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In this Supplementary Material we present additional information on the characterization of the
atacamite single crystals and the neutron diffraction experiments for crystal and magnetic structure
determination. Further, we provide additional information on the electronic structure calculations
as well as the classical mean field theory of an individual ∆-chain and a collection of chains. We also
present additional experimental data probing the metamagnetic transition and theoretical results
for a sawtooth chain with additional in-chain coupling as well as ED results for the ∆-chain.

SINGLE CRYSTAL MATERIAL AND CRYSTAL STRUCTURE

For this study we have investigated various single crystalline natural specimens of atacamite, Cu2Cl(OH)3. Most
of the crystals studied here have been obtained from a batch found in the Moonta Mines and the Poona Mine,
Moonta, South Australia, Australia. In addition, a smaller batch was obtained from La Farola Mine, Tierra Amarilla,
Atacama, Chile. Where necessary, the crystals were removed from the matrix. Subsequently, the material was broadly
characterized with respect to single crystallinity by X-ray diffraction and the magnetic properties by susceptibility
measurements. Regarding the magnetic properties, no significant sample dependence could be detected. In addition, in
the neutron diffraction experiments, aside from the magnetic studies, a full crystal structure refinement was performed.

EXPERIMENTAL DETAILS: NEUTRON SCATTERING

For the single-crystal and magnetic structure refinement, neutron diffraction experiments were carried out on the
four-circle diffractometer E5 at the BER II reactor of the Helmholtz-Zentrum Berlin für Materialien und Energie. This
instrument uses a Cu monochromator selecting the neutron wavelength λ = 0.896 Å. Data sets of Bragg reflections were
collected with a two-dimensional position-sensitive 3He-detector, 90× 90 mm2 (32× 32 pixels). The crystal structure
refinements were carried out using the program Xtal 3.4 [S1]. The nuclear scattering lengths b(H) = −3.7409 fm,
b(O) = 5.805 fm, b(Cl) = 9.5792 fm and b(Cu) = 7.718 fm were used [S2]. For the absorption correction (Gaussian
integration) we used the absorption coefficient µ = 0.160 cm−1. Secondary extinction has been corrected using the
formalism of Zachariasen (type I). Extinction is dominated by the mosaic spread (sometimes referred to as secondary
extinction). The refinable extinction parameter g is related to the mosaic distribution function. For the investigation
of the magnetic structure we used the longer wavelength λ = 2.39 Å at E5. The magnetic form factor of the Cu2+ ion
was taken from Ref. [S3].

Magnetic field dependent neutron diffraction experiments on the magnetically ordered phase of atacamite were
carried out using the flat-cone diffractometer E2 at the BER II reactor of the Helmholtz-Zentrum Berlin. These
studies were carried out analogous to those presented in Ref. [S4] (neutron wavelength λ = 2.38 Å), with the intensity
of the magnetic Bragg peak (1/2 0 1/2)M monitored in a magnetic field H ‖ b axis up to 6.5 T.

An additional field-dependent neutron scattering experiment has been performed at the High Magnetic Field Facility
for Neutron Scattering of the Helmholtz-Zentrum Berlin in fields up to 25 T. The facility consists of a continuous-field
hybrid magnet, the High-Field Magnet (HFM), providing the time-of-flight Extreme Environment Diffractometer
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(EXED) with a horizontal magnetic field. Neutron scattering can be detected within an opening angle of the magnet
of ±30◦ in both forward and backward scattering geometry. For the experiment described in this paper, the forward
scattering geometry was used. In order to increase the accessible neutron scattering angle, the whole magnet was
rotated by ωmagnet = −12◦ away from the incident beam direction. A wavelength band of 0.7 – 2.9 Å was used for the
experiment. The sample was aligned with H ‖ b axis with the c axis lying within the horizontal plane as well. This
way, we were able to detect the (1/2 0 1/2)M reflection and measure its intensity as function of field and temperature.

EXPERIMENTAL RESULTS: CRYSTAL STRUCTURE

In order to investigate the crystal structure of atacamite, Cu2Cl(OH)3, a single-crystal data set has been collected
at 295 K using the instrument E5 at Helmholtz-Zentrum Berlin. Two needle-shaped mineral samples I (m = 39.0 mg,
used for the E2 experiments) and II (m = 41.1 mg, used for the HFM/EXED experiment) with the dimensions
2 × 6 × 2 mm3 have been used. In agreement with an earlier study [S5], the crystal structure could be successfully
refined in the orthorhombic space group Pnma (No. 62). In this structure the heavier atoms were found to be at
the following Wyckoff positions: Cu(1) at 2a(0, 0, 0), Cu(2), Cl, O(1) at 4c(x, 1/4, z), and O(2) at 8d(x, y, z). For
the crystal structure refinements, we have used the positional parameters of these atoms given in Ref. [S5] as starting
values. As well, the lattice parameters have been taken from Ref. [S5], with a = 6.02797(11) Å, b = 6.86383(13) Å and

Single crystal I (Poona Mine, Moonta, South Australia, Australia)
Atom Site x y z U11 U22 U33 U12 U13 U23 Occ.

Cu(1) 4a 0 0 0 0.78(6) 0.80(6) 0.66(3) −0.15(5) 0.18(5) −0.20(5) 1
Cu(2) 4c 0.1907(3) 1/4 0.2553(2) 0.42(6) 0.77(6) 0.79(6) 0 −0.22(5) 0 1
Cl 4c 0.3518(3) 3/4 0.0559(2) 0.89(6) 1.19(6) 1.28(6) 0 −0.18(5) 0 1
O(1) 4c 0.1515(4) 1/4 −0.0036(3) 0.75(9) 0.67(8) 1.27(9) 0 0.09(8) 0 1
O(2) 8d 0.4416(3) 0.0653(2) 0.2881(2) 0.98(7) 0.52(6) 0.68(6) −0.04(5) −0.14(5) −0.01(5) 1
H(1) 4c 0.7019(9) 3/4 0.0418(6) 1.79(23) 2.80(23) 3.00(25) 0 1.10(20) 0 1
H(2) 8d 0.4285(6) 0.5479(5) 0.2243(4) 2.97(17) 1.42(12) 2.53(16) −0.10(12) −0.18(14) −0.98(12) 1

Bond length (Å) Bond angle (◦)

d[Cu(1)–O(1)] 1.9442(11) Cu(1)–O(1)–Cu(1) 123.91(13)
d[Cu(1)–O(2)] 2.0136(17) Cu(1)–O(2)–Cu(2) 101.50(9)
d[Cu(2)–O(2)] 1.9961(21) Cu(2)–O(2)–Cu(2) 97.84(8)
d[Cu(2)–O(2)] 2.0044(21) Cu(1)–O(2)–Cu(2) 114.70(9)
d[O(1)–H(1)] 0.950(6)
d[O(2)–H(2)] 0.974(4)

Single crystal II (Moonta Mines, Moonta, South Australia, Australia)
Atom Site x y z U11 U22 U33 U12 U13 U23 Occ.

Cu(1) 4a 0 0 0 0.91(4) 0.52(5) 0.75(3) −0.02(3) 0.14(3) −0.15(4) 1
Cu(2) 4c 0.1905(2) 1/4 0.2554(1) 0.55(4) 0.58(5) 0.95(4) 0 −0.22(5) 0 1
Cl 4c 0.3514(1) 3/4 0.0557(1) 0.94(3) 0.98(4) 1.32(6) 0 −0.21(3) 0 1
O(1) 4c 0.1501(2) 1/4 −0.0021(2) 0.87(5) 0.67(5) 1.17(5) 0 0.07(5) 0 1
O(2) 8d 0.4414(2) 0.0653(2) 0.2883(2) 0.84(4) 0.52(4) 0.85(3) −0.07(3) −0.11(3) −0.08(3) 1
H(1) 4c 0.6982(5) 3/4 0.0418(4) 1.71(11) 2.51(15) 4.02(16) 0 1.55(12) 0 1
H(2) 8d 0.4278(4) 0.5479(3) 0.2246(3) 2.99(10) 2.00(10) 2.57(10) −0.19(7) −0.23(8) −0.97(7) 1

Bond length (Å) Bond angle (◦)

d[Cu(1)–O(1)] 1.9399(6) Cu(1)–O(1)–Cu(1) 124.39(7)
d[Cu(1)–O(2)] 2.0123(10) Cu(1)–O(2)–Cu(2) 101.51(5)
d[Cu(2)–O(2)] 1.9961(13) Cu(2)–O(2)–Cu(2) 97.80(5)
d[Cu(2)–O(2)] 2.0056(13) Cu(1)–O(2)–Cu(2) 114.75(6)
d[O(1)–H(1)] 0.983(3)
d[O(2)–H(2)] 0.973(2)

TABLE SI. Result of a crystal structure refinement of atacamite, Cu2Cl(OH)3, for two single crystalline specimens using single-
crystal neutron diffraction data collected at 295 K. The anisotropic thermal parameters Uij (given in 100Å2) are in the form
exp

[
−2π2

(
U11h

2a?2 + ...+ 2U13hla
?c?

)]
. For symmetry reasons the values U12 and U23 of some atoms are equal to zero in

this structure.
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c = 9.11562(17) Å. A total of 2160 reflections (876 unique) for sample I and 3805 (1027 unique) for sample II were
measured.

In the next step, we have determined the positions of the hydrogen atoms from a difference Fourier analysis.
In fact, two holes were found at the positions (0.6998, 0.75, 0.0441) and (0.4273, −0.0453, 0.2233), suggesting the
presence of two different hydrogen positions located at the Wyckoff positions 4c(x, 1/4, z) [or in the setting (x, 3/4, z)
given above] and 8d(x, y, z), respectively. For the refinements, the overall scale factor, the positional and anisotropic
thermal parameters of all atoms, as well as the extinction parameter g were allowed to vary giving in total 50
parameters. The obtained residuals RF and ωRF are defined as RF =

∑
(||Fobs| − |Fcal||) /

∑
|Fobs| and ωRF =∑

ω (||Fobs| − |Fcal||) /
∑
|Fobs|, where ω = 1/σ2. The refinements finally resulted in the following residuals: RF =

0.107, ωRF = 0.067 (sample I) and RF = 0.055, ωRF = 0.040 (sample II). For sample I these were found to be
somewhat enlarged. This can be ascribed to that the investigated crystal contains two grains, which finally resulted
in a peak splitting during the measurement of particular series of Bragg reflections. However, for both samples the
positional and anisotropic thermal parameters of all atoms could be determined with good accuracy. The results of
the refinements are summarized in Tab. SI.

After all, the refined hydrogen positional parameters significantly differ in comparison to those obtained earlier
from synchrotron powder data, whereas the parameters of the heavier atoms show a much better agreement. Here, it
has to be mentioned that the positions of hydrogen atoms can be determined more precisely from neutron diffraction
data. The refined extinction parameter of sample I finally resulted in g = 275(20) rad−1. Due to the much better
crystal quality of sample II the extinction parameter g = 2167(62) rad−1 is strongly increased.

EXPERIMENTAL RESULTS: MAGNETIC STRUCTURE

For the investigation of the magnetic structure we used sample II. In order to determine the magnetic moments the
overall scale factor has been determined from a data set collected in the paramagnetic range at 25 K (64 reflections,
35 unique). During the refinements the positional parameters and the overall scale factor were refined resulting in a
residual RF = 0.060 (in F ). The thermal parameters and the extinction parameter were taken from the refinements
of the data set collected at room temperature and were not allowed to vary.

The representation analysis was applied earlier by Bertaut [S6] to describe a series of magnetic structures. The aim is
to find the basis vectors of the irreducible representations (irreps) contained in Γ associated with the propagation vector
q = (1/2, 0, 1/2) in the space group Pnma (No. 62). The unit cell contains two magnetic Cu atoms (Cu(1) and Cu(2))
located at the Wyckoff positions 4a [Cu(11) (0, 0, 0), Cu(12) (1/2, 0, 1/2), Cu(13) (0, 1/2, 0), Cu(14) (1/2, 1/2, 1/2)]
and 4c [Cu(21) (x, 1/4, z), Cu(22) (−x + 1/2, 3/4, z + 1/2), Cu(23) (−x, 3/4,−z), Cu(24) (x + 1/2, 1/4,−z + 1/2)].
The irreps and their basis functions were determined using the program BasIreps in the FullProf suite.

irrep Sk(1) Sk(2) Sk(3) Sk(4) irrep Sk(1) Sk(2) Sk(3) Sk(4)

Γ1(4a) (u, v, w) i(u, v,−w) (−u, v,−w) i(−u, v, w) Γ1(4c) (0, u, 0) i(0, u, 0) (0, u, 0) i(0, u, 0)
Γ2(4c) (u, 0, v) i(u, 0,−v) (−u, 0,−v) i(−u, 0, v)

Γ3(4a) (u, v, w) i(u, v,−w) (u,−v, w) i(u,−v,−w) Γ3(4c) (u, 0, v) i(u, 0,−v) (u, 0, v) i(u, 0,−v)
Γ4(4c) (0, u, 0) i(0, u, 0) (0,−u, 0) i(0,−u, 0)

Γ5(4a) (u, v, w) i(−u,−v, w) (−u, v,−w) i(u,−v,−w) Γ5(4c) (0, u, 0) i(0,−u, 0) (0, u, 0) i(0,−u, 0)
Γ6(4c) (u, 0, v) i(−u, 0, v) (−u, 0,−v) i(u, 0,−v)

Γ7(4a) (u, v, w) i(−u,−v, w) (u,−v, w) i(−u, v, w) Γ7(4c) (u, 0, v) i(−u, 0, v) (u, 0, v) i(−u, 0, v)
Γ8(4c) (0, u, 0) i(0,−u, 0) (0,−u, 0) i(0, u, 0)

pirrep Sk(1) Sk(2) Sk(3) Sk(4) pirrep Sk(1) Sk(2) Sk(3) Sk(4)

Γ1(4a) (u, v, w) (−p,−q, r) (−u, v,−w) (p,−q,−r) Γ1(4c) (0, u, 0) (0,−v, 0) (0, u, 0) (0,−v, 0)
Γ2(4a) (u, v, w) (−p,−q, r) (u,−v, w) (−p, q, r) Γ2(4c) (u, 0, v) (−w, 0, p) (u, 0, v) (−w, 0, p)

Γ3(4c) (u, 0, v) (−w, 0, p) (−u, 0,−v) (w, 0,−p)
Γ4(4c) (0, u, 0) (0,−v, 0) (0,−u, 0) (0, v, 0)

TABLE SII. General expressions of the Fourier coefficients Sk(j) obtained from the basis functions calculated from the different
representations of the two Cu sites at the Wyckoff positions 4a (Cu(1)) [Cu(11) (0, 0, 0), Cu(12) (1/2, 0, 1/2), Cu(13) (0, 1/2, 0),
Cu(14) (1/2, 1/2, 1/2)] and 4c (Cu(2)) [Cu(21) (x, 1/4, z), Cu(22) (−x + 1/2, 3/4, z + 1/2), Cu(23) (−x, 3/4,−z), Cu(24)
(x + 1/2, 1/4,−z + 1/2)]. In the lower part of the table the physically irreducible representations (pirreps) and their Fourier
components are listed.
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In Tab. SII the vectors Sk(j) (the Fourier components of the magnetic moments) of the different irreps are listed.
For the Cu(1) atoms located at the Wyckoff position 4a one finds 4 irreducible representations where the moments
can be oriented along the x, y, and z directions. On the other hand, for the Cu(2) atoms, located at the Wyckoff
position 4c, one finds 4 irreducible representations, which only allow a spin alignment along the y direction, while the
other 4 irreducible representations produce an alignment along the x and z directions. All irreps are of dimension
1. For both Cu sites it can be seen (in all irreps) that the coefficients of the vectors Sk(j) are either purely real or
purely imaginary. Therefore, the irreps cannot describe alone real magnetic structures.

The complex basic vectors can be replaced by real ones by combining different irreducible representations (physically
irreducible). The real basic functions (Physical Irreps) could also be determined with the program BasIreps in the
FullProf suite. In the lower part of Tab. SII it can be seen that the number of irreducible representations are now
reduced by a factor of 2. Due to the fact that they are now of dimension 2, each irrep can have two different spin
sequences giving identical diffraction patterns.

In order to determine the magnetic structure, we have started to determine the moment direction and the spin
sequence of the four Cu(2) atoms, which are located at the Wyckoff position 4c. Due to the fact that the observed
intensities of the magnetic reflections (1/2 2 1/2)M and (1/2 2 3/2)M were found to be weak we obtained the best
fit if the moments are aligned parallel to the b axis. We used Γ1(4c) (+ − +−) and Γ4(4c) (+ − −+) to describe
the magnetic ordering. Due to the fact that both models gave a residual of about 0.23 (in F ) it was not possible
to distinguish between these two models. For comparison, the refinements where we assumed a magnetic ordering
within the ac plane [Γ2(4c) and Γ3(4c)] resulted in a residual of about 0.42. Here, it is interesting to note that the
magnetic x component is found to be zero. Accordingly, we carried out refinements where only the moments of Cu(1)
(located at the Wyckoff positions 4a) were allowed to vary. We used the spin sequences of Γ1(4a) and Γ2(4a), where
the moments were allowed to vary along the axes x, y, and z. We have obtained a better fit for Γ1(4a) than for Γ2(4a)
resulting in the residuals 0.24 and 0.32, respectively. Again, it is interesting to note that the x component for Γ1(4a)
is also found to be zero. These results are in agreement with the magnetization measurements, where the a axis was
found be the hard axis of the magnetization.

Several trials showed that only one model gave a satisfactory fit reaching a residual RM = 0.107 (in F ), where we
used Γ1(4c) for Cu(2) (+ − +− along y) and Γ1(4a) for Cu(1) (+ − −+ along x, + − +− along y, and + + −−
along z). Interestingly, the refinements caused a spin inversion of the Cu(1) atoms (− + +− along x, − + −+ along
y, and − − + + along z). This means that the exchange interactions between the atoms Cu(11) in (0, 0, 0) and Cu(21)
in (0.1907, 1/4, 0.2553) are antiferromagnetic. This is unusual since the moments of Cu(2) are aligned parallel to the
b direction, and the moments of Cu(1) predominantly parallel to the c direction.

For the refinement of the magnetic structure at 2.2 K, we used 10 magnetic reflections where the nuclear contribution
is negligible. The observed and calculated magnetic intensities of the reflections are listed in Tab. SIII. The magnetic
components of Cu(1) are µord,Cu(1)(x) = 0.09(9)µB, µord,Cu(1)(y) = 0.04(2)µB and µord,Cu(1)(z) = 0.32(7)µB, giving
a total moment µord,Cu(1) = 0.34(4)µB. For the Cu(2) atom, where only a y component could be found, the moment is
µord,Cu(2) = µord,Cu(2)(y) = 0.59(2)µB. Altogether, the resulting complex magnetic structure is visualized in Fig. 1 (b)
in the main text and in Fig. S1.

(hkl)M F 2
obs F

2
cal ∆F 2

(1/2 0 1/2) 38.8 36.5 2.3
(1/2 1 1/2) 28.6 27.6 1.0
(1/2 0 3/2) 48.5 47.7 0.8
(1/2 1 3/2) 12.8 13.2 −0.4
(3/2 0 1/2) 30.9 37.8 −6.9
(1/2 0 5/2) 53.3 35.9 −7.4
(3/2 1 1/2) 52.7 51.0 1.7
(3/2 0 3/2) 19.2 28.0 −8.8
(1/2 2 1/2) 1.4 3.8 −2.4
(1/2 1 5/2) 44.2 48.1 −3.9
(3/2 1 3/2) 41.5 38.9 5.6
(1/2 2 3/2) 1.6 7.3 −5.7
(3/2 0 5/2) 21.3 30.0 −8.7

TABLE SIII. Calculated and observed intensities (given as F 2) of atacamite Cu2Cl(OH)3 obtained from the refinement of the
magnetic structure at 2.2 K resulting in a residual of RM = 0.107 (in F ). Symmetry equivalent reflections were averaged.
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FIG. S1. (color online) Magnetic structure of atacamite Cu2Cl(OH)3 obtained from single crystal neutron diffraction exper-
iments (a) with additional views along the b axis (b) and the c axis (c). The black solid lines represent the nuclear and the
magnetic unit cell; for details see text.

EXPERIMENTAL RESULTS: HEAT CAPACITY AND ENTROPY

We estimate the magnetic entropy of atacamite by calculating Smol =
∫
cp/T dT from our heat capacity data at

0 T (see Fig. S2). We ignore the phonon contribution for our estimation. Since the experimental data were measured
down to a temperature of 2 K, for the evaluation of Smol, the low-temperature heat capacity was approximated for
the integration using an exponential function ∼ exp(−∆/T ) (gray data points in Fig. S2). This calculation yields a
value of Smol ∼ 0.65R ln 2 at TN = 8.4 K.
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FIG. S2. (color online) Heat capacity cp and entropy Smol of atacamite Cu2Cl(OH)3; for details see text.

THEORETICAL RESULTS: ELECTRONIC STRUCTURE AND ENERGY MAPPING

We performed electronic structure calculations for acatamite in the above-described orthorhombic Pnma structure.
We use the parameters of Ref. [S5] determined by X-ray diffraction performed on natural atacamite crystals. Note
that the crystal structure from Ref. [S5] has highly unlikely hydrogen positions with OH distances of 1.67 Å or more.
Therefore, we first relaxed the hydrogen positions (while fixing lattice parameters and all other positions to the values
given by Ref. [S5]). The resulting positions for H(1): (−0.3076, 3/4, 0.0388) and H(2): (0.4237, −0.4477, 0.2214) are
much closer to the values independently determined in our neutron diffraction refinement.
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bond length (Å) sites connected comment

J1 3.01552 Cu(2)-Cu(2)
J2 3.11134 Cu(1)-Cu(2) symmetric
J3 3.37616 Cu(1)-Cu(2) in-chain
J4 3.43192 Cu(1)-Cu(1) in-chain
J5 5.02492 Cu(1)-Cu(2) symmetric (small)
J6 5.46421 Cu(1)-Cu(1) (small)
J7 5.67145 Cu(1)-Cu(2) symmetric (small)
J8 5.75017 Cu(2)-Cu(2) (small)
J9 5.76511 Cu(1)-Cu(2) symmetric
J10 5.91223 Cu(1)-Cu(2) symmetric
J11a 6.02795 Cu(1)-Cu(1) (small)
J11b ” Cu(2)-Cu(2)
J12 6.07949 Cu(2)-Cu(2) (small)
J13 6.22269 Cu(2)-Cu(2)
J14 6.45257 Cu(1)-Cu(1) (small)
J15 6.75231 Cu(2)-Cu(2) in-chain
J16 6.86383 Cu(1)-Cu(1) in-chain
J17 6.88152 Cu(2)-Cu(2) omitted

TABLE SIV. Classification of exchange couplings of atacamite up to the third nearest neighbour sphere in the distorted
pyrochlore lattice. The effective 3D Hamiltonian is formed by couplings of Cu(2)-Cu(2) connectivity.

As discussed in the main text, this structure may be viewed as a distorted pyrochlore structure, so there are 18
inequivalent bonds with the length under 7 Å (see Tab. SIV). These naturally fall into three groups that are offsprings
of the three nearest neighbor shells in the pyrochlore parent, namely J1−4, J5−10 and J11−17, respectively (note that
J11a and J11b have the same length, but are crystallographically different). According to the calculations (see results
in Tab. SV and Fig. S3), the two parameters J3,4 are one to two orders of magnitude stronger than everything else,
which allows us to separate the problem into two different energy scales: one describing the spin dynamics inside a
∆-chain and the other describing the interactions between the chains. The same separation allows us to neglect all
interactions between the spins in the same chain (marked as “in-chain” in the Tab. SIV) except those two.

We furthermore neglect inter-chain interactions that cancel out nearly exactly because of the AFM ordering of the
Cu(1) spins inside each chain (“symmetric” in Tab. SIV). Finally, we left out J17 because it is the longest-range
interaction and would require additional doubling of the supercell used for all other calculations. This leaves us with
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FIG. S3. Comparison between GGA+U , U = 8 eV, JH = 1 eV total energies (per Cu2+) for Cu2Cl(OH)3 and the energies
calculated from the Heisenberg Hamiltonian with the ten exchange couplings.
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U (eV) J1 (K) J2 (K) J3 (K) J4 (K) J5 (K) J6 (K) J7 (K) J8 (K)

7 20.(1.5) −7.1(1.8) 128.0(1.2) 411.5(8) 0.4(9) 0.8(9) 0.3(1.1) −0.1(6)
7.5 11.9(1.3) −8.3(1.6) 116.7(1.1) 379.6(7) 0.3(8) 0.6(7) 0.3(1.0) −0.1(5)

8 4.5(1.0) −9.2(1.2) 106.3(8) 349.5(6) 0.2(6) 0.5(6) 0.3(7) 0.0(4)
8.24 1.3(9) -9.6(1.1) 102.0(7) 336.0(6) 0.2(6) 0.4(6) 0.3(7) 0.0(4)

8.5 −2.0(8) −9.9(1.0) 96.8(6) 321.3(5) 0.1(5) 0.3(5) 0.3(6) 0.0(3)

dCu (Å) 3.016 3.121 3.365 3.432 5.032 5.464 5.664 5.747

U (eV) J11a (K) J11b (K) J12 (K) J13 (K) J14 (K) θCW (K)

7 −0.4(6) 19.4(9) −0.1(9) −1.5(9) −0.5(5) −173
7.5 −0.3(5) 17.8(8) −0.1(1.0) −1.3(8) −0.4(4) −156

8 −0.2(4) 16.3(6) −0.1(6) −1.2(6) −0.3(3) −141
8.24 –0.2(4) 15.6(6) –0.1(6) –1.1(6) –0.3(3) –134

8.5 −0.2(3) 14.9(5) −0.1(4) −1.1(5) −0.2(3) −127

dCu (Å) 6.028 6.028 6.079 6.24146 6.45258

TABLE SV. Exchange couplings of atacamite Cu2Cl(OH)3 determined by energy mapping. The Hund rule coupling was fixed
at JH = 1 eV. A

√
2× 1×

√
2 supercell was used. The line in bold face marks the interpolated set of couplings that yields the

experimental Curie-Weiss temperature.

six parameters, shown in Fig. S4.

THEORETICAL RESULTS: CLASSICAL MEAN FIELD THEORY OF AN INDIVIDUAL ∆-CHAIN AND
A COLLECTION OF CHAINS

In the following, we will consider the classical ground state expected for a J , J ′ ∆-chain with antiferromagnetic J
and J ′. As J and J ′ are much larger than the other exchange couplings determined for atacamite, we will subsequently
assume this ground state spin configuration to be rigidly frozen at T = 0 and determine how the effective magnetic
moments of the ∆-chain are tilted by the application of a magnetic field.

As a first step, we consider a single ∆-chain as depicted in Fig. S5 (a). The angles that the four moments in the

FIG. S4. Cu lattice of atacamite Cu2Cl(OH)3 with the exchange paths which are active in the tilting of the ground state
magnetic moments in a magnetic field H.
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translational unit form with the b axis are denoted as α, α′, β and β′. We use the notation for the interactions as
introduced for atacamite in Fig. 1 of the main text. The coupling between Cu(1) atoms along the chain is J ≡ J4

where J4 = 336 K, the coupling between Cu(1) and Cu(2) is J ′ ≡ J3 where J3 = 102 K. We will normalize to a single
Cu site and first calculate the energy E per Cu:

4E = 2JS1 · S′1 + J ′(S1 · S2 + S2 · S′1 + S′1 · S′2 + S′1 · S2)

= 2J cos (α− α′) + J [cos (α− β) + cos (α′ − β)

+ cos (α′ − β′) + cos (α− β′)]
(S1)

Without spin orbit coupling, the spin space is rotationally invariant, so we can impose one directional constraint. We
choose α′ = −α. Then

4E = 2J cos 2α+ J ′[cos (α− β) + cos (α+ β)

+ cos (α− β′) + cos (α+ β′)]

= 2J cos 2α+ 2J ′[cosα cosβ + cosα cosβ′]

(S2)

Minimizing this with respect to β and β′ we see right away that β = β′ = 0. Using this we have

2E = J cos 2α+ 2J ′ cosα (S3)

which we minimize with respect to α:

J sin 2α+ J ′ sinα = 0 (S4)

This yields the equilibrium canting angle

α = cos−1

(
− J

′

2J

)
. (S5)

If J ′ = 0, the Cu(1) form a perfect Néel chain, if J ′ = J , α = 2π/3 = 120◦, and if J ′ ≥ 2J , the Cu(1) spins are
aligned along b. With the values J ′ = 102 K and J = 336 K, this means α ≈ 98.7◦ (see Fig. S5 (b)). Note that this
angle α ≈ 98.7◦ means that the projection of the S1 moment on the b axis is ∝ cosα = −0.152, i.e. it is opposed to
the S2 moment, in agreement with the antiferromagnetic coupling J3.

We start with the classical ground state expected for a J , J ′ ∆-chain with antiferromagnetic J and J ′. As J and
J ′ are much larger than the other exchange coupling determined for atacamite, we will subsequently assume this
ground state spin configuration to be rigidly frozen at T = 0 and determine how the effective magnetic moments of
the ∆-chain are tilted by the application of a magnetic field.

Before proceeding, we make two observations. First, Heisenberg interchain interactions involving Cu(1) effectively
cancel out. Indeed, neighboring ∆-chains are staggered by half a translational unit, so any spin that interacts with
a Cu(1) in a given neighboring ∆-chain will also interact with another Cu(1) that has an opposite spin. Given
that the very strong Cu(1)-Cu(1) intrachain interactions keep the Cu(1) chain approximately antiferromagnetic,
these two interactions almost cancel out (“symmetric” in Tab. SIV). Moreover, Cu(1) and Cu(2) spins are nearly

FIG. S5. (a) Notations to fix the classical ground state of the ∆-chain. The rectangle indicates the translational unit. (b)
Ground state spin structure found in atacamite, using the calculated exchange coupling values.
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orthogonal, so any interchain Heisenberg interaction of that kind (like J2 and J7) is multiplied by a factor of the
order of cos 98.7◦ = −0.152. We neglect all these interactions, as well as interactions marked “small” in the Tab. SIV,
which are numerically less than 1 K, and combine the remaining interactions into JA = J1/2 + J13/2, JB = J1/2,
JC = J11b/2 + J12/2 where factors 1/2 ensure counting interaction per Cu even though the couplings involve only
Cu(2). However, for consistency we neglect J12 in this formula as it is too small to be calculated reliably (see
Table SV). The resulting A, B, C triangular lattice is shown in the inset of Fig. S6 (a).

Next, we replace each ∆-chain with a single classical magnetic object with Meff per Cu calculated as

Meff(H) =
M1(H) cosα+M2(H)

2
=
M2(H)

2
− J ′M1(H)

4J
. (S6)

where M1,2 are effective (fluctuation-reduced) magnetic moments on the corresponding Cu sites. As discussed in the
main text, the moments in H = 0 are known from the experiment to be M1(0) = 0.34µB and M2(0) = 0.59µB, so that
Meff(0) = 0.27µB. In a sufficiently high field these fluctuations are suppressed, in the first approximation linearly [S7],
so that the moments become M1 = M2 = 1µB again. In this field, Meff(Hsat) = (1/2 − J ′/4J)µB = 0.42µB. The
latter number agrees very well with the experimental value at the plateau, so we conclude that the plateau field
H2 ≈ Hsat. With this in mind, we take

M1(H) ≈
(

0.34 + 0.66
H

H2

)
µB

M2(H) ≈
(

0.59 + 0.41
H

H2

)
µB

Meff(H) ≈
(

0.27 + 0.15
H

H2

)
µB

(S7)

Note that in this derivation we assumed that the effective magnetic moments are suppressed by the fluctuations,
but the exchange interactions are not. Another choice would be to write the effective interations as JiM ·M′/4
(the factor of 1/4 accounting for the electron g-factor), in which case J and J ′ in Eq. (S6) should be replaced by
Jeff(H) = JM2

1 (H)/(4µ2
B) = and J ′eff(H) = J ′M1(H)M2(H)/(4µ2

B) so that J ′eff(H)/Jeff(H) = J ′M2(H)/JM1(H),
and

Meff(H) =
M2(H)

2
− J ′M1(H)

4J

M2(H)

M1(H)
= M2(H)

(1

2
− J ′

4J

)
= 0.42M2(H) ≈

(
0.25 + 0.17

H

H2

) (S8)

FIG. S6. (a) Effective three-dimensional couplings for atacamite. The inset shows the fully anisotropic triangular lattice formed
by the three effective couplings JA, JB and JC. (b) Illustration of the effective model for atacamite in the ac plane, obtained by
assuming a fixed effective moment Meff for the strongly coupled ∆-chains. The magnetic order observed by neutrons implies a
stripe order of the effective spin and coincides with the classical ground state of the JA-JB-JC model determined in (a).
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Barring a microscopic theory, it is hard to chose one approximation over the other. We will use the latter in the rest
of the paper, but qualitatively the results are the same.

Upon replacing each ∆-chain with one classical moment Meff(H), we have a model equivalent, in MFA, to a classical
2D triangular lattice Heisenberg model, with three different exchange couplings, with one of them, JC, dominant.
The ground state is a linear AFM Néel chain in JC direction, ferromagnetically aligned along JA. The situation is
illustrated in Fig. S6 (b). There, each sphere represents a ∆-chain along b with effective moment Meff per Cu, and the
red, yellow and green bonds are the interchain interactions. Since JB . JA � JC, we leave only the latter, replacing
it with J∆−∆ & JC, absorbing all interactions in one parameter. The problem is then reduced to a 1D AF chain
with the Heisenberg energy J∆−∆M

2
eff(H) cos θ/4, where θ is the angle between the net moment of the two ∆-chains

connected by J∆−∆. We now write the total energy of the system in an external field H as

E = −Meff(H)H sinφ− 1

4
J∆−∆M

2
2 (H) cos 2φ+ Eaniso

Eaniso = K cos2 φ
(S9)

where φ is the canting angle towards H (note that the J∆−∆ interaction is only between Cu(2); therefore, only M2(H)
enters the Heisenberg term; Heisenberg interaction for Cu(2) is 2J∆−∆ but counting of the Hamiltonian per Cu means
another factor 1/2). Minimizing the energy without the small anisotropic term with respect to φ, we get

sinφ = HMeff(H)/M2
2 (H)J∆−∆

E(H) = −1

4
J∆−∆M

2
2 (H)−H2M2

eff(H)/2M2
2 (H)J∆−∆.

(S10)

If the field is applied along the easy axis, as it is in the experiment, the classical spin flop occurs at the Hsf such that

|E(H1)| = Eaniso, so Hsf ≈ M2(0)
Meff (0)

√
2J∆−∆K. Taking the experimental value Hsf = 3.5 T, and the calculated value

J∆−∆ ≈ JC + JB ≈ 8.5 K, we get K ∼ 0.04 K.
Now, neglecting the small anisotropy term, we calculate the total magnetization as a function of field:

Mtotal = Meff(H) sinφ = HM2
eff(H)/M2

2 (H)J∆−∆ (S11)

=
H

12.7

(
0.27 + 0.15 H

H2

)2(
0.59 + 0.41 H

H2

)2 µB

T

Note that 8.5 K is equivalent to 12.7 T. This expression agrees well with the experiment (see Fig. 3 (d) in the main
text), and gives the “plateau” field H2, defined in such a way that the magnetic moment at H = H2 is 0.42 µB to be
30.1 T, to be compared to the experimental number of 31.5 T.

We can also consider the plateau regime itself. Its slope is determined by the energy balance inside an individual
∆-chain in an external field. We need to modify Eq. (S3) to account for the Zeeman energy (note that the Cu magnetic
moments at this point are already quenched to 1 µB):

2E = J cos 2α+ 2J ′ cosα− 2MeffH (S12)

= J cos 2α+ 2J ′ cosα− (1 + cosα)µBH (S13)

After minimization, we find that now instead of Meff = (1/2 − J ′/4J)µB = 0.42µB, we get Meff = (1/2 − J ′/4J +
H/4J)µB = 0.42µB + (0.0007µB/T)H. This is nearly an order of magnitude too small (the experimental number is
0.0022µB/T), but it is qualitatively correct.

EXPERIMENTAL RESULTS: METAMAGNETIC TRANSITION

The magnetization measurements with the magnetic field H aligned along the b axis reveal a complex metamagnetic
transition (see Fig. S7 (a)). While at temperatures up to T ∼ 6 K there is a two-step transition, at higher temperatures
only a single transition is observed. Magnetic hysteresis arises because of the pulsed field character of the measurement.
The metamagnetic transition can also be found in the low-field magnetostriction data after smoothing of the data
(see Fig. S7 (b)). Here, a shallow minimum in ∆L/L appears at the upper field of the two-step transition.

This type of metamagnetic transition is consistent with the magnetic structure (see Fig. S1), with the easy magnetic
axis for the larger magnetic moment on the Cu(2) ions being the b axis. Possibly, the two-step transition reflects that
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FIG. S7. (color online) The magnetization of atacamite Cu2Cl(OH)3 at low fields H ‖ b axis and temperatures between 0.65
and 10 K. The magnetization data for temperatures T > 0.65 K were shifted along the vertical axis by an offset of +0.01µB / Cu
respectively (a). The metamagnetic transition can also be found in the low-field magnetostriction data (smoothed) (b). In (c),
the magnetization measured at T = 1.8 K in pulsed magnetic fields (pulse-field up only) is shown together with a magnetization
measured in a SQUID magnetometer at T = 2.0 K; for details see text.

the Cu(1) ions also undergo a metamagnetic transition, eventually at slightly different (higher) fields, following the
Cu(2) ions.

In Fig. S7 (c), we present the low-field region of the magnetization measured at T = 1.8 K in pulsed magnetic
fields (pulse-field up only) together with a magnetization measured in a SQUID magnetometer at T = 2.0 K. The
metamagnetic transition is observed by both techniques.

THEORETICAL RESULTS: EXACT DIAGONALIZATION FOR THE SAWTOOTH CHAIN WITH
IN-CHAIN FRUSTRATION

The reduced magnetic moments that are measured along the chain axis could suggest the existence of an additional
degree of frustration in the system. To investigate such a scenario, we have studied the sawtooth chain in the presence
of an additional, in-chain, next-nearest-neighbor coupling (NNN) Jf as depicted in Fig. S8 using full diagonalization
and the Lanczos algorithm for system sizes up to L = 28 spins. The Hamiltonian of the system reads

H =
∑

i=even

(JSi · Si+2 + JfSi · Si+4) +
∑
i

(J ′Si · Si+1 − hSz
i ) . (S14)

In finite systems with L spins, the magnetization will necessarily display quantization steps of minimum distance
2/L. Connecting the middle point of these steps would provide a good estimate for the magnetization curve in the
thermodynamic limit [S8]. In Fig. S9, we present the magnetization vs. the magnetic field for the system described by
the Hamiltonian in Eq. (S14). We fix the J ′ coupling to J ′ = 2J , which ensures the maximum magnetization plateau
at half saturation, M = Msat/2, with Msat = L/2, for a vanishing Jf [S9]. For Jf = 0, the plateau at M = Msat/2
extends from h ' 2.9J up to h ' 4J , after which it jumps directly to the saturation value Msat. As the NNN coupling

FIG. S8. The sawtooth chain in the presence of an additional in-chain NNN frustrating coupling. Neighboring spins along the
chains are coupled via J , while the NNN ones via Jf . Finally, spins are also coupled in the sawtooth pattern via J ′.
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is switched on, the magnetization plateau shrinks with increasing Jf . The same behavior is observed for other values
of the ratio J ′/J , which strongly suggests that an in-chain frustration as described by the Hamiltonian in Eq. (S14)
would reduce the size of a magnetization plateau and not stabilize it.
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FIG. S9. Zero-temperature magnetization versus the magnetic field for J ′ = 2J and Jf/J = 0.0, 0.2, 0.5 for a system of
L = 28 sites, evaluated using full and Lanczos diagonalization. The magnetization axis is normalized with the saturation value
Msat = L/2. Solid lines should give an estimate of the magnetization curve in the thermodynamic limit, while dashed lines
depict the actually computed magnetization curve.

THEORETICAL RESULTS: EXACT DIAGONALIZATION FOR A SAWTOOTH CHAIN AT WEAK J ′/J

Here, we briefly comment on our results from zero-temperature exact diagonalization (ED) of the ∆-chain. We have
evaluated the magnetization in the low-field regime using ED on up to L = 28 sites at small J ′/J = 0.33. The results
are shown in Fig. S10. With ED, one must not break a continuous symmetry, because of the finite system size. More
precisely, in terms of the limits discussed in the main text, limh→0〈Sz〉(L, h, T ) = 0 for any finite L and T . This is
certainly true in Fig. S10. However, this figure also encodes another information, which can be extracted considering
the finite but small field h?(L), roughly set by the edge of the jump to the flat region, developing at M0(L) ∼ 0.43
as L increases. The specific value of h?(L) is dictated by details of the level spacings. With this, Fig. S10 strongly
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FIG. S10. Low-field magnetization of the ∆-chain normalized to the saturation value, at zero temperature, for J ′/J = 0.33,
and for different system sizes L, obtained via ED.
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suggests that (h?(L),M0(L))→ (0,∼0.43), as L→∞. I.e., while accepting the limitations of small system sizes, ED
is consistent with SU(2) symmetry breaking in the thermodynamic limit at T = 0. Conceptually, this agrees with the
conclusions from iTEBD in the main text. Regarding the value of the ordered moment for the J ′/J selected, it is in
line with the iTEBD and the classical analysis.
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