is a positive constant [S16]. Such terms lower
the energy of the physical states but do not effect the
unphysical ones. As a consequence, at sufficiently large
A the low energy degrees of freedom of H are entirely
within the physical sector of the Hilbert space. For a
wide class of spin systems (including the models consid-
ered here) one finds that even for A = 0, the ground state
of the fermionic Hamiltonian obeys the one-fermion-per-
site constraint [S16]. This is because unphysical occupa-
tions effectively act like a vacancy in the spin lattice, and
are associated with a finite excitation energy of the order
of the exchange couplings. As a consequence, the ground
state of the fermionic system is identical to the ground
state of the original spin model where each site is singly
occupied.

Within PFFRG, a step-like infrared frequency cutoff
A along the Matsubara frequency axis is introduced in
the bare fermion propagator Gy (iw) = %, ie., Go(iw) is
replaced by

O(le|—4)

i) = 2L

(52)

Implanting this modification into the generating func-
tional of the one-particle irreducible vertex function and
taking the derivative with respect to A yields an exact
but infinite hierarchy of coupled flow equations for the
m-particle vertex functions [S17], which constitutes the
FRG ansatz. The first two equations for the self energy
YA and the two-particle vertex I'* have the forms

d A /q7. _ 1 A 1 o, A /
) = %;F (1',2;1,2) S (2,2")  (S3)

and
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where Fé\ denotes the three-particle vertex. Here, G is
the fully dressed propagator and S* is the so-called single
scale propagator defined by

SA = GAdiA (G~ et (S5)

Note that the arguments 1,2, ... of the vertex functions
and propagators denote multi indices “1 = {wy,41, a1}
containing the frequency variable wy, the site index i
and the spin index ;.

For a numerical solution, this hierarchy of equations
is truncated to keep only the self-energy ¥* and two-
particle vertex T'A. Particularly, the truncation on I'j
is performed such that, via self-constistent feedback of
the self-energy into the two-particle vertex, the approach
remains separately exact in the large S limit as well as
in the large N limit [where the spins’ symmetry group is
promoted from SU(2) to SU(N)] [S16]. While the terms
representing the large S limit [second line of Eq. (S4)]
describe the long-range ordering in classical magnetic
phases, the large N terms [fourth line of Eq. (S4)] char-
acterize the system with respect to non-magnetic res-
onating valence bond or dimer crystal phases. This al-
lows for an unbiased investigation of the competition be-
tween magnetic ordering tendencies and quantum para-
magnetic behavior. Approximations due to the neglect
of the three-particle vertex Fg\ concern subleading orders
in 1/S and 1/N. Such terms are essential for probing
possible chiral correlations in paramagnetic phases, e.g.,
in chiral spin liquids with a scalar chiral order parame-
ters of the form ~ ((S; x S;)-Sk). Therefore, the current
implementation of the PFFRG does not allow to describe
the possibility of a spin system to form chiral spin liquids.

The two-particle vertex in real space is related to the
static spin-spin correlator

X = / dr (82 (r)82(0)) (36)

where S¥(7) = e™"S"e~™_ As a finite-size approxima-
tion, correlators x};" are only calculated up to a maxi-
mal separation between sites ¢ and j. The main physical
outcome of the PFFRG are the Fourier-transformed cor-
relators, i.e., the static susceptibility x**** (k) evaluated



as a function of the RG scale A, which in three dimen-
sions (for a S = 1/2 system) is related to a temperature
T = (5)A [S18]. In our case, the maximal distance of
the correlators is ~ 11.5 lattice spacings corresponding
to a total volume of 2315 correlated sites which ensures
a proper k-space resolution. We implement an approach
in which despite spatially limited vertices the system size
is assumed to be, in principle, infinitely large. The fre-
quency dependence of the two-particle vertex function is
discretized over 64 points. If a system develops mag-
netic order, the corresponding two-particle vertex chan-
nel anomalously grows upon decreasing A and eventually
causes the flow to become unstable. Otherwise, a smooth
flow behavior of the susceptibility down to A — 0 signals
the absence of magnetic order.

Iterative minimization of the classical
Hamiltonian— The ground state of a classical
Heisenberg Hamiltonian is found using an iterative min-
imization scheme which preserves the fixed spin length
constraint at every site [S19]. In contrast, within the
Luttinger-Tisza method the fixed spin length constraint
is only enforced globally, i.e., Y, [S?| = S?N, where N
is the total number of lattice sites, implying that local
moment fluctuations which are now permissible take us
beyond the classical approximation by approximately
incorporating some aspects of the quantum Hamilto-
nian [S20]. Starting from a random spin configuration
on a lattice with periodic boundary conditions, we
choose a random lattice point and rotate its spin to
point antiparallel to its local field defined by

OH
hi = 55 = ;Jijsj. (S7)
JF

This results in the energy being minimized for every spin
update and thereby converging to a local minimum. We
choose a lattice with L = 32 cubic unit cells in each
direction, and thus a single iteration consists of 16L3 se-
quential single spin updates. This iterative scheme is
repeated many times starting from different random ini-
tial configurations to maximize the likelihood of having
found a global minimum. From the minimal energy spin

configuration, the spin structure factor

§ : Siezk'ri
B

F) = 1o (55)

is computed.
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