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H. O. Jeschke6, Subhendra D. Mahanti1, T. Birol3, F. F. Assaad4, X. Ke1

I. Experimental methods

Single crystals of Botallackite Cu2(OH)3Br samples were synthesized using a 

conventional hydrothermal method which was detailed in an earlier report [1]. This 

material crystalizes in the monoclinic space group P21/m (No. 11) with lattice constants 

a = 5.661 Å, b = 6.160 Å, c = 6.083 Å and crystal angles 𝛼 = 𝛾 = 90°, 𝛽 = 93.6° at 

room temperature [1,2]. Magnetization and specific heat were measured using a 

SQUID magnetometer and a Physical Property Measurement System (Quantum 

Design) respectively. Neutron diffraction experiments were performed using the HB-

3A four-circle diffractometer (λ = 1.5426 Å) at High Flux Isotope Reactor (HFIR) in 

Oak Ridge National Laboratory (ORNL). Inelastic neutron scattering measurements 

were conducted on the HYSPEC time-of-flight spectrometer at Spallation Neutron 

Source (SNS) in ORNL. The incident neutron energy was fixed at Ei = 15 meV. The 

samples were oriented in the (H K 0) scattering plane, where (H K L) are in units of 

reciprocal lattice vectors 2/a, 2/b, and 2/c. Co-aligned samples of ~ 1.2 grams were 

top-loaded into a closed-cycle refrigerator. A total of 151 rocking scans were measured

with samples rotated about the c-axis over 150° with 1° step size. The measurements 

were performed at T = 5 K and 100 K, with the latter data used for background 

subtraction from the lower temperature data. We followed the detailed procedures 

reported in Ref. [3] to subtract both temperature-independent background and phonon 
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scattering background in order to obtain the intrinsic magnetic inelastic scattering 

signal.  

II. Rietveld refinement of single crystal neutron diffraction data on Cu2(OH)3Br

Figure S1 Plots of the comparison of observed and calculated intensities via Rietveld refinement 

of various (a) nuclear and (b) magnetic diffraction peaks measured at T = 4.6 K. Red lines are 

visual guides.

III. Linear Spin Wave fitting

By performing linear spin wave (LSW) fitting to the measured inelastic neutron scattering 

spectra using SpinW [4], we aim to have a preliminary understanding of the spin dynamics of 

Cu2(OH)3Br and extract the parameters of the spin Hamiltonian. 1) Considering that the magnetic 

excitation exhibits nearly dispersionless features along both H and L directions (Fig. 2a&b), we 

first tried to estimate the appropriate intra-chain couplings J1, J2 while setting the inter-chain 

couplings J3 and J4 to be zero. In Fig. S2(a), we show the simulation result with J1 = -2.6 meV and 

J2 = 9.9 meV. As expected, both magnon dispersions are gapless. One can see that the calculated 

magnon dispersion associated with the ferromagnetic chain nearly captures the experimental data 
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with similar bandwidth, while the bandwidth of the calculated magnon dispersion for the 

antiferromagnetic chain is larger than the experimental observations. 2) To account for the gapped 

behavior, the continuous spin rotational symmetry needs to be broken. For a quantum spin-1/2 

system, we considered a Heisenberg-Ising type exchange anisotropy (XXZ). Note that strong 

magnetic anisotropy behavior has been observed in magnetic susceptibility measurements [1]. 

Figure S2(b) presents the simulation results using an XXZ type Hamiltonian,

𝐻 = ∑ 𝐽𝑖𝑗  [𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦

𝑆𝑗
𝑦

+ (1 + Δ𝐴𝐹,𝐹)𝑆𝑖
𝑧𝑆𝑗

𝑧]

𝑖𝑗

, ΔAF = 0.045, Δ𝐹 = 0.173;

A small exchange anisotropy Δ is sufficient to open a large gap at the zone center of the 

antiferromagnetic branch. 3) In order to account for the gaps near K = -0.5 and -1.5 observed in 

the ferromagnetic branch (Fig. 2c), we need to include the next-nearest-neighbor Dzyaloshinskii–

Moriya (DM) interaction (D = 1 meV) (between neighboring ferromagnetic and antiferromagnetic 

spin chains) in the Hamiltonian. Figure S2(c) presents the simulation results with the DM 

interaction included, which agrees well with the experimental data shown in Fig. 2(c). 4) As the 

system exhibits long-range order, one also needs to take into account the inter-chain couplings J3

and J4, even though they are relatively weak. The molecular field arising from the ferromagnetic 

(antiferromagnetic) chains can induce a gap in the magnetic excitation of the neighboring 

antiferromagnetic (ferromagnetic) chains. This is particularly true for the magnetic excitation of 

antiferromagnetic chains, which is further supported by the quantum Monte Carlo simulation as 

shown in Fig. 4. The LSW simulation result with the full set of parameters described in the main 

text is shown in Fig. 2(d) and its comparison with the experimental data is presented in Fig. 2(c).

It is worth noting that, although it is difficult to precisely determine the inter-chain 

couplings J3 and J4 due to the nearly dispersionless excitation along the H direction, the overall 
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good agreement between the experimental data and the LSW fitting with or without J3 and J4

supports the quasi-1D nature of the magnetic coupling between Cu2+ ions.    

Figure S2 Linear Spin Wave simulation results of different model Hamiltonians. (a) An isotropic 

Heisenberg model with only intra-chain couplings J1-J2. (b) A Heisenberg-Ising (XXZ) model with 

only intra-chain couplings J1-J2. (c) A Heisenberg-Ising model with nearest neighbor intra-chain 

couplings J1-J2 (J1 = -2.6 meV, J2 = 9.9 meV), inter-chain coupling (J3 = 1.2 meV, J4 = 0.3 meV)

and Dzyaloshinskii–Moriya (D = 1 meV) interaction.

IV. Two magnon continuum

To exclude the possibility that the observed continuum is a two-magnon continuum instead 

of spinon continuum, we calculate the upper- and lower- bounds of the two-magnon continuum. 

These bounds are defined as the maximum and minimum of the total energy transfer with the 

momentum transfer conserved [5].

{
𝑞𝑡 = 𝑞1 + 𝑞2

𝐸𝑏𝑜𝑢𝑛𝑑(𝑞𝑡) = [min(𝐸1 + 𝐸2) max(𝐸1 + 𝐸2)]

In Fig. S3, we show the calculated two-magnon spectra bounds, which are plotted together with 

the experimental data. The white and red dashed lines indicate the lower and upper bounds

respectively. Spectra bounds for two-magnons from the magnetic excitation of ferromagnetic 

chains, antiferromagnetic chains, and ferromagnetic-antiferromagnetic chains are presented in Fig. 

S3(a), Fig. S3(b) and Fig. S3(c) respectively. It is known that that two-magnon continuum tends 
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to have large spectral weight near the lower bounds [5,6]. Nevertheless, none of them can account 

for the continuum observed in the experiment. In contrast, in Fig. S3(d) we plot the spectra bounds 

calculated using the modified Muller Ansatz (See. Sec. VI). The spectral weight of the Muller 

Ansatz is larger near its lower boundary [7], which agrees well with our experimental observations. 

Thus, we conclude that the experimentally observed continuum cannot be associated with a two-

magnon process; instead, it should be associated with a typical spinon continuum observed in 

quasi-1D quantum antiferromagnets with S=1/2.

Figure S3 Two-magnon spectra bounds plotted together with experimental data. (a) Spectra 

bounds of two-magnons for the ferromagnetic branch. (b) Spectra bounds of two-magnons for the 
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antiferromagnetic branch. (c) Spectra bounds of two-magnons for both ferromagnetic and 

antiferromagnetic branches. (d) Spectra bounds of the modified Muller Ansatz.

V. Density Functional Theory (DFT) calculation

To understand the atomic and electronic structures and the nature of exchange 

coupling, density functional theory (DFT) calculations were performed using Projector 

Augmented Wave method implemented in the Vienna Ab Initio Simulation Package 

(VASP) [8-11]. PBEsol approximation to the exchange correlation functional [12] was 

used and an 8 x 8 x 8 k-point grid was used in the numerical calculations. To properly 

reproduce the local magnetic moments on Cu2+ ions, the rotationally invariant DFT + 

U scheme with U = 4 eV and J = 0 eV was used. Total energy calculations for several 

magnetic configurations (Fig. S4) were carried out and used to fit the parameters of an 

isotropic Heisenberg model. We used a two-dimensional (2D) model with both intra-

chain and inter-chain interactions. The 2D model, which ignores interactions between 

Cu spins belonging to neighboring layers along the c-axis, is reasonable because of the 

absence of any shared oxygen or bromine bridging ligands between the Cu2+ ions on 

adjacent layers.
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Figure S4 Color-coded electron density profile from Density Function Theory (DFT+U with U = 

4 eV) calculations using PBEsol. Spin-up electrons are colored in yellow and spin-down electrons 

are colored in light-blue. Eight copper ions in the magnetic unit cell are numbered. The spin 

configuration #18 highlighted in red box of the right table has the lowest energy. This spin 

configuration is the same as observed by neutron diffraction experiment (Sec. I).

In order to understand the effect of U on the exchange parameters we also performed 

DFT+U calculations with different values of U and obtained qualitatively similar results. That is, 

J1 and J2 are the most dominant couplings, which lead to ferromagnetic and antiferromagnetic 

chains of spins; the inter-chain couplings between neighboring ferromagnetic and 

antiferromagnetic chains, J3 and J4, are weak and antiferromagnetic, while further-neighbor inter-

chain couplings between neighboring antiferromagnetic chains or between neighboring 

ferromagnetic chains, J5 and J6, are even weaker and negligible, as shown in Fig. S5.

Figure S5 DFT calculated exchange interactions (up to J6) using different U values. Left is an 

illustration of different exchange interactions (Js). Note that the relative ratios of Js values are 

consistent with our LSW fitting results (See Sec. II) and J5 and J6 are much smaller compared to 

J1 up to J4. 

In order to check the sensitivity of the exchange parameters to different approximations to 

the exchange-correlation potential within DFT+U, we performed GGA+U calculations within the 

full potential local orbital (FPLO) basis [13]. The table shown in Fig. S6 presents the calculated 

exchange couplings with different U values. This result reaffirms the existence of ferromagnetic 

and antiferromagnetic chains and it indicates that there are finite antiferromagnetic couplings 

between the chains. Here we note that in contrast to the results discussed above, the inter-chain 

coupling between neighboring antiferromagnetic chains J5 obtained using GGA+U approximation 
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is relatively large compared to other inter-chain couplings J3, J4, and J6. LSW calculations using 

these sets of exchange parameters yield qualitatively distinct dispersion features. In addition, the 

large J5 would lead to a negative sign problem in quantum Monte Carlo simulations presented 

below. The discrepancy in J5 obtained in DFT calculations using GGA+U and PBEsol+U

approximations warrants further careful investigation.  

                             
Figure S6 A table listing exchange couplings calculated using DFT with GGA+U approximation.

Exchange parameters are calculated with GGA+U as function of interaction strength U and for 

fixed JH = 1 eV. 

VI. Quantum Monte Carlo (QMC) Simulations

(a) QMC Method

We have used the Algorithms for Lattice Fermions (ALF)-implementation [14] of the finite 

temperature auxiliary field quantum Monte Carlo [14,15] to carry out the numerical simulations. 

While this algorithm is formulated for fermionic systems, it can also be used to simulate non-

frustrated spin systems. Consider the following sipn-1/2 model on an arbitrary lattice

�̂� = ∑ 𝐽𝑖𝑗𝑆𝑖 ⋅

𝑖,𝑗

𝑆𝑗 

We chose a Fermionic representation of the spin operators, 𝑆𝑖 =
1

2
𝑓𝑖

†�⃗�𝑓𝑖   with 𝑓𝑖
† =

(𝑓𝑖,↑
†  , 𝑓𝑖,↓

† )  and constraint 𝑓𝑖
†𝑓𝑖 = 1. The above Hamiltonian can then be rewritten as:
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�̂�𝐹 = �̂�𝐽 + �̂�𝑈 

with �̂�𝐽 = − ∑
𝐽𝑖𝑗

4
 (𝑓𝑖

†𝑓𝑗 + 𝑓𝑗
†𝑓𝑖)

2

𝑖    and  �̂�𝑈 =
𝑈

2
∑ (𝑓𝑖

†𝑓𝑖 − 1)
2

𝑖

In the limit 𝑈 → ∞, the constraint 𝑓𝑖
†𝑓𝑖 = 1 becomes exact, and �̂�𝐹 reduces to the desired 

Hamiltonian �̂�. Importantly, ⌈ �̂�𝑈 , �̂�𝐽⌉ = 0 so that the constraint is very efficiently imposed. In 

fact, in our simulations the double occupancy takes the value 〈𝑓𝑖,↑
† 𝑓𝑖,↑𝑓𝑖,↓

† 𝑓𝑖,↓〉 = 0.000145 ±

0.0002   for the choice  U/ 𝐽2 =1 and 𝛽𝐽2 = 20 .   𝐽2 is the intra-chain coupling of the 

antiferromagnetic chains. The fermionic Hamiltonian is written in terms of a sum of perfect 

squares and complies with the standard of the ALF-library so that it is straightforward to 

implement it [14]. The absence of negative sign problem follows from particle-hole symmetry and 

the following restriction for the choice of the couplings. Assume that it is possible to find a 

bipartition of the graph into two subgraphs, A and B. Provided that the magnetic coupling between 

A and B is antiferromagnetic and that it is ferromagnetic between lattice sites within the same 

graph, then one can demonstrate the absence of negative sign problem. To carry out the Wick 

rotation from imaginary to real time, we use the stochastic maximum entropy [16] implementation 

of the ALF-library. We have taken into account the covariance matrix and produced high quality 

data with relative error below 0.5%. For the runs we have used an imaginary time step of ∆𝜏𝐽2 =

0.1. 

(b) Calculation of dynamical spin structure factor

Let 𝑹 denote the unit cell and 𝛼 the Cu2+ position in the unit cell. The position of Cu2+ ion

reads 𝑹 + 𝒓𝛼 . 𝑟1 = (0, 0), 𝑟2 = (0.5, 0), 𝑟3 = (0.25, 0.5), 𝑟4 = (0.75, .50). Each orbital 

accommodates a spin-1/2 degree of freedom, �̂�𝛼(𝑹). Consider
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�̂�𝛼(𝒒) =
1

√𝑁
∑ 𝑒𝑖𝒒⋅ (𝑹+𝒓𝛽)𝑈𝛼,𝛽�̂�𝛽(𝑹) 

𝑅,𝛽

and the matrix 𝑈 is yet to be specified. Generally, we can compute

𝑆𝛼(𝒒, 𝜏) = 〈�̂�𝛼(𝒒, 𝜏) ⋅ �̂�𝛼
†(𝒒, 0) 〉

and the corresponding spectra function is obtained with analytical continuations:

𝑆𝛼(𝒒, 𝜏) =
1

𝜋
∫ 𝑑𝜔𝑒−𝜏𝜔𝑆𝛼(𝒒, 𝜔) =

1

𝜋
∫ 𝑑𝜔

𝑒−𝜏𝜔

1 − 𝑒−𝛽𝜔
𝜒𝛼

′′(𝑞, 𝜔)   

To best capture the physics of our system, we will consider three quantities

1

𝑁𝛼
∑ 𝑆𝛼(𝐪, τ) = 𝑆𝑡𝑜𝑡(𝐪, τ)

α

with arbitrary unitary matrix, 𝑈𝑈† = 1. 

For the antiferromagnetic spin chains, �̂�𝐴𝐹(𝒒 = (2𝜋, 𝐾)) =
1

√2𝐿𝑥
∑ 𝑒𝑖𝒒⋅ (𝑹+𝒓𝛽)

𝑅𝑥,𝛽=1,2 �̂�𝛽; 

For the ferromagnetic spin chains, �̂�𝐹(𝒒 = (2𝜋, 𝐾)) =
1

√2𝐿𝑥
∑ 𝑒𝑖𝒒⋅ (𝑹+𝒓𝛽)

𝑅𝑥,𝛽=3,4 �̂�𝛽; 

Finally, the dynamical spin structure factor in the extended zone scheme is obtained by considering 

�̂�𝐸(𝒒 = (2𝜋, 𝐾)) =
1

√4𝑁
∑ 𝑒𝑖𝒒⋅ (𝑹+𝒓𝛽)

𝑅,𝛽=1…4 �̂�𝛽 .

(c) Magnon Line width of ferromagnetic quantum spin chains
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Figure S7 Magnon line width of ferromagnetic quantum spin chains. The line width at each K 

point is obtained by fitting the I(E) spectra of ferromagnetic chains obtained via QMC simulation 

using a Lorentzian fit. The inter-chain interaction between ferromagnetic chain and neighboring 

antiferromagnetic chains is 0.2J2. Broader magnon line width is observed near the zone boundary

(K = 1).

VI.     Random Phase Approximation (RPA) Calculations

The Hamiltonian of interacting spin chains is written as 

𝐻 = 𝐻1 + 𝐻𝑖𝑛𝑡

where the intra-chain interaction 𝐻1

𝐻1 = ∑ 𝐽1(�⃗⃗�)𝑆
�⃗⃗�

(𝐹)

�⃗⃗�

∙ 𝑆
−�⃗⃗�

(𝐹)
+ ∑ 𝐽2(�⃗⃗�)𝑆

�⃗⃗�

(𝐴𝐹)

�⃗⃗�

∙ 𝑆
−�⃗⃗�

(𝐴𝐹)

with 𝐽1(�⃗⃗�) = 2𝐽1cos (
𝑘𝑦𝑏

2
)  and 𝐽2(�⃗⃗�) = 2𝐽2cos (

𝑘𝑦𝑏

2
).   For our system  𝐽1 < 0 , ferromagnetic and  

𝐽2 > 0, antiferromagnetic.

And the inter-chain interaction 𝐻𝑖𝑛𝑡
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𝐻𝑖𝑛𝑡 = ∑  𝐽⊥(�⃗⃗�)

�⃗⃗�

𝑆
�⃗⃗�

(𝐹)
∙ 𝑆−𝑘

(𝐴𝐹)

with  𝐽⊥(�⃗⃗�) = 4(𝐽4 + 𝐽3) cos (
𝑘𝑥𝑎

2
) cos (

𝑘𝑦𝑏

4
)

In order to calculate dynamic susceptibility in RPA, denoted as 𝜒𝑅𝑃𝐴
𝐹,𝐴𝐹(�⃗⃗�, 𝜔), we apply an 

external field (space and time dependent) �⃗⃗⃗�𝑒𝑥𝑡(�⃗⃗�, 𝜔). The total Hamiltonian becomes (we have 

taken 𝑔𝜇𝐵 = 1).

𝐻 = 𝐻1 + 𝐻𝑖𝑛𝑡 − ∑ �⃗⃗⃗�𝑒𝑥𝑡(�⃗⃗�, 𝜔). (𝑆
�⃗⃗�

(𝐹)
+ 𝑆

�⃗⃗�

(𝐴𝐹)
)

𝑘

First, we define the dynamic susceptibilities (isotropic in spin space) of non-interacting 

ferromagnetic and antiferromagnetic chains:

〈𝑆
�⃗⃗�

(𝐹)〉 = 𝜒1𝐷
𝐹 (�⃗⃗�, 𝜔)𝐻𝑒𝑥𝑡(�⃗⃗�, 𝜔);

〈𝑆
�⃗⃗�

(𝐴𝐹)〉 = 𝜒1𝐷
𝐴𝐹(�⃗⃗�, 𝜔)𝐻𝑒𝑥𝑡(�⃗⃗�, 𝜔)

Since the chains are one-dimensional, 𝜒1𝐷
𝐹,𝐴𝐹(�⃗⃗�, 𝜔) depend only on the component of �⃗⃗� along the 

chain direction (𝑘∥ ≡ 𝑘𝑦), 𝜒1𝐷
𝐹,𝐴𝐹(𝑘∥, 𝜔). Next, we introduce the coupling between ferromagnetic

and antiferromagnetic chains through an effective field approximation.

〈𝑆
�⃗⃗�

(𝐹)〉 = 𝜒1𝐷
𝐹 (𝑘∥, 𝜔) [𝐻𝑒𝑥𝑡(�⃗⃗�, 𝜔) − 𝐽⊥(𝑘⊥) 〈𝑆

�⃗⃗�

(𝐴𝐹)〉];

〈𝑆
�⃗⃗�

(𝐴𝐹)〉 = 𝜒1𝐷
𝐴𝐹(𝑘∥, 𝜔) [𝐻𝑒𝑥𝑡(�⃗⃗�, 𝜔) − 𝐽⊥(𝑘⊥) 〈𝑆

�⃗⃗�

(𝐹)〉]

Solving for 〈𝑆
�⃗⃗�

(𝐹)〉 and 〈𝑆
�⃗⃗�

(𝐴𝐹)〉 and defining 𝜒𝑅𝑃𝐴
𝐹,𝐴𝐹(�⃗⃗�, 𝜔) as

〈𝑆
�⃗⃗�

(𝐹,𝐴𝐹)〉 = 𝜒𝑅𝑃𝐴
𝐹,𝐴𝐹(�⃗⃗�, 𝜔)𝐻𝑒𝑥𝑡(�⃗⃗�, 𝜔)
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We get

𝜒𝑅𝑃𝐴
𝐹,𝐴𝐹(�⃗⃗�, 𝜔) =

[1 − 𝐽⊥(𝑘⊥)𝜒1𝐷
𝐴𝐹,𝐹(𝑘∥, 𝜔)]𝜒1𝐷

𝐹,𝐴𝐹(𝑘∥, 𝜔)

1 − [ 𝐽⊥(𝑘⊥)]2 𝜒1𝐷
𝐴𝐹(𝑘∥, 𝜔)𝜒1𝐷

𝐹 (𝑘∥, 𝜔)

For 𝜒1𝐷
𝐹 (𝑘∥, 𝜔) of ferromagnetic chains, we use a Lorentz function 

𝜒1𝐷
𝐹(�⃗⃗�, 𝜔) = 𝜒1𝐷

𝐹(𝑘∥, 𝜔) =
1

(𝜔 − 𝜔𝐹(𝑘∥) − 𝑖Γ)

with 𝜔𝐹(𝑘∥) = 2|𝐽1| [1 − cos (
𝑘∥𝑏

2
)] and Γ is the line width.

For 𝜒1𝐷
𝐴𝐹(𝑘∥, 𝜔) of antiferromagnetic chains, we use

𝜒1𝐷
𝐴𝐹(𝑘∥, 𝜔) = 𝜒1𝐷

′𝐴𝐹(𝑘∥, 𝜔) + 𝑖𝜒1𝐷
′′𝐴𝐹(𝑘∥, 𝜔)

where 𝜒1𝐷
′𝐴𝐹(𝑘∥, 𝜔) = ∫ 𝑑𝜔′∞

0
𝑆1𝐷

𝐴𝐹(𝑘∥, 𝜔′)/(𝜔′ − 𝜔) and 𝜒1𝐷
′′𝐴𝐹(𝑘∥, 𝜔) = 𝜋 ∗ 𝑆1𝐷

𝐴𝐹(𝑘∥, 𝜔). 

𝑆1𝐷
𝐴𝐹(𝑘∥, 𝜔) =

𝐶𝜃(𝜔 − 𝜔𝑙(𝑘∥))𝜃(𝜔𝑢(𝑘∥) − 𝜔)

√𝜔2 − 𝜔𝑙
2(𝑘∥)

𝜔𝑢
2 = ( 𝜋𝐽2 ∗ sin(𝑘||𝑏/4))

2
 

𝜔𝑙
2 = √Δg

2 + (
𝜋𝐽2 ∗ sin(𝑘||𝑏/2)

2
)

2

  , Δ𝑔 = 4.0𝑚𝑒𝑉

Here C is a constant,  𝜃 is the Heaviside step function, and 𝜔𝑙 and 𝜔𝑢 are the lower and upper 

energy boundaries of the two-spinon continuum. A nominal value of the spin gap Δ𝑔 is included 

in the expression of 𝜔𝑙. The exchange interactions are: J1 = -2.7 meV, J2 = 6.1 meV and J3 + J4 = 

0.6 meV. Note that here J2 value is (2/) times of that obtained from the LSW fitting. This is due 

to the difference in pre-factor for LSW theory and Muller Ansatz. For simplicity, we set D = 0 in 
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the calculations and introduce nominal gap values in the excitation spectrum to account for the 

effect of Δ and the static mean field due to inter-chain couplings

The total spectrum intensity is written as the product of Bose factor (𝑛𝐵), magnetic form 

factor (𝑓. 𝑓.) and generalized susceptibility (𝜒),

𝐼𝑅𝑃𝐴(�⃗⃗�, 𝜔) =
(𝜒𝑅𝑃𝐴

′′𝐹 (�⃗⃗�, 𝜔) + 𝜒𝑅𝑃𝐴
′′𝐴𝐹(�⃗⃗�, 𝜔))

𝜋
⋅ 𝑛𝐵𝑜𝑠𝑒 ⋅ 𝑓. 𝑓.(𝐶𝑢2+)    

In addition to the comparison of constant E cuts obtained from the experimental and RPA 

calculation results presented in Fig. 5 in the main text, we also perform constant K cuts and 

compare the results as shown in Fig. S8(a, b). For K = -1.45 we see peaks associated with both 

the magnons (~ 4.5 meV) and lower edge of the spinon continuum (~ 11 meV). RPA with an inter-

chain coupling reproduces the entire spectrum well. The small discrepancy in the magnon 

dispersion is due to the neglect of the D term in the RPA calculations. The D term opens a gap in 

the magnon dispersion and shifts the upper branch upwards (Fig. 2(c, d) and Fig. 5(a)). The 

experimental line shapes are also reproduced well within RPA. For K = -1 (i.e., 𝑘∥ = −2𝜋/𝑏), 

J⊥(K) = 0 and RPA reduces to dynamically decoupled F and AF chains. The lower energy peak 

associated with the AF chain agrees reasonably well with theory but the high energy magnon peak 

does not. One cannot ascribe this disagreement to RPA because J⊥(K) = 0. We suggest that the 

single well-defined magnon excitation picture used in the RPA calculation for isolated 1D S = 1/2 

ferromagnetic chains is not adequate. One has to incorporate a temperature and momentum 

dependent magnon line width. Magnon-magnon interactions in quantum S = 1/2 ferromagnetic 

spin chains and thermal fluctuations are important and have to be incorporated into the theory. In 

fact, strong experimental evidence of large spin-wave line width at temperatures 𝑘𝐵𝑇 /|𝐽1|~0.1 −

0.2, particularly for zone boundary magnons was reported by Satija et al in 1D S = 1/2 Heisenberg 



15

ferromagnet CuCl2-DMSO [17]. It was pointed out that the magnitude and q-dependence of the 

line width obtained from theoretical calculations using semi-classical spins [18] were inadequate 

to explain the measurements and the explicit quantum nature of the spins had to be considered [17]. 

Indeed, broadened magnon line width of the ferromagnetic chains near the zone boundary is 

confirmed in quantum Monte Carlo simulation, as shown in Fig. S7.

Figure S8 Magnetic excitation spectra and comparison with RPA calculations. 

Constant Q cuts at K = -1.45 (a) and K = -1 (b) and comparison with RPA calculations. 

Red and black correspond to with and without inter-chain interactions.
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