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A. Structure

We use the crystal structures for tetragonal FeS
(P 4/nmm space group) as given in Ref. [1]. The struc-
ture is defined by a and c lattice parameters and the S
height hS above the iron plane as shown in Figure S1 (a),
(b) and (c), respectively. Note that the slightly decreas-
ing height of S above the Fe plane as function of pressure
(Figure S1 (c)) translates into a slightly increasing S z
fractional coordinate. Relaxation of this position using
density functional theory within GGA reverses this trend
and is thus unreliable for FeS.

Concerning the reliability of the interpolation, we ob-
serve that the experimental data points in particular for
the sulphur height and to a lesser extent also for the lat-
tice parameters show some scatter. This is, intentionally,
not reproduced by our interpolation. For the c lattice pa-
rameter, for example, the experimental value at 4.5 GPa
is 4.81 Å while our interpolation is 4.78 Å. This is justified
by the experimental error bars. Concerning the sulphur
height, the overall variation of only 0.06 Å in the entire
pressure range is rather small. At 4.5 GPa, our interpo-
lated values differs by 0.01 Å from the experimental data
point which is only a modest deviation. Determination of
the internal coordinates is also experimentally somewhat
less straight-forward than the dermination of the lattice
constants. Please note that a less monotonous interpo-
lation than the one we chose would lead to unphysically
strong variations in the elastic constants.

B. Origin of the Lifshitz transition

We investigate which structural change in FeS under
pressure is most important for the occurrence of the Lif-
shitz transition at P = 4.6 GPa. Bond length dFe-S and
δ ≡ ](Fe-S-Fe) in tetragonal FeS are related to lattice
constants a and c and sulfur height hS via
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FIG. S1. Experimental crystal structures as measured by
Zhang et al. [1] (symbols) together with Bézier interpolation
(lines). (a), (b) are the tetragonal lattice parameters, and (c)
is the height hS of S above the Fe plane.

Figure S2 shows the dFe-S and δ calculated for the inter-
polated series of structures as function of pressure. We
now investigate the sensitivity of the electronic structure
and in particular the unoccupied band with Fe 3dz2 or-
bital character near the Fermi level to the two relevant
structural parameters separately. We focus on structures
near P = 4.6 GPa. Upon fixing Fe-S distances dFe-S and
Fe-S-Fe angles δ to the values indicated by the dashed
lines in Figure S2, we calculate a lattice parameter and



2

 2.1

 2.15

 2.2
d

F
e−

S
 (

Å
)

 72.9

 73

 73.1

 73.2

 73.3

 73.4

0 1 2 3 4 5 6 7 8 9

∠
(F

e−
S

−
F

e)
 (

°
)

P (GPa)

FIG. S2. Variation of (a) Fe-S distance and (b) Fe-S-Fe an-
gle as function of pressure. Dashed lines indicate the bond
distances and angles chosen for the plots in Fig. S3.
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FIG. S3. Change of band structure of FeS for changes in (a)
Fe-S distance and (b) Fe-S-Fe angle.
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Figure S3 shows the result. A very small change in band
structure results from the substantial Fe-S bond length
change corresponding to a pressure increase of roughly
2 GPa (Figure S3 (a)) once the Fe-S-Fe angle is kept
constant; on the other hand, the effect of a pure angle
change as is actually relevant in a 2 GPa window leads
to a substantial change in band structure (Figure S3 (b))
even if the Fe-S bond lengths are fixed. Thus, the Lifshitz
transition can be considered mainly an effect of the defor-
mation of the FeS4 tetrahedron rather than its pressure
induced volume reduction.

C. Spin fluctuation formalism

We follow Graser et al. [2] in considering the multi-
orbital Hubbard model
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∑
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where c†isσ (cisσ) are Fermionic creation (annihilation)

operators, Sis is the spin operator, nisσ = c†isσcisσ, U
denotes the intraorbital Coulomb repulsion, U ′ denotes
the interorbital Coulomb repulsion, J denotes the Hund’s
rule coupling and J ′ denotes the pair-hopping term. The
tight binding part of the Hamiltonian is

H0 = −
∑
i,j

tspij c
†
isσcjpσ (S4)

where tij denotes the transfer integral between sites i
and j, s and p are the orbital indices, and σ denotes
the spin index. The five band tight binding Hamiltonian
is obtained using projective Wannier functions [3] and
unfolding [4]. We first calculate the static noninteracting
susceptibility

χpqst (q) =−
∑
k,l,m

ap∗l (k)atl(k)as∗m (k + q)aqm(k + q)

× nF (El(k))− nF (Em(k + q))

El(k)− Em(k + q)

(S5)

where El(k) is the energy value determined by the band
index l and the wave vector k, and nF (E) is the Fermi
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FIG. S4. Pressure dependence of the static noninteracting susceptibility for tetragonal FeS.

distribution function. asm is the matrix element of eigen-
vectors resulting from diagonalization of tight-binding
Hamiltonian H0. Within the framework of the random
phase approximation (RPA) the charge and spin suscep-
tibilities can be calculated from the noninteracting sus-
ceptibility

[
(χRPAc )pqst

]−1
= [χpqst ]

−1
+ (Uc)pqst[

(χRPAs )pqst
]−1

= [χpqst ]
−1 − (Us)

pq
st

(S6)

where the nonzero components of the interaction tensors
for the multi-orbital Hubbard model are given by [2]

(Uc)aaaa = U (Uc)aabb = 2U ′,
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3

4
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ba
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which enables us to calculate the two-electron pairing
vertex. For the interaction parameters, we find that the
choice U = 1.90 eV, U ′ = U/2, J = U/4 and J ′ = U/4
takes us near the instability for all structures.

Pairing calculations.– The superconducting pairing
vertex in the singlet channel is given by
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The vertex in the orbital space description can be pro-
jected onto band space using the eigenvector resulting

from diagonalization of the tight-binding Hamiltonian,

Γij(k,k
′)

=
∑
s,t,p,q

at∗i (−k)as∗i (k)Re [Γpqst (k,k
′)] apj (k

′)aqj(−k
′).

(S9)

Using the vertex Γij(k,k
′), we solve the gap equation

−
∑
j

∮
Cj

dk′‖

2π

1

4πvF (k′)
[Γij(k,k

′) + Γij(k,−k′)] gj(k′)

= λigi(k)

(S10)

where λi denotes the pairing eigenvalue and gi(k) is the
gap function.

D. Noninteracting susceptibility

Figure S4 shows the static noninteracting susceptibil-
ities of FeS for the orbitals that have significant weight
at the Fermi level, (a) dxy, (b) dyz (which is by sym-
metry equivalent to dxz in tetragonal FeS), and (c) dz2 .
The latter only acquires features near Γ after the Lifshitz
transition because the orbital weight is concentrated on
one hole pocket.

E. One-iron Fermi surfaces of FeS

Figure S5 gives the orbital character of FeS Fermi sur-
faces at two kz values, kz = 0 and kz = π at ambient
pressure and at P = 5.5 GPa, after the Lifshitz transi-
tion. At P = 0, only little 3dz2 weight is present in the
hole pockets near Γ. The new hole pocket around M has
mostly 3dz2 character. Comparison of the sizes of the
electron pockets around (π, 0, kz) and (0, π, kz) between
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FIG. S5. Fermi surfaces of FeS at two different pressures with orbital weights. They are calculated from the tight binding
models which were unfolded to the one-iron Brillouin zone.
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kz = 0 and kz = π shows that the P = 5.5 GPa elec-
tronic structure is more three-dimensional than the am-
bient pressure electronic structure. Three-dimensional
susceptibility and pairing calculations are essential for
properly describing the pressure dependence of supercon-
ductivity in FeS.

F. Off-diagonal components of the spin
susceptibility
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FIG. S6. Pressure dependence of an off-diagonal element of
the susceptibility for tetragonal FeS.

Figure S6 shows a relevant off-diagonal component of

the spin susceptibility χS
bb
aa with a = dz2 and b = dyz.

The even more important off-diagonal component of χS
bb
aa

with a = dz2 and b = dxy is shown in the main text

(Figure 2 (d)). χS
bb
aa with a = dz2 and b = dyz has

a weak maximum near q = (π, π), due to some nesting
between dyz/dxz character hole pockets around Γ and the
dz2 character hole pocket around M .

G. Solution of the gap equation with intra-orbital
interaction only

In Figure S7, we demonstrate the effect of inter-orbital
interaction terms by determining the solution of the
gap equation at U ′ = J = J ′ = 0. The solution at
P = 4.7 GPa (and higher pressures) is a simple nodeless
sign-changing s wave instead of the more complicated s±
solution shown in Figure 3 (c) of the main text.

It arises from the q = (π, 0), (0, π) nesting of the
dyz/dxz orbitals. Note also the remaining orbital weight
of dxy and dz2 around Γ in Figs. 3(a) and (c) of the main
text, which enables these orbitals to participate in a s±
solution.
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FIG. S7. Hypothetical leading gap function for FeS at P =
4.7 GPa for U = 1.9 eV and U ′ = J = J ′ = 0. The three-
dimensional Fermi surface is plotted in the one-iron Brillouin
zone.
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