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Unconventional superconductivity in iron pnictides and chalcogenides has been suggested to be controlled
by the interplay of low-energy antiferromagnetic spin fluctuations and the particular topology of the Fermi
surface in these materials. Based on this premise, one would also expect the large class of isostructural and
isoelectronic iron germanide compounds to be good superconductors. As a matter of fact, they, however,
superconduct at very low temperatures or not at all. In this work we establish that superconductivity in iron
germanides is suppressed by strong ferromagnetic tendencies, which surprisingly do not originate from
changes in bond angles or bond distances with respect to iron pnictides and chalcogenides, but are due to
changes in the electronic structure in a wide range of energies happening upon substitution of atom species
(As by Ge and the corresponding spacer cations). Our results indicate that superconductivity in iron-based
materials may not always be fully understood based on d or d-p model Hamiltonians only.
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Introduction.—After the initial discovery of high-
temperature superconductivity in doped LaFeAsO [1], a
large variety of other iron pnictides and chalcogenides have
been shown to be superconductors [2], with some reports of
the transition temperature Tc as high as 100 K [3]. On the
other hand, isoelectronic and isostructural iron germanides
are either nonsuperconducting [4–7] or possibly super-
conduct at very low temperatures [8,9]. The currently most
intensively debated material is YFe2Ge2, for which super-
conductivity below 2 K has been reported [9]. Its electronic
structure is similar to that of CaFe2As2 in the collapsed
tetragonal phase, but with significant hole doping [9–11].
This led to speculation [9] about a connection between
superconductivity in YFe2Ge2 and the collapsed phase of
the extremely hole-doped pnictide, KFe2As2 [12–14].
Furthermore, Wang et al. [15] recently found YFe2Ge2
to be close to a magnetic instability and x-ray absorption
and photoemission experiments show evidence for strong
spin-fluctuations [16] and moderate correlation effects [17]
in this material.
Magnetism plays an important role in superconductivity

of Fe-based superconductors (FeBS) [2,18–24]. It is there-
fore natural to ask whether the magnetic tendencies in iron
germanides are fundamentally different from those in iron
pnictides and chalcogenides [25] and why that is the case.
In a first attempt to understand the lack of superconduc-
tivity in Fe germanides, a few authors investigated the
electronic properties of the isoelectronic and isostructural
materials MgFeGe and LiFeAs [26–28]. The former is a
paramagnetic metal, while the latter is a superconductor.
An important conclusion was that the dominant magnetic
exchange interactions in MgFeGe are ferromagnetic, while
those in LiFeAs are antiferromagnetic. The microscopic

origin of this different behavior was, however, not further
explored.
In this Letter we show that (i) the presence of ferro-

magnetic tendencies is a general trait in iron germanides,
which is detrimental for superconductivity, and that (ii) the
ferromagnetic tendencies arise from the interaction of the
cation spacer with the FeGe layer. In fact, the hole-doping
or collapse of the c axis in YFe2Ge2 are not essential for
this behavior, but the key is in the substitution of As by Ge
and the corresponding substitution of monovalent or
divalent spacers by divalent or trivalent cations, respec-
tively. This modifies the electronic band structure in a wide
range of energies at and away from the Fermi level and
creates ferromagnetic tendencies which suppress super-
conductivity. Hence, one can go from As to Se/Te, i.e., right
in the periodic table, and find further FeBS, but not to the
left towards Ge. In agreement with recent NMR measure-
ments [29], our study highlights the role of the presence or
absence of ferromagnetic fluctuations in determining the
value of Tc in FeBS.
Our analysis shows that conventional low-energy models

of FeBS, which only incorporate the Fe d and X (X ¼ As,
Se, Ge, ...) p states are in some cases not sufficient to
explain key features of FeBS. Although these models
usually reproduce the Fermi surface very well, they do
not reflect the physical instabilities of the actual materials
because they neglect the interaction with the spacer
between the FeX layers. Even though bulk FeSe does
not contain spacer layers, our arguments may be relevant
for intercalates [30–32], alkali-dosed thick films [33], and
FeSe monolayers on SrTiO3 [3].
Materials and methods.—We compare isoelectronic

iron arsenides and iron germanides from (i) the so-called
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hole-doped 122 family where iron is in a nominal oxidation
Fe2.5þ with d5.5 occupation [34–36] and (ii) the so-called
111 family with Fe2þ in a d6 configuration [36–38]. The
crystal structures of RbFe2As2, YFe2Ge2, NaFeAs, and
MgFeGe are shown in Fig. 1, where we also indicate the
nominal valences of the atoms in each compound. Lattice
constants and internal positions in this figure were taken
from experiment [7,39–41].
The most obvious structural difference between iron

arsenides and iron germanides is the shrinking of the c axis
(Fig. 1). From NaFeAs to MgFeGe it is not as pronounced
as from RbFe2As2 to YFe2Ge2, where Ge pz-pz bonds may
form (in MgFeGe direct Ge-Ge bonding is not possible).
Although these materials are isoelectronic, the germanides
have a stronger charge transfer between the FeX (X ¼ As,
Ge) and the spacer layers.
The isoelectronic substitution of As by Ge, Rb by Y, and

Na by Mg was simulated within the virtual crystal
approximation (VCA). To disentangle effects originating
from direct atomic substitution from effects coming from
small changes of bond distances and angles in real
materials, we performed all calculations for the 122 family
with the experimental structural parameters of YFe2Ge2
[39] and those for the 111 family with the experimental
structural parameters of MgFeGe [7]. The technical details
of our DFT calculations can be found in Ref. [42].
We also analyze the density of states by using the

extended Stoner model [45,46], which is a simple tool
for understanding the origin of itinerant ferromagnetism
(see Ref. [42] for details). The paramagnetic state is
unstable towards ferromagnetism if the conditions 1=I ¼
N̄ðmÞ and 0 > dN̄ðmÞ=dm are fullfilled at some m, where
N̄ðmÞ is the paramagnetic density of states averaged over
an energy window that contains a sufficient number of
states to realize an Fe moment m, and I is the Stoner
parameter [42].

Results.—We first calculated the DFTenergies of various
spin configurations. By means of the VCAwe interpolated
between RbFe2As2 and YFe2Ge2 [via SrFe2ðAs0.5Ge0.5Þ2]
and between NaFeAs and MgFeGe. Using a two-
dimensional Heisenberg model to parameterize the DFT
energies (see Ref. [42] for more details), we observe that
the nearest-neighbor exchange coupling J1 universally
changes from antiferromagnetic to ferromagnetic when
going continuously from As to Ge without changing the
electron count, while all other exchange couplings are
almost unaffected (Fig. 2). Only in the 111 family the next-
nearest-neighbor exchange J2 is also reduced, but it does
not change sign. At the germanide end point the ferro-
magnetic J1 becomes the dominant exchange interaction.
Remarkably, we also obtained a large ferromagnetic J1

for NaFeAs after we expanded the structure used for Fig. 2
by 10% along the c axis but kept all distances within the
FeAs layer unchanged by the expansion. These results
indicate that NaFeAs can also be turned ferromagnetic by
separating the FeAs layers and by shifting Na further away
from the layers.
From this analysis we conclude that previous sugges-

tions [15] that iron germanides and iron pnictides show
similar magnetic behavior do not hold. While both families

FIG. 1. Crystal structures of RbFe2As2, YFe2Ge2, NaFeAs, and
MgFeGe. The unit cells and interatomic distances are true to
scale. The numbers next to the unit cells indicate the nominal
valence of atoms at the same vertical positions.

(a)

(b)

FIG. 2. Calculated Heisenberg exchange parameters for (a) the
VCA interpolation between RbFe2As2 and YFe2Ge2 [via
SrFe2ðAs0.5Ge0.5Þ2] and (b) the VCA interpolation between
NaFeAs and MgFeGe. Lines are guides to the eye. The error
bars represent the statistical errors of the fit. The inset of (b)
shows the structure of the two-dimensional Heisenberg model we
use to fit the DFT energies. J1 is the nearest-neighbor coupling in
the square lattice of Fe atoms, while J2 is the next-nearest
neighbor coupling. J3 and J4 are longer-range exchange cou-
plings. Positive values of J correspond to antiferromagnetic
exchange. Note that all calculations were performed in the crystal
structures of YFe2Ge2 and MgFeGe, respectively.
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have a stripe antiferromagnetic ground state in the DFT
calculations, the nature of excitations is entirely different.
This is reflected in the presence of a nearest neighbor
ferromagnetic exchange J1 in iron germanides and anti-
ferromagnetic J1 in the iron pnictides despite the very
similar crystal structure and electronic structure at the
Fermi level. In particular, the results on the expanded
NaFeAs suggest that the origin of this different behavior
lies dominantly in the relative separation between the
spacer and the FeX plane.
A further distinctive feature of the germanides is that the

magnetism of Fe in YFe2Ge2 appears to be rather peculiar.
There is a low- and a high-moment solution for Fe, the
former more stabilized for shorter Fe-Ge bond lengths [42]
(in pnictides, either a high-spin solution is realized, or
magnetism collapses completely).
To understand in a simple framework the origin of the

magnetic behavior presented above, we investigate the
effective density of states N̄ as a function of the magnetic
moment m within the extended Stoner model (see Fig. 3).
We observe that (i) iron germanides have, in general, a
higher DOS at the Fermi level and (ii) a significant number
of states is shifted from higher energies towards the Fermi
level, as compared to pnictides. This is signaled by the
strong increase of the effective DOS at low moments
(see Fig. 3 where results for YFe2Ge2 vs RbFe2As2 and
MgFeGe vs NaFeAs are shown). Interestingly, the changes

in the high-moment region (m ∼ 2.4μB) are marginal,
while they are considerable in the low-moment region
(m < 1.0μB). Furthermore, we find that the Stoner param-
eter I is almost independent of the material and that 1=I lies
between 0.7 and 0.75 eV−1. Therefore, by looking for
crossings of N̄ðmÞ with 1=I in Fig. 3, we establish that the
extended Stoner criterion for ferromagnetism is fulfilled in
iron germanides, but not in pnictides. Moreover, the
metastability of different magnetic moments in YFe2Ge2
is also evident from this analysis, as the effective DOS
almost fulfills the extended Stoner criterion also for large
moments of about 2.5μB.
Figure 4 shows the total calculated DOS for RbFe2As2

vs YFe2Ge2 and NaFeAs vs MgFeGe, where we colored
the energy regions corresponding to magnetic moments of
m ¼ 1.0μB (blue) and m ¼ 2.4μB (red) in the extended
Stoner model. The energy range corresponding to m ¼
1.0μB is compressed when going from arsenides to ger-
manides, while the energy range corresponding to m ¼
2.4μB increases marginally in germanides. As the density of
states in the window shown is dominated by Fe states, this
implies that the bandwidth of some of the Fe states is
selectively reduced in iron germanides, while the overall
bandwidth is about constant [42].
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FIG. 3. Effective density of states in the extended Stoner model
as a function of magnetic moment for (a) RbFe2As2 and YFe2Ge2
and (b) NaFeAs and MgFeGe. The colored bars on the right y
axis indicate the calculated inverse Stoner parameters 1=I for the
respective case. All calculations were performed in the crystal
structures of YFe2Ge2 and MgFeGe, respectively.
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FIG. 4. Total density of states calculated from DFT for (a)
RbFe2As2, (b) YFe2Fe2, (c) NaFeAs, and (d) MgFeGe. The
shaded areas below the curves correspond to the energy range
needed to realize a moment of 1.0μB or 2.4μB per iron,
respectively, within the extended Stoner model. All calculations
were performed in the crystal structures of YFe2Ge2 and
MgFeGe, respectively.
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Discussion.—One of the principal questions in the theory
of the Fe-based superconductors is what should be the
minimal chemical model to explain the essential physics
and, above all, superconductivity. It was recognized that the
effective Fe-only (“d-only”) model does not work in some
materials, but it has been believed so far that the electronic
properties of iron-based superconductors were exclusively
controlled by the FeX layers (X ¼ As, Se, Ge, ...) as
described by the so-called “d-p model”. Thereby the role
of all other constituents was reduced to charge reservoirs.
We have established in this work that iron germanides

have a general tendency towards ferromagnetism which
proves detrimental for superconductivity, even though the
Fermi surface is very similar to that of isoelectronic
pnictides. Most importantly, this tendency can be traced
down to the flattening of some bands near the Fermi level
and a modified electronic band structure in a wide range of
energies at and away from the Fermi level. Neither the
collapse of the c axis, nor the hole doping of the 122
germanides are essential for the emergence of ferromagnet-
ism. However, the character and position of the intercalating
species, normally considered irrelevant and not explicitly
included in any theory or model, plays a decisive role.
Our findings have important implications for iron-based

superconductivity in general. (i) The Fermi surface geom-
etry and topology is an important, but not the only
condition for emerging superconductivity. The character
of spin fluctuations, even on the level of the simple
ferromagnetic-antiferromagnetic dichotomy, may be quali-
tatively different in seemingly similar materials. (ii) A
quantitative theory of Tc in iron-based superconductors
must include the interaction between all constituents of the
unit cell, including, in some cases, the interlayer spacers.
(iii) While FeGe layers per se are not necessarily ferro-
magnetic, the fact that they have to be spaced with different
elements (e.g., Mg vs Na, or Y vs Sr) drives them
ferromagnetic. (iv) In a more general way, it does matter
what we place next to or on top of an Fe-ligand layer. This
observation may be directly related to an apparent role
that interfacial effects play in high-Tc Fe chalcogenides,
such as FeSe monolayers deposited on specially prepared
surfaces or KxFe2−ySe2 filaments embedded in the mag-
netic K2Fe4Se5 phase.
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