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We investigate the phase diagram of the spin-orbit-coupled three orbital Hubbardmodel at arbitrary filling
by means of dynamical mean-field theory combined with the continuous-time quantum Monte Carlo
method. We find that the spin-freezing crossover occurring in the metallic phase of the nonrelativistic
multiorbital Hubbard model can be generalized to a J-freezing crossover, with J ¼ Lþ S, in the spin-orbit-
coupled case. In the J-frozen regime the correlated electrons exhibit a nontrivial flavor selectivity and energy
dependence. Furthermore, in the regions near n ¼ 2 and n ¼ 4 the metallic states are qualitatively different
from each other, which reflects the atomic Hund’s third rule. Finally, we explore the appearance of magnetic
order from exciton condensation at n ¼ 4 and discuss the relevance of our results for real materials.
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Introduction.—In 4d and 5d transition metal oxides the
interplay and competition between kinetic energy, spin-
orbit coupling (SOC), and correlation effects results in
several interesting phenomena, such as spin-orbit assisted
Mott transitions [1–6], unconventional superconductivity
[7,8], topological phases [9], exciton condensation
[8,10,11], or exotic magnetic orders [12,13]. Transition
metal oxides involving 4d and 5d electrons show diverse
structures like the Ruddlesden-Popper series [1,7], double
perovskite, [12–14] two-dimensional honeycomb geometry
[3–6,15,16] or pyrochlore lattices [17]. In an octahedral
environment, as in most of the 4d and 5d materials
mentioned above, the five d orbitals are split into low
energy t2g and higher energy eg levels. The SOC further
splits the low energy t2g levels into a so-called j ¼ 1=2
doublet and j ¼ 3=2 quadruplet. The energy separation
between the j ¼ 1=2 and j ¼ 3=2 bands is proportional to
the strength of the SOC. Existing ab initio density func-
tional theory calculations [17,18] suggest that in some
materials a multiorbital description including both the
j ¼ 1=2 and j ¼ 3=2 subbands should be considered.
Most theoretical studies of 4d and 5d systems have focused

on material-specific models with fixed electronic filling. Here
we follow a different strategy and explore the possible states
that emerge from a multiband Hubbard model with spin-orbit
coupling at arbitrary filling. This allows us to investigate
unexplored regions in parameter space which may exhibit
interesting phenomena. Specifically, by performing a system-
atic analysis of the local Jmoment susceptibility (J ¼ Lþ S)
as a function of Coulomb repulsion U, Hund’s coupling JH,
spin-orbit coupling λ, and filling n, we identifyMott-Hubbard
insulating phases and complex metallic states. We find a
J-freezing crossover between a Fermi liquid (FL) and a non-
Fermi liquid (NFL) phase where the latter shows a distinct
flavor selectivity that originates from the SOC. In addition, we
observe a strong asymmetry in the metallic phase between

filling n ¼ 2 and n ¼ 4 with properties reminiscent of the
atomicHund’s third rule. Finally,we investigate doping effects
on the excitonic magnetism at n ¼ 4.
Method.—We consider a three-orbital Hubbard model

with spin-orbit coupling. The model Hamiltonian consists
of three terms,

H ¼ Ht þHλ þHU; ð1Þ
where Ht, Hλ, and HU denote the electron hopping, spin-
orbit coupling, and local Coulomb interaction terms,
respectively. In order to discuss the underlying physics,
relevant for a range of materials with different structures,
we use a semicircular density of states (DOS), ρ0ðωÞ ¼
ð2=πDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω=DÞ2

p
for all orbitals. The half bandwidth

D is set to unity. Hλ is constructed by projecting the SOC
term of d orbitals onto the t2g subspace,

Hλ ¼ λ
X
αβ
σσ0

c†iασhασjPt2gL
dPt2g · Sjβσ0iciβσ0 ; ð2Þ

where Pt2g is the projection operator. ciασ (c
†
iασ) denotes the

annihilation (creation) operator of a spin σ electron at site i
and orbital α. The angular momentum operator within the
t2g subspace can be represented by an effective L ¼ 1

angular momentum operator with an extra minus sign [12].
The local Coulomb interaction Hamiltonian is written in

Kanamori form [19] including the spin-flip and pair-
hopping terms as

HU ¼ U
X
i;α

niα↑niα↓ þ
X
i;α<α0
σσ0

ðU0 − JHδσσ0 Þniασniα0σ0

− JH
X
i;α<α0

ðc†iα↑c†iα0↓ciα0↑ciα↓ þ H:c:Þ

þ JH
X
i;α<α0

ðc†iα↑c†iα↓ciα0↓ciα0↑ þ H:c:Þ: ð3Þ
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Here, U is the on-site Coulomb interaction and JH denotes
the Hund’s coupling. U0 is set to U − 2JH to make the
interaction rotationally invariant in orbital space.
We employ the dynamical mean-field theory (DMFT)

[20] to solve the model Hamiltonian Eq. (1) in a broad
parameter space. Since DMFT is a nonperturbative tech-
nique within the local self-energy approximation, we can
access metallic and insulating phases on the same footing.
In addition, the dynamical fluctuations encoded in the
DMFT solution contain valuable information on the degree
of moment correlations and the corresponding susceptibil-
ity. We will use the local J moment susceptibility as a
central quantity to investigate the phase diagram.
As an impurity solver, we adopt the continuous-time

quantum Monte Carlo method (CTQMC) in the hybridi-
zation expansion variant [21,22]. For the single particle
basis of the CTQMC calculation, we choose the relativistic
j effective basis (j ¼ 1=2, j ¼ 3=2) which is an eigenbasis
of the SOC Hamiltonian. It was previously reported that the
j effective basis reduces the sign problem of the CTQMC
simulation [23]. For symmetry broken phases, we consider
the off-diagonal hybridization functions.
Results.—A strong Coulomb interaction localizes elec-

trons and can lead to the formation of local moments. The
freezing of these local moments is signaled by a slow
decay, and eventual saturation, of the dynamical correlation
function hJzðτÞJzð0Þi on the imaginary-time axis. Hence,
the local susceptibility, defined as

χloc ¼
Z

β

0

dτhJzðτÞJzð0Þi; ð4Þ

allows us to investigate the formation and freezing of local
moments. In addition, we define the dynamical contribution
to the local susceptibility by eliminating the long-termmem-
ory of the correlation function from the original χloc [24]:

Δχloc ¼
Z

β

0

dτðhJzðτÞJzð0Þi − hJzðβ=2ÞJzð0ÞiÞ: ð5Þ

As the system evolves from an itinerant to a localized
phase, Δχloc exhibits a maximum in the intermediate
Coulomb interaction regime [see Figs. S1(c), S1(d) in the
Supplemental Material [25]]; both, (i) the enhanced corre-
lations compared to the noninteracting limit and (ii) the larger
fluctuations compared to the localized limit lead to the
maximum in Δχloc. The location of the Δχloc maxima in
the phase diagram can be viewed as the boundary of the local
moment regime and has been used to define the spin-freezing
crossover line in the non-spin-orbit coupled system [24,33].
However, since spin is not a good quantum number in the
spin-orbit-coupled system, we introduce the total moment
J¼SþL to generalize the “spin-freezing” to a “J-freezing”
crossover.
In the following, we discuss the paramagnetic phase

diagram of Eq. (1) obtained with DMFT(CTQMC) as a
function ofU, JH, λ, and n. Figures 1(a)–1(c) show contour
plots of Δχloc in the interaction vs the filling plane for three
different parameter sets of λ and JH. Since SOC breaks
particle-hole symmetry, Figs. 1(b),1(c) are not symmetric
about the half-filling axis, n ¼ 3. The Mott insulating phase
(black lines in Fig. 1) which we identify as the region where
the spectral function vanishes at the Fermi level and where
Δχloc is smallest, appears at each commensurate filling.
Nonetheless, compared to the system without SOC
[Fig. 1(a)], the change of the critical interaction strength
Uc shows a complex behavior depending on the filling and
λ. We can quantitatively analyze the change of Uc using
the Mott-Hubbard criterion, according to which a Mott
transition occurs when the atomic charge gap becomes
comparable to the average kinetic energy:

Δchðn;Uc; JH; λÞ≡Uc þ δΔchðn; JH; λÞ ¼ ~Wðn; JH; λÞ:
ð6Þ

Δch is the charge gap of the local Hamiltonian, and
~Wðn; JH; λÞ is the average kinetic energy. Here, n is integer
for commensurate Mott insulators. Since SOC reduces the
degeneracy of the atomic ground states, ~W is basically a

FIG. 1. Dynamic contribution to the local susceptibility, Δχloc in the ðU=D; nÞ phase diagram for (a) λ=D ¼ 0.0, JH=U ¼ 0.15,
(b) λ=D ¼ 0.25, JH=U ¼ 0.15, (c) λ=D ¼ 0.25, JH=U ¼ 0.25, and T=D ¼ 0.03. Cross symbols mark the maximum values of Δχloc
corresponding to the J-freezing crossover points. The parameter set for (b) corresponds roughly to the tight-binding parameters for
Sr2IrO4 [32]. The reported values of λ, JH , and U for various materials are summarized in the Supplemental Material [25].
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decreasing function of λ except for n ¼ 3, where the ground
state degeneracy is not changed by introducing SOC. By
diagonalizing the local Hamiltonian, we observe that δΔch
is an increasing function of λ for n ¼ 1, 2, and 4, but a
decreasing function for n ¼ 3 and 5. Altogether, for n ¼ 1,
2, and 4, the two terms contributing to Uc ¼ ~W − δΔch
cooperate to reduce Uc as we also observe in our DMFT
results. A smaller Uc at n ¼ 4 compared to n ¼ 2 is
consistent with the Mott-Hubbard criterion. In contrast,
for n ¼ 5 the two contributions toUc compete and it is hard
to predict the behavior of Uc from this criterion. We can
anticipate based on the DMFT results that the reduction of
the kinetic energy dominates the slight decrease of the
atomic gap. Finally, at n ¼ 3 there is an unchanged
degeneracy and δΔch decreases due to SOC implying a
slight increase of Uc [compare Fig. 1(a) and 1(b) and see
Fig. S4 in Ref. [25]].
The effect of the Hund’s coupling can be seen by

comparing Figs. 1(b) and 1(c). Away from half-filling, Uc
increases with JH but at half-filling it slightly decreases,
which is consistent with the behavior of δΔch [34]. For even
stronger SOC, λ=D ¼ 0.5, a drastically reducedUc is found
at n ¼ 4 implying an adiabatic connection of the Mott
insulator to the band insulator in the λ ≫ 1 limit [25,35].
We now concentrate on the metallic regions. In the spin-

orbit-coupled multiorbital system the dynamic contribution
to the susceptibility is larger below half-filling compared to
the particle-hole transformed state [red area in Fig. 1(b)
and 1(c)]. Such a difference mainly comes from the cross-
correlation between the spin and the orbital moment, which
is positive for n < 3 and negative for n > 3 [see Fig. S3(d)
in Ref. [25] ]. A recent study [24] has shown that in the
case of a multiorbital Hubbard model without spin-orbit
coupling, s-wave spin-triplet superconductivity can appear
along the spin-freezing line. The effect of the spin-orbital
cross-correlation on this superconductivity will be an
interesting future research topic.
The asymmetry in the susceptibility and dynamical con-

tribution to the susceptibility below and above half-filling
can be explained by Hund’s third rule whose origin is the
spin-orbit coupling [25,36,37]. Following Hund’s third rule,
in the atomic limit the alignment between L and S depends
on whether the filling is below or above half-filling. In our
calculation,L and S are aligned in the same direction below
half-filling, while they are antialigned above half-filling.
Therefore, the size of the total J-moment is larger at fillings
below n ¼ 3 as we increase the interaction strength and
further localize the electrons. Figure 2 shows the evolution of
hJ2zi as a function of Coulomb interaction strength for five
commensurate fillings and parameter values as chosen in
Fig. 1(b). In the intermediate and strong interaction region,
U=D≳ 2, an enhanced value of the J-moment is found at
n ¼ 2 and 1 compared to the cases n ¼ 4 and 5, respectively.
In the strong correlation (Mott insulating) regime, the
alignment of the spin, orbital, and J-moment is consistent

with the atomic results according to Hund’s rules. The
J-moment determined by the atomic Hund’s rule has a
strong effect on theΔχloc and χloc in the metallic phase even
at moderate U values.
Inside the J-freezing region [denoted by crosses in

Fig. 1(b)], we observe a non-Fermi liquid behavior of
the metallic state. In order to explore this state we show in
Figs. 3(a) and 3(b) the imaginary part of the self-energy on
the Matsubara frequency axis across the J-freezing cross-
over line for the same parameter values as in Fig. 1(b) and
various fillings. In the low frequency region, ImΣðiωnÞ can
be expressed in the form −Γ − Cωα

n. As we cross the
J-freezing line, (region between n≃ 2 and n≃ 4 for
U ¼ 3) Γ changes from zero to a finite value, indicating
a Fermi-liquid to NFL crossover. Near the J-freezing line, a
small Γ value with a noninteger exponent α is found.
These two characteristic properties of the FL to NFL

crossover are reminiscent of the spin-freezing crossover
observed in the model without SOC [33]. As the system
gets closer to n ¼ 3, the correlation function hSzðτÞSzð0Þi
increases while that of hLzðτÞLzð0Þi and hLzðτÞSzð0Þi
decreases in magnitude [25], so that the orbitally averaged
scattering rate is determined primarily by the frozen spin
moments. However, due to SOC, the self-energy ImΣðiωnÞ
of the j ¼ 1=2 electron is different from that of the j ¼ 3=2
electrons. At low frequency, the difference between
j ¼ 1=2 and 3=2 is enhanced in the NFL phase compared
to the FL phase.
A remarkable finding is that there exists an intersection

between the two self-energies from the different j bands
in the NFL phase [see shadings in Figs. 3(a) and 3(b)].
This intersection implies that the scattering rate near the
Fermi-level ImΣðω ∼ 0Þ and the total scattering rateR
∞
−∞ dω ImΣðωÞ have different relative magnitudes for the
j ¼ 1=2 and 3=2 electrons. For example, for n ¼ 3.5, the
j ¼ 3=2 electrons have a larger value of Γ with larger

FIG. 2. Size of the local Jz moments as a function of interaction
strength U=D for λ=D ¼ 0.25, JH=U ¼ 0.15, and T=D ¼ 0.03 at
various commensurate fillings. The parameter set is the same as
in Fig. 1(b). Solid (open) symbols correspond to the metallic
(insulating) solutions. The arrows represent the corresponding
values from the Hund’s rule.
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scattering rate at the Fermi level, while they exhibit a smaller
high energy coefficient of the 1=ðiωnÞ tail, implying a
smaller total scattering rate. Such a behavior is not observed
in the Hubbard model with ordinary crystal field (CF)
splitting (no SOC) as shown in Figs. 3(c) and 3(d) [38].
We suggest that the basis transformation and corresponding
modification of the interaction, especially of the Hund’s
coupling, are the origin of this phenomenon. This implies
that the interplay between spin-orbit coupling effects and
electronic correlation cannot be fully captured by an effective
crystal-field splitting description. We call this phenomenon
spin-orbit-correlation induced flavor selectivity.
Note that the frozen J-moment and the NFL behavior are

characteristic features of multiorbital systems with large
composite moments. Within the J-freezing region, even the
j ¼ 1=2 electrons show NFL behavior, and the single-band
description for j ¼ 1=2 is not valid anymore. Accordingly,
the J-freezing crossover line delimits the region of validity
of the single-band description.
Besides the paramagnetic phase, we also investigate

the excitonic magnetism (EM) near n ¼ 4 [8,10,11,39].
To access such a symmetry broken phase, we introduce the
off-diagonal components of the Green function and define

the order parameter of the exciton condensed phase as

Δj0m0
jm ¼ hc†jmcj0m0 i, where j0 ≠ j. The magnetic components

are defined asMj;m ¼ hnj;þmi − hnj;−mi. We find two types
of magnetism: antiferromagnetism (AFM) and ferromag-
netism (FM) at different fillings. At n ¼ 4 an AFM
excitonic state appears at intermediate interaction strength
[8,39–42]. The corresponding region is located around the
metal-insulator transition point of the paramagnetic calcu-
lations, Uc=D ∼ 3.5. Figures 4(a) and 4(b) show that AFM
(Mj;m ≠ 0) and excitonic order (Δ1=2;m

3=2;m ≠ 0) appear simul-
taneously. Upon electron doping, the AFM state is rapidly
suppressed and eventually vanishes around n ∼ 4.2, which
is shown in Fig. 4(c).
Ba2YIrO6 is a d4 system whose ground state is exper-

imentally not completely resolved [43,44]. According to
the realistic parameter values in Ba2YIrO6 as given in Table
SV in the Supplemental Material (Ref. [25]), we would find
a J ¼ 0 state in this system.
For large Hund’s coupling and small SOC, a FM state

emerges in the strong interaction region [Figs. 4(d)
and 4(e)]. However, the SOC effectively suppresses the
FM state and drives the system into an AFM state at n ¼ 4
(see Fig. S5 in Ref. [25]). Compared to the n ¼ 4 case, the
doped FM state at n ¼ 4.2 is less sensitive to the SOC
[Fig. 4(f)]. We expect that the larger kinetic energy gain for
n > 4 favors the FM state.
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U=D ¼ 3.0, JH=U ¼ 0.15, and T=D ¼ 0.015. Solid (open)
symbols in (a),(b) denote the j ¼ 1=2 (3=2) results. Solid (open)
symbols in (c),(d) correspond to α ¼ 1 (α ¼ 2, 3). For j ¼ 3=2 in
(a),(b) the average over mj ¼ �1=2, �3=2 is shown. In (c),(d),
we plot the average of α ¼ 2, 3 and spin. The shadings in (a),(b)
highlight the intersections between the different self-energies.
The dashed (dotted) lines correspond to −ωn (−ω0.5
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Conclusions.—We have explored the paramagnetic phase
diagram of the spin-orbit-coupled three-orbital Hubbard
model at general filling. We found a generalized J-freezing
crossover as a function of U, JH, λ and n which exhibits
a strong particle-hole asymmetry and we have detected a
metallic phasewith a largeΔχloc nearn ¼ 2 and a smallΔχloc
near n ¼ 4, which is the effect of Hund’s third rule on the
itinerant phase. Across the J-freezing line, a FL-to-NFL
crossover appears with a peculiar flavor selectivity in the
NFL phase. This is a unique feature of SOC, which is not
present in models with ordinary crystal-field splitting.
We expect that hole-doping of materials with d5 filling like
iridates or rhodates will shift the systems toward the
J-freezing line.Nearn ¼ 4, we observe excitonicmagnetism
with both AFM and FM order that is consistent with a recent
mean-field study [8]. Upon electron doping, theAFM state at
n ¼ 4 is suppressed and the FMstate emergeswith enhanced
Hund’s coupling. These results offer new routes for finding
exotic phases by doping 4d and 5d based materials.
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