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METHODS

Sample preparation

The powder of K2Ni2(SO4)3 was prepared by solid state reaction from a stoichiometric mixture of K2SO4 and
NiSO4 · 6H2O annealed at 450◦C for five days. The powder is quenched to room temperature and stored in a
desiccator as K2Ni2(SO4)3 is mildly sensitive to moisture. High quality single crystals were obtained by sealing the
powder in an evacuated quartz ampoule. Millimeter sized crystals are obtained by cooling the melt from 850◦C to
750◦C at a 1 K/h rate.

Single-crystal x-ray diffraction

A small single crystal of K2Ni2(SO4)3 has been glued onto the tip of a glass needle and cooled down to 100 K with
a flow of cold nitrogen gas. Data has been collected on a Rigaku SuperNOVA diffractometer using Mo/Cu Duo source
with Atlas CCD.

Magnetization and magnetic susceptibility

Magnetization M and magnetic susceptibility χDC = M/B of powder and single crystal samples were measured
using a commercial superconducting quantum interference device magnetometer MPMS-5T (Quantum Design).

Heat capacity

Heat capacity measurements above 2 K were performed on powder and single crystal samples using a commercial
PPMS (Quantum Design). Below 2 K, a home-made setup using a dilution refrigerator has been used to measure
single crystal sample. In both cases a short (1-3 %) heat pulse method has been utilized.

Muon spin relaxation (µSR)

µSR experiments were performed on powder samples at MUSR, ISIS (UK) and LTF/GPS, PSI (Switzerland)
beamlines using the spin-polarized positive muons (µ+).

Neutron diffraction

Neutron diffraction on powder was performed on the time-of-flight diffractometer WISH, ISIS (UK). For temper-
atures below 1 K, a copper can was attached to a dilution refrigerator and filled with 15 g of powder. Above 1 K, a
vanadium can was used with 15 g of powder in a helium-flow environment.

Spin-polarized neutron diffraction and inelastic neutron scattering

Both spin-polarized neutron diffraction and non-polarized time-of-flight (TOF) inelastic neutron scattering mea-
surements were carried out at the polarized spectrometer DNS at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching,
Germany. Approximately 2 g of powder were enclosed in an annular cylinder sample holder made with oxygen-free
copper and sealed in a He atmosphere. Measurements were taken in a 3He insert installed in a top-loading CCR cryo-
stat. A neutron wavelength at λ = 4.2 Å was chosen for both measurements. The magnetic scattering cross-section
was obtained via the XYZ polarization analysis method, for which the standard procedures such as flipping-ratio cor-
rection and normalisation of detector efficiency have been applied. The TOF inelastic neutron scattering data were
taken with a disc chopper running at 250 Hz, which yields an energy resolution at ∼0.25 meV at 4.2 Å. The runs for
both vanadium and empty copper sample can were undertaken under the same TOF condition. The powder-average
inelastic scattering profiles were obtained via Mantid-based data reduction routines.
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Density functional theory

We study K2Ni2(SO4)3 using density functional theory (DFT) calculations based on the full potential local orbital
(FPLO) basis set [1] combined with the generalized gradient approximation (GGA) to the exchange correlation
functional [2] and with a GGA+U correction for the strongly correlated Ni2+ 3d orbitals [3]. We employ the energy
mapping technique [4, 5] to extract the Heisenberg exchange interactions up to a Ni-Ni distance of 8.6 Å from 20
GGA+U total energies of selected spin configurations in a

√
2×
√

2× 1 supercell. We fix the Hund’s rule coupling at
JH = 0.88 eV following Ref. [6].

PFFRG

The model Hamiltonian for K2Ni2(SO4)3 with the Heisenberg exchange interactions obtained from DFT is further
studied within the pseudofermion functional renormalization group (PFFRG) method. [7] This approach is based on a
fermionic rewriting of the spin operators, where a spin-1 is represented by two coupled spin-1/2 degrees of freedom. [8]
The resulting fermionic theory is then treated with many-body Feynman diagram approaches. Particularly, via the
introduction of an infrared frequency cutoff, the fermionic vertex functions are subject to a renormalization group flow
as described within the standard functional renormalization group (FRG) scheme. [9, 10] We solve the corresponding
differential equations in real space on a one-loop level, by taking into account spin-spin correlations up to a distance of
twice a lattice vector of the underlying cubic lattice and approximate the frequency dependence of the vertex functions
by 64 discrete mesh points. The central outcome is the zero-frequency, momentum-resolved real part of the magnetic
susceptibility χ′(Q) which is obtained from the fermionic two-particle vertex. Using Kramers-Kronig relations, χ′(Q)
is related to the dynamical spin structure factor S(Q,ω) via

χ′(Q) ∝
∫
dωS(Q,ω)/ω , (S1)

indicating that χ′(Q) primarily represents the low-energy contribution of S(Q,ω). Most importantly, χ′(Q) takes into
account quantum fluctuations well beyond mean field and is, hence, well suited to simulate the fluctuating moments of
K2Ni2(SO4)3. Furthermore, possible instability signatures during the renormalization group flow allow one to detect
static magnetic long-range order.

Classical Monte Carlo

Monte Carlo simulations are performed for classical Heisenberg spins on the bi-trillium lattice with periodic bound-
ary conditions for a system of 8L3 spins. We employ the single-flip metropolis update with 5 over-relaxation steps
added after every sweep of the lattice, and 104 Monte Carlo sweeps are used for thermalization. This is followed by
105 Monte Carlo sweeps during which measurements are performed every 10 Monte Carlo sweeps. The calculations
for magnetization as a function of applied field shown in Fig. 2(b) of the main textare performed for a lattice size of
L = 8 (4096 spins).

X-RAY DIFFRACTION

Powder x-ray diffraction of K2Ni2(SO4)3 at room temperature is presented in Fig. S1. The agreement is very good
(Rwp = 6.2 %), with no visible traces of impurities.

The experimental versus calculated structure factors for a single crystal of K2Ni2(SO4)3 is shown in Fig. S2. The
tight distribution of the data around the red line F 2

obs = F 2
calc indicates the high quality of the refinement. Additional

refinement parameters are given in the supplementary Table 1. The agreement factors and the goodness-of-fit value
confirm the high accuracy of the K2Ni2(SO4)3 structure description. Atomic positions as well as distances and angles
are listed in supplementary Table 2 and 3, respectively.
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Supplementary Figure S1. Powder diffraction of K2Ni2(SO4)3 (black circles) with the result of a Rietveld refinement (red line).
The difference between the measured intensities and the fit is given with the blue line. Peak positions are marked with green
vertical lines.
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Supplementary Figure S2. Experimental structure factors are plotted against the calculated structure factors obtained by single
crystal structure refinement of K2Ni2(SO4)3.
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Temperature 100.01(10) K
Crystal system, space group Cubic, P2(1)3
a = b = c 9.81866(12) A
Volume 946.58(4) A3
Z, Calculated density 3, 3.395 g/cm3

Absorption coefficient 5.589 mm−1

F(000) 952
Theta range for data collection 3.594 to 30.444 deg
Limiting indices -5≤h≤14, -9≤k≤14, -14≤l≤13
Reflections collected / unique 4119 / 965 R(int) = 0.0274
Completeness to θ = 25.242 98.8 %
Data / restraints / parameters 965 / 0 / 59
Goodness-of-fit on F2 1.046
Final R indices I>2sigma(I) R1 = 0.0143, wR2 = 0.0330
R indices (all data) R1 = 0.0146, wR2 = 0.0332
Absolute structure parameter -0.034(9)
Extinction coefficient 0.0145(8)
Largest diff. peak and hole 0.238 and -0.245 e.A−3

Supplementary Table 1. Single crystal refinement parameters of the K2Ni2(SO4)3 structure at 100 K

x y z U(eq) Site
Ni(1) 1645(1) 1645(1) 1645(1) 5(1) 4a
Ni(2) 5945(1) 945(1) 4055(1) 5(1) 4a
K(1) 1854(1) -1854(1) 3146(1) 10(1) 4a
K(2) 4507(1) 4507(1) 4507(1) 10(1) 4a
S(1) 2826(1) 1233(1) 4806(1) 5(1) 12b
O(1) 2550(2) 952(2) 3371(2) 12(1) 12b
O(2) 2581(2) -28(2) 5572(2) 15(1) 12b
O(3) 4246(2) 1699(2) 4987(2) 10(1) 12b
O(4) 1907(2) 2262(2) 5371(2) 13(1) 12b

Supplementary Table 2. Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2 × 103) for
K2Ni2(SO4)3 at 100 K. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
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Ni(1)-K(1) 3.7435(3)
Ni(1)-O(1) 2.0315(18)
Ni(2)-K(2) 3.7977(4)
Ni(2)-O(3) 2.0417(18)
K(1)-O(1) 2.847(2)
K(1)-O(2) 3.065(2)
K(2)-O(3) 2.8094(19)
S(1)-O(1) 1.4613(18)
S(1)-O(2) 1.469(2)
S(1)-O(3) 1.4782(18)
S(1)-O(4) 1.4636(18)
O(1)-Ni(1)-K(1) 48.72(6)
O(3)-Ni(2)-K(2) 46.38(5)
O(1)-K(1)-O(2) 47.00(5)
K(1)-S(1)-K(2) 146.85(2)
O(1)-S(1)-K(1) 49.47(8)
O(1)-S(1)-K(2) 100.00(8)
O(1)-S(1)-O(2) 107.72(12)
O(1)-S(1)-O(3) 110.41(11)
O(1)-S(1)-O(4) 112.40(11)
O(2)-S(1)-K(1) 58.29(9)
O(2)-S(1)-K(2) 149.72(9)
O(2)-S(1)-O(3) 110.71(11)
O(3)-S(1)-K(1) 124.71(7)
O(3)-S(1)-K(2) 46.05(7)
O(4)-S(1)-K(1) 126.40(8)
O(4)-S(1)-K(2) 72.52(8)
O(4)-S(1)-O(2) 106.69(12)
O(4)-S(1)-O(3) 108.85(11)
Ni(1)-O(1)-K(1) 98.86(7)
S(1)-O(1)-Ni(1) 145.35(12)
S(1)-O(1)-K(1) 107.57(10)
S(1)-O(2)-K(1) 97.65(10)
Ni(2)-O(3)-K(2) 101.88(7)
S(1)-O(3)-Ni(2) 127.24(10)
S(1)-O(3)-K(2) 111.68(9)

Supplementary Table 3. Bond lengths (in Å) and angles (in degrees) for K2Ni2(SO4)3 at 100 K.
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MAGNETIZATION

Low temperature view of the temperature dependence of the inverse of magnetic susceptibility χdc = M/B. A weak
deviation from the Curie-Weiss law starts below 50 K but it is significantly visible only below 20 K.
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Supplementary Figure S3. Deviation from the Curie-Weiss law.
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SPECIFIC HEAT

As shown in Supplementary Figure S4, at higher temperatures both K2Ni2(SO4)3 and the non-magnetic analog
K2Mg2(SO4)3 show kinks in their specific heat. These are probably related to the freezing of SO4 groups without a
noticeable symmetry lowering from the cubic space group.
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Supplementary Figure S4. Kinks in the specific heat of K2Ni2(SO4)3 and K2Mg2(SO4)3.

The phonon contribution below 2 K has been estimated by employing a polynomial BT 3 +CT 5 with B = 1.33(3) ·
10−3 J/mol K4 and C = 2.1(8) · 10−6 J/mol K6 that best matches the measured specific heat of K2Mg2(SO4)3 at low
temperatures, as seen in Supplementary Figure S5.
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Supplementary Figure S5. Specific heat of K2Mg2(SO4)3 with a low temperature extension based on a polynomial BT 3 +CT 5.
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Determination of specific heat involved in the second order phase transition at T ∗ is displayed in Supplementary
Figure S6. The red curved dashed line is the measurement at 5 T where no anomaly is present, adjusted to match
the zero-field data at 0.8 K and 1.5 K. The exact position of the background line does not change significantly the
extracted value of ∼ 1 % of the total Rln(3) entropy of spin-1 system.
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Supplementary Figure S6. Second order transition at T ∗. The shaded area carries an entropy of ∼ 1 % of the total Rln3.

Magnetic field evolution of T ∗ and T ∗∗ is presented in Supplementary Figure S7. For B = 0.75 T a small shoulder
appears around 0.5 K, possibly indicating another phase. Given that this is seen for a very narrow magnetic field
range, it could also reflect an experimental artifact.
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Supplementary Figure S7. Magnetic field dependence of specific heat below 2 K. Individual curves are shifted vertically for
clarity.
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Comparison of a power-law behavior CP ∼ Tn for n = 2 and n = 3 with a gaped behavior CP ∼ exp(−∆/T ) is
presented in Supplementary Figure S8. Zero field data show a somewhat varying slope, possibly influenced by the
presence of the static component. ∆ = 0.5 K corresponds to the value of a spin-triplet gap for a static dimer on the
J4 bond.
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Supplementary Figure S8. Low temperature specific heat for magnetic field values B = 0, 0.5, 1.5, 7 and 14 T (top to bottom).
Individual curves are shifted vertically for clarity.

Comparison between results of specific heat obtained on single crystal and on powder samples is shown in Supple-
mentary Figure S9.
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Supplementary Figure S9. Comparison between single crystal and powder measurements.
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NEUTRON SCATTERING

In Fig. S10 we show the temperature dependence of the scattering profile of polarized neutrons. At 17 K the period
of oscillations is still visible, although with a smaller amplitude. At 80 K the profile is practically featureless. The
spikes occur at positions of nuclear Bragg peaks and are related to imperfect subtraction of large numbers in spin-flip
and non-spin-flip channels.
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Supplementary Figure S10. Temperature dependence of spin-polarized neutron diffraction.

Fig. S11 displays the diffraction data at 90 mK together with a LeBail fit using three propagation vectors Q1 =
( 1
3 , 0, 0), Q2 = ( 1

3 ,
1
3 , 0) and Q3 = ( 1

3 ,
1
3 ,

1
3 ). For Q > 1 Å the satellites appear as shoulders of strong nuclear Bragg

peaks which together with a diminishing form factor makes them very hard to distinguish.
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Supplementary Figure S11. Low-Q diffraction profile of K2Ni2(SO4)3 at 90 mK (points) with a Lebail fit (line).
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MUON SPIN RELAXATION

Taking into account that the whole data set is measured with two different experimental setups (a dilution re-
frigerator and a variable temperature insert, implying different backgrounds and different initial asymmetries), the
temperature evolution of relaxation rates and exponents are presented in two segments. The low temperature seg-
ment, from 20 mK up to 4 K, is modeled using Eq.(2) from the main text, while the high temperature segment, from
100 K down to 3 K, is modeled using Eq.(1). In the region around 3 K both approaches can be used so if the low
temperature segment is modeled using Eq.(1), the extracted relaxation rates overlap, as shown in Fig. S12 with green
and blue diamonds.

It is rather simple to understand why two approaches work equally well. In this overlapping region the exponent
β acquires values close to 1, rendering two contributions in Eq.(2) identical and effectively becoming Eq.(1). For two
approaches to smoothly transform from one to the other it would be necessary to allow for the fraction f and β1 to
be freely varied or that a microscopic model is developed which could meaningfully constrain other parameters.
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Supplementary Figure S12. Temperature region where two segments are equally well described with both equations (see main
text).

Fig. S13 shows longitudinal-field µSR relaxation at 1.7 K, well within the correlated region. The system remains
dynamic with fields up to 0.78 T.
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Supplementary Figure S13. Longitudinal-field µSR relaxation at 1.7 K.
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ADDITIONAL PFFRG INFORMATION

In PFFRG the magnetic susceptibility depends on the renormalization group parameter Λ which is implemented as
a sharp infrared frequency cutoff. Despite the artificial nature of Λ it shows various similarities with the temperature
T , particularly, kinks or cusps in the Λ-dependence of the susceptibility signal the onset of magnetic long-range order.
Most importantly, the identification of either magnetic long-range order or a magnetically disordered phase does not
rely on any prior assumption on the system’s ground state. To illustrate the identification of magnetic order, Fig. S14
shows the maximal susceptibility in momentum space as a function of Λ for various different systems. The orange
curve corresponds to a spin-1 Heisenberg model on the lattice network of K2Ni2(SO4)3 but with J4 > 0 interactions
only. The antiferromagnetic Néel order in this system manifests in a strong peak. On the other hand, the green curve
is a typical example for a smooth non-magnetic renormalization group flow as given for the spin-1/2 nearest neighbor
antiferromagnetic Heisenberg model on the pyrochlore lattice. The PFFRG data for K2Ni2(SO4)3 is presented by
the blue curve and shows an intermediate behavior: A small kink at Λ ≈ 0.45 is observed which, however, does not
develop into a pronounced peak (note that small oscillations below Λ ≈ 0.45 are typically artifacts of the discretization
of continuous frequency variables within our numerics). This indicates that our PFFRG results are in accord with a
small ordered moment in the absence of an external magnetic field.
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Supplementary Figure S14. Maximal susceptibility in momentum space as a function of the renormalization group parameter Λ
from PFFRG. The green curve is an example for a non-magnetic system (spin-1/2 nearest neighbor antiferromagnetic Heisenberg
model on the pyrochlore lattice). The orange curve represents a magnetically ordered system (spin-1 Heisenberg model on the
double trillium lattice with J4 > 0 couplings only). The blue curve represents the data for K2Ni2(SO4)3.
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