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I. EXPERIMENTAL CRYSTAL ORIENTATION

The height profile measured across the insulating and
conducting layers shown in the STM image (Fig. 1 in
the main text) carries mostly topographical informa-
tion. The insulating anion-layers are expected to appear
slightly lower (darker) than the conducting BEDT-TTF
layers, which is indeed observed but it is, however, a
small contribution. Therefore, one can deduce the tilting
angle from a comparison to the known crystal structure.
By analyzing the height profile along a single unit cell
we determine the orientation of the cutting plane (see
Fig. 1). Depending on the rotation about the c-axis (the
axis perpendicular to the conducting layers) the height
corrugation caused by the alternating orientation of the
BEDT-TTF molecules is more or less pronounced. The
best agreement between height profile and crystal struc-
ture is found for a tilting angle ϕab = 60° about the c-axis
with respect to the b-axis.

II. EXPERIMENTAL EXTRACTION OF THE
SUPERCONDUCTING DOS

In STS, the spectra have to be corrected for the dif-
ferent work functions of tip and sample which leads to
a voltage-dependent asymmetric tunneling transmission
function T (V )1. For this reason all spectra shown here
are normalized to T (V ) which was obtained from spectra
taken at 13 K, i.e., in the normal state of κ-Br. We fur-
thermore assume a constant DOS for the tip material in
the relevant energy range so that the dI/dV/T (V ) curves
reflect the thermally smeared DOS D(V ) of the sample
with eV = E−EF (EF denotes the Fermi energy). Then
we analyze this data in the framework of the Anderson-
Hubbard (AH) model discussed by Shinaoka and Imada2

for disordered itinerant electron systems with short-range
interactions3.

In their numerical treatment of the AH model a scaling
law is introduced for the DOS in the presence of short-
range Coulomb interactions and a multi-valley energy

landscape2: B(V ) = c exp[−α (− log |eV |)d], |V | ≥ V0,

where d denotes the spatial dimension (d = 2 for the
present case) and α = 0.288 is a non-universal constant.
In the immediate vicinity of EF the AH model is not ap-
plicable2. A very good description of this energy region is
obtained by assuming a hard energy gap of small size ac-
counted for by a phenomenological DOS function of the
following form: B(V ) = c′ cosh( eV

εT
), |V | < V0, where c′ is

a constant and εT measures the effective barrier height.
For finite temperatures T > 0, B(V ) rapidly becomes
non-zero near EF because a thermally activated crossing
of the small barrier εT leads to a nearly temperature-
independent prefactor and the voltage-dependence is de-
scribed by the cosh term. With the requirement of
continuous differentiability at the inflection point V0, c′

and εT terms are fixed for any given temperature and
do not represent adjustable parameters. The conduc-
tance spectrum of the superconducting state is given by

FIG. 1. Height profile along a single unit cell with the corre-
sponding crystal orientation showing the best agreement for
an angle for rotation about the c-axis of ϕab = 60 ◦.
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FIG. 2. Temperature dependence of the second derivative of
the conductance spectrum dI/dV/T (V ). Features A, B and
C are indicated by the colored arrows (black, red and green
respectively).

S(V ) = dI/dV/T (V )/B(V ).

III. TEMPERATURE DEPENDENCE OF
FEATURES OBSERVED IN THE RAW

CONDUCTANCE

In Fig. 3 of the main paper we have shown the second
derivative of the conductance spectrum dI/dV/T (V ) at
T = 5 K. For completeness, the temperature depen-
dence of this quantity is shown in Fig. 2. The temper-
ature evolution of the superconducting gaps associated
with features A, B and C can be traced clearly. All gaps
decrease when increasing the temperature towards Tc. In
the spectrum taken at T = 13 K > Tc all signatures of a
superconducting gap are gone.

The second derivative of the tunneling conductance
was calculated after smoothing the data using the
Savitzky-Golay method4, which is a widely used tech-
nique to increase the signal-to-noise ratio without signif-
icantly distorting the signal data. The averaging interval
is 2.3 meV in the interval [-2.09:2.09] meV and 6 meV
outside of this interval. Different smoothing intervals are
justified because the noise increases with increasing ab-
solute tunneling current. Thus the noise is considerably

FIG. 3. Density of quasiparticle excitations and energy gap.
The upper graph shows the density of quasiparticle excita-
tions in the superconduting state (weak-coupling d-wave) nor-
malized to the density of states at the Fermi edge in the
normal-conducting state as function of the excitation energy
normalized to the maximum value of the energy gap. In the
lower graph the normalized energy gap as function of tem-
perature (normalized to Tc) is shown for the weak-coupling
d-wave (red curve) and s-wave (black dotted curve) case.

lower in the close vicinity of E − EF = 0.

IV. ANALYSIS OF SPECIFIC HEAT
MEASUREMENTS

A method for calculating the specific heat of an un-
conventional superconductor from first principles has not
been developed yet. Therefore, we have performed cal-
culations of the specific heat of κ-Br in the framework
of the multi-band alpha model for d-wave superconduc-
tors in order to check for compatibility of the gap pa-
rameters, as derived from our STS data, with specific
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heat results from the literature5. The alpha model for s-
wave superconductors, introduced by Padamsee et al.6,
extends BCS theory in a purely phenomenological way
to materials with arbitrary (positive) values of the ratio
α = ∆(0)/kBTc. As low temperature specific heat data
for κ-Br indicate nodes in the gap function5 (d-wave) as
do our STS results (extended s+ dx2−y2), we extend the
alpha model to the d-wave case. This can be done once
the density of quasiparticle excitations Zd(E) and the
gap function ∆d(k, T ) are known for this case. These
two quantities have been calculated using BCS theory
with a cylindrical Fermi surface and a gap function of
the type ∆d = ∆0(T ) cos(2ϕ). As the electronic system
of κ-Br shows a strongly two-dimensional character, these
approximations can be considered as an appropriate sim-
plification for estimating the specific heat. The results
for Zd(E) and ∆0(T ) are shown in Fig. 3. A value of
α = 2.14 has been obtained for the weak coupling limit
consistent with the results of Ref. 7.

The multi-band alpha model, where each of the gaps
occurs in a different band, deviates from the one-band
scenario (described in the subsequent theoretical parts)
which is used for fitting the STS data. However, as the
specific heat depends essentially only on the quasiparti-
cle density of states Z(E), we attempt to fit this quan-
tity (known from the theoretical considerations and the
fitting of the STS data) by a sum of d-wave quasiparti-
cle densities of states, each with its own maximum gap
value ∆0,i(T ), i.e., with a multi-band alpha model. As
an approximation to the density of states derived by the
microscopic theory (blue line in Fig. 4) we use the func-
tion

[Z(E)/N(0)]fit =

n∑
i=1

gi zd(E/∆0,i(T )) (1)

with zd(E/∆0,i(T )) and ∆0,i(T )/∆0,i(0) being the d-
wave functions shown in Fig. 3, N(0) the density of
states at the Fermi edge in the normal-conducting state
and

∑n
i=1 gi = 1. Here gi and ∆0,i(0) are used as ad-

justable parameters. In our case three bands are needed,
as the quasiparticle density of states shows three lo-
cal maxima (see Fig. 4). The so-derived fitting func-
tion [Z(E)/N(0)]fit with the parameter values g1 = 0.08,
g2 = 0.54, g3 = 0.38 and ∆0,1(0) = 0.48 meV, ∆0,2(0) =
2.58 meV, ∆0,3(0) = 9.20 meV is displayed in Fig. 4 (red
dotted curve) and shows a fairly good agreement with
the theoretical results. Using a Tc value of 11.2 K, as ob-
tained from the theoretical fit to the STS derived ∆0(T )
points, we get α1 = 0.50, α2 = 2.67, α1 = 9.53. The
specific heat of the three-band alpha model is then given
by

C =

3∑
i=1

Cd(T, Tc, γi, αi) (2)

with γi = gi γ. The result of this calculation for the spe-
cific heat is shown in Fig. 5 (blue curve) together with

FIG. 4. Density of quasiparticle excitations for κ-Br. Normal-
ized quasiparticle density of states for the parameter values
(at T = 5 K) given in Table I of the main text with a small
broadening of Γ = 0.07 meV (blue curve) and for the three-
band alpha model (red dotted curve) with g1 = 0.08, g2 =
0.54, g3 = 0.38 and ∆0,1(0) = 0.48 meV, ∆0,2(0) = 2.58 meV,
∆0,3(0) = 9.20 meV.

the literature data from Ref. 5. The γ value was set to
27.5 mJ/(mol K2) as determined by Ref. 5 and a Gaus-
sian Tc distribution (σ = 0.98 K, T c = 12.0 K) has been
used to take into account the rounded maximum of the
experimental data. The calculated results are in fairly
good agreement with the experimental data. A better
(and nearly perfect) fit can be obtained (red curve) by
changing the gi values to g1 = 0.04, g2 = 0.76, g3 = 0.20
and setting α2 = 3.10 (accounting for the dominant con-
tribution to the specific heat), σ = 0.83 K, T c = 12.1 K.

V. THEORY: BCS DENSITY OF STATES

The basic idea of BCS theory is the Cooper problem,
which states that an attractive interaction between two
electrons with opposite spin and momentum leads to a
bound state, no matter how small it is. The correspond-
ing Hamiltonian for Cooper pairs having a net momen-
tum of zero can be written as

H =
∑
k,σ

εkσc
†
kσckσ +

∑
k,k′

U(k, k′)c†k↑c
†
−k↓c−k′↓ck′↑.

The interaction can be treated in mean field theory
(δ(c†c†) = c†c† − 〈c†c†〉), where terms quadratic in δ
are neglected. The resulting Hamiltonian can be di-
agonalized using the Bogoliubov-Valatin transformation,
which introduces quasiparticle creation and annihilation

operators γ†kσ and γkσ. The quasiparticle excitation en-

ergies are given as Ek =
√
ε2k + |∆k|2, where ∆(k) =∑

k′ U(k, k′)〈c−k′↓ck′↑〉.
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FIG. 5. Specific heat (devided by temperature). Black
spheres are data from Taylor et al.5, blue and red lines in-
dicate our fits with the three-band alpha model for d-wave
superconductors and a gaussian Tc distribution. The parame-
ters of fit 1 (fit 2) are: γ = 27.5 mJ/(mol K2), g1 = 0.08 (0.04),
g2 = 0.54 (0.76), g3 = 0.38 (0.20), α1 = 0.50, α2 = 2.67 (3.10),
α3 = 9.65 and T c = 12.0 K (12.1 K), σ = 0.98 K (0.83 K).

The BCS Hamiltonian in terms of the quasiparticle
creation and annihilation operators reads

HBCS =
∑
k,σ

Ekγ
†
kσγkσ +

∑
k

εk

−
∑
k,k′

U(k, k′)〈c†k↑c
†
−k↓〉〈c−k′↓ck′↑〉.

The excitation spectrum of the quasiparticles Ek is
gapped and defined only for positive energies. The den-
sity of states of quasiparticles in an isotropic s-wave su-
perconductor (∆k = ∆0) can be calculated via

ρqp(E) =
1

N

∑
k

δ(E − Ek)

=

∫
dερ0(ε)

√
ε2 + |∆|2
ε

δ(ε−
√
E2 − |∆|2)

=

{
ρ0(
√
E2 − |∆|2) E√

E2−|∆|2
E > |∆|

0 E < |∆|
.

As the quasiparticles are superpositions of particles
and holes, this is not the density of states that can
be measured in, for instance, scanning tunneling spec-
troscopy. To determine the electron DOS, we have to
start from another commonly used expression of the
density of states in terms of Greens functions, ρ(E) =

− 1
π

∑
kσ Im(−〈c†kσckσ〉0).

We assume a non spin-polarized energy dispersion and

 0

 0.5

 1

 1.5

 2

-15 -10 -5  0  5  10  15
E-EF (meV)

L
D

O
S

 (
a

rb
. 

u
n

it
s
)

unbroadened e
-

broadened e
-

quasiparticle

FIG. 6. Comparison of broadened and unbroadened electron
DOS to the quasiparticle DOS for identical parameters (as
given in Table I). The quasiparticle DOS includes a small
broadening of Γ = 0.07 meV. The energy scale is set to
∆0 = 10 meV.

again insert the Bogoliubov-Valatin transformation

ρ(E) =
2

π

∑
k

Im
(
|uk|2

〈
γ†k↑γk↑

〉
0

+ |vk|2
〈
γ−k↓γ

†
−k↓

〉
0

)
.

As the Hamiltonian is diagonal in the quasiparticle op-
erators, we can insert the expression for the bare Greens
function and get

ρ(E) =2
∑
k

(
|uk|2δ(E − Ek) + |vk|2δ(E + Ek)

)
,

where k is a combined momentum and band index. |uk|2
and |vk|2 are the probabilities for the excitations being
hole- or electron-like respectively. Only positive energies
are taken into account8.

Next we calculate the DOS explicitly for the ab initio
derived bandstructure and the superconducting gap cal-
culated microscopically. The delta functions in the DOS
are replaced by gaussians with a standard deviation of
1.2 meV to simulate the broadening observed in experi-
ment. For comparison we also calculated the DOS with
a tetrahedron method9 that does not employ any broad-
ening. For the calculation of the DOS using gaussians
we included 4000× 4000 k-points in the xy-plane. In the
tetrahedron method we used 4000× 4000× 2 k-points.

A comparison of the broadened and unbroadened elec-
tron DOS and the quasiparticle DOS is shown in Fig. 6.
Peak positions are identical. Only the background far
away from the Fermi level is not well represented by the
quasiparticle approximation. This can be easily under-
stood from the structure of the expression derived before.
To one energy E two different electron energies εk and
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FIG. 7. Illustration of the energy levels in tip and sample with
(right) and without (left) applied voltage. The voltage raises
the energy levels of the tip, so that the chemical potential is
higher than in the sample and a net current results. Note,
that these energy shifts in the tip can be described in two
ways: f(E,µ′ = µ+ eV ) or f(E − eV, µ).

εk′ (where εk = −εk′) contribute and the BV coefficients

should average to approximately
√

0.5. The small devia-
tions are causing the asymmetric behavior, which merges
to the normal density of states far away from the gap.

In the case of an anisotropic gap, the normal state
density of states can not be identified easily, because the
gap ∆ then also depends on momentum k and the Fermi
surface is not a concentric circle.

ρs(E) =

∫
dε

1

N

∑
k

δ(ε− εk)δ(|E| −
√
ε2 + |∆k|2)

6=
∫
dερN (ε)δ(|E| −

√
ε2 + |∆k|2).

However, in the commonly used ansatz the electrons are
considered to be free (Fermi surface is a concentric circle)
and the gap is only determined by the angle θ

ρs(E) =
1

(2π)2
meRe

∫
dθ

|E|√
E2 − |∆(θ)|2

.

For all further calculations we will use this expression for
the quasiparticle DOS.

VI. THEORY: DIFFERENTIAL
CONDUCTANCE

In a scanning tunneling spectroscopy (STS) experi-
ment the current from the tip to the sample should obey
(see Fig. 7),

Its(V ) =
2πe

h̄

∫ ∞
−∞

dE|Mts(E − eV )|2ρtip(E − eV )

× f(E − eV )ρsample(E)(1− f(E)),

where e is the positive elementary charge and a posi-
tive voltage V corresponds to net charge carrier trans-
port into the sample. The current is proportional to

the tunneling probability |Mts(E)|2, which depends on
tip and sample geometry. Furthermore, the tunneling
probability is proportional to the number of occupied
states in the tip ρtip(E − eV )f(E − eV ) and the num-
ber of unoccupied states in the sample at lower energies
ρsample(E)(1− f(E)).

After shifting the integration variable E → E + eV ,
we arrive at the literature form of the expression for the
tunneling current. In order to obtain the net current,
we have to calculate the difference between the currents
from tip to sample and sample to tip. We obtain

I(V ) =
2πe

h̄

∫ ∞
−∞

dE|Mts(E)|2ρtip(E)ρsample(E + eV )

× (f(E)− f(E + eV )) .

The tunneling matrix element |Mts(E)|2 is experimen-
tally not accessible and therefore the tunneling current
is divided by the voltage dependent tunneling transmis-
sion function T (V ), which can be determined from the
experimental setup. The density of states of the tip is
considered to be independent of energy in the region of
interest. We obtain the differential conductance (shift-
ing once again the integration variable E → E − eV ) by
taking the derivative with respect to the voltage V ,

1

T (V )

dI(V )

dV

=
2πe

h̄
ρtip(EF )×

∫ ∞
−∞

dEρsample(E)

(
−df(E + eV )

dV

)
.

VII. THEORY: BROADENING

In the preceding expression we already included ther-
mal broadening via the Fermi function. Additionally we
have to take into account the finite quasiparticle lifetime.
This can be done (following Dynes et al.10) by replacing
the energies E by E + iΓ in the density of states. If we
now consider only proportionalities, we can also insert
the angle dependent expression for the sample density of
states

dI(V )

dV
∝T (V )

∫ ∞
−∞

dE

∫ 2π

0

dθ

× Re
|E + iΓ|√

(E + iΓ)2 −∆(θ)2

(
−df(E + eV )

dV

)
.

Note that this formula can not be used to fit data with
large finite values of the differential conductance at zero
bias voltage, since the superconducting DOS goes to zero
for zero bias voltage, independent of the choice of Γ.

Sometimes a slightly different expression is used for the
Dynes broadening: |Re[(E + iΓ)/

√
(E + iΓ)2 −∆(θ)2]|

Although only taking the real part and calculating the
absolute value were exchanged here, this formula yields
a finite value for the superconducting DOS at zero bias
voltage, which is proportional to Γ. Therefore, one can
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name function coefficient value

s± coskx + cosky cs1 0.069

s± coskx · cosky cs2 -0.672

dx2−y2 coskx − cosky cd1 -0.259

dxy sinkx · sinky cd2 0.000

TABLE I. Basis functions considered in the fitting process of
the microscopic result for the gap function. Given values are
the result of the fitting procedure.

use it to fit data for the differential conductance, which
include a constant background. Unfortunately, exchang-
ing the order of the real part and absolute value oper-
ations is inconsistent with the expression for the BCS
density of states. We fix this problem by introducing the
shift of the background explicitly.

VIII. THEORY: FITTING GAP SYMMETRIES
TO STS DATA

On top of the broadening effects, it was found that the
measured density of states is suppressed by the formation
of a soft Hubbard gap caused by short-range interactions
and disorder2. This correction can be taken into account
by scaling the density of states by B(V ) as described
before. Including this correction the differencial conduc-
tance reads

1

B(V )T (V )

dI(V )

dV
∝
∫ ∞
−∞

dE

∫ 2π

0

dθ

× Re
|E + iΓ|√

(E + iΓ)2 −∆(θ)2

×
(
−df(E + eV )

dV

)
.

For anisotropic gaps on Fermi surfaces, which are not
concentric circles, this equation is still an approxima-
tion. To improve our calculations, we execute the in-
tegration over the angle as a summation over points
on the discretized two-dimensional ab initio Fermi sur-
face. We find from our microscopic calculations that
the symmetry of the superconducting gap can be de-
scribed by a superposition of two s± and the dx2−y2
functions, ∆(kx, ky) = ∆0[(cs1(cos(kx) + cos(ky)) +
cs2 cos(kx) cos(ky) + cd1(cos(kx) − cos(ky))], where the
normalized prefactors ci (

∑
i |ci| = 1) can be a) fitted to

the experiment (see Fig. 8), or b) set to the microscopic
values (see Fig. 9), so that only one common prefactor
∆0 is fitted to the magnitude of the gap.

The Dynes broadening Γ is used as a fit parameter.
The value for the differential conductance in the mea-
sured data after dividing by correction terms B(V ) and
T (V ) is still finite. This finite differential conductance
at zero bias voltage is too large to be explained by ther-
mal broadening. Therefore, we introduce a parameter

x, which scales and shifts the calculated DOS so that
a constant background in the differential conductance is
subtracted, while keeping the data points far away from
the Fermi level at unity. With this additional correction
we obtain the final formula given in the main text.

The gap on the Fermi surface is shown in Fig. 10
for both the microscopic ratios and those obtained from
the fit to the STS data. The analytic representation for
the microscopic results was determined by fitting a linear
combination of symmetry functions given in Table I. The
largest deviation of the fit from the microscopic gap per
evaluated k-point is 4.55% of the maximum gap value.
The average deviation of the fit is 1.25% of the maximum
gap value. For a comparison of the microscopic result to
its analytic representation see Fig. 10.

While Fig. 10 emphasizes the qualitative agreement
between experiment and theory, we include also polar
and linear plots (see Fig. 11) of the same data to reveal
some quantitative differences. The angle ϕ in the kx-ky
plane is measured from the kx direction. For the RPA
curves and the fitted result the energy scale was set to
∆0 = 10 meV and ∆0 = 12.1 meV respectively. In this
way, the RPA result can be compared directly to the
data shown in Fig. 6 or the DOS shown in Fig. 4 of the
main paper, while the data obtained by analysing the
experiment can be compared to Fig. 3 in the main paper.

While the symmetry of the superconducting gap ob-
tained from theory is identical to the one found by
fitting the experiment, the size of the superconduct-
ing gap around ϕ ≈ 45◦ is clearly overestimated in
our calculation. Quantitative differences are however
to be expected, as our RPA approach does not take
into account the electronic self-energy and lacks a self-
consistency condition. Note that there is currently no
state-of-the-art method that can quantitatively predict
the momentum-resolved gap structure or superconduct-
ing transition temperature of two-dimensional correlated
electron systems.

Finally, we investigate whether a nodeless anisotropic
s-wave symmetry could be present in the system. We
combine a plain s-wave gap with the d-wave expressions
given in our manuscript and determine the prefactors for
the contributions that lead to optimal agreement with
the experimental spectrum measured at 5 K (see Fig. 12).
For both the s+dxy and s+dx2−y2 case we observe that
the d-wave component is dominant in the optimal fit to
the STS data. This excludes a nodeless anisotropic s-
wave symmetry. The agreement of the s+dxy symmetry
is considerably worse than for the s+ dx2−y2 symmetry.
The s+dx2−y2 and the s±+dx2−y2 solution presented in
our manuscript describe the data equally well. However,
as a plain s-wave component cannot be caused by anti-
ferromagnetic spin-fluctuations alone, we decided to use
the physically more meaningful representation in terms
of an extended s-wave component.
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FIG. 9. Fit to the experimental data at the different temperatures (Prefactors fixed to microscopic values).
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FIG. 10. Comparison of the gap functions on the ab initio Fermi surface obtained from (a) fitting the STS experiment (b) fitting
the microscopic result calculated using RPA and (c) the microscopic result itself. All data points of the symmetry functions
were multiplied by the energy scale ∆0 = 12.1 eV.

IX. THEORY: TEMPERATURE DEPENDENCE
OF THE GAP

To estimate values for the critical temperature and the
maximum gap size at zero temperature, we fitted our
temperature dependent gap values to the interpolation

formula ∆(T ) = ∆0 tanh(1.74
√

Tc
T − 1) for the solution

of the s-wave BCS self consistency equation (see Fig. 13).
Solving the BCS self-consistency equation for uncon-

ventional pairing mechanisms is difficult due to the mo-
mentum dependence of the pairing interaction. There-
fore, we decided to use the s-wave solution as a rough
approximation.

Our predicted values for the critical temperatures Tc =
10.3 ± 1.2 K for fitted prefactors and Tc = 11.2 ± 0.2
K for fixed prefactors are in good agreement with the
experimental observation of Tc ≈ 11.5 K (see f.i. Ref. 11).
The maximal gap size is found to be ∆0 = 12.9 ± 2.0
meV (fitted prefactors) and ∆0 = 12.1± 0.7 meV (fixed
prefactors).

X. THEORY: AB-INITIO CALCULATIONS

We use the experimental crystal structure12, but relax
the ethylene endgroups of the BEDT-TTF molecules in
eclipsed configuration13. For the exchange correlation
functional we use the generalized gradient approximation
(GGA)14. The DFT calculation was converged using 6×
6× 6 k-point grids.

XI. THEORY: RPA SPIN-FLUCTUATION
PAIRING, FORMALISM

In κ-(BEDT-TTF)2X materials there is strong evi-
dence for antiferromagnetic spin-fluctuations15. There-

fore, we investigate the superconducting state of these
materials based on a random phase approximation (RPA)
spin-fluctuation approach16. We have generalized our im-
plementation from single-site multi-orbital models17,18 to
multi-site single-orbital models relevant for the materials
discussed here.

The low-energy Hamiltonian is given by the kinetic
part H0, derived with the Wannier function method de-
scribed in the main text, and the intra-orbital Hubbard
interaction Hint.

H = H0 +Hint

=
∑
σ

∑
<ij>

tijc
†
iσcjσ + U

2

∑
σ

∑
i

niσniσ̄

Here, σ represents the spin and niσ = c†iσciσ. The
sum over i runs over all BEDT-TTF sites in the unit
cell. The hopping integrals tij taken into account are not
restricted to nearest or next-nearest neighbor hoppings.
We rather determine the optimal distance cutoff during
the wannierization procedure. The interaction strength
U is treated as a parameter.

We calculate the non-interacting static susceptibility

χ0, where matrix elements alµ(~k) resulting from the diag-
onalization of the initial Hamiltonian H0 connect orbital
and band-space denoted by indices l and µ respectively.
The Eµ are the eigenvalues of H0 and f(E) is the Fermi
function.

χ0
spqt(~q) = − 1

Nk

∑
~k,µ,ν

asµ(~k)ap∗µ (~k)aqν(~k + ~q)at∗ν (~k + ~q)

× f(Eν(~k+~q))−f(Eµ(~k))

Eν(~k+~q)−Eµ(~k)

In our calculation both ~q and ~k run over uniform grids
spanning the reciprocal unit cell. Temperature enters the
calculation through the Fermi functions.
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FIG. 11. (a) Polar and (b) linear plot of the magnitude of the
superconducting gap |∆| on the Fermi surface versus the angle
ϕ measured from the kx direction. For the RPA curves and
the fit to experiment the energy scale was set to ∆0 = 10 meV
and ∆0 = 12.1 meV respectively.

The static spin- and orbital-susceptibilities (χs,RPA

and χc,RPA) are constructed in an RPA framework. Since
the interaction term in the Hamiltonian is local and our
models are single-orbital in nature, we can restrict the
calculation to the diagonal elements of the susceptibility
and use scalar equations for the RPA-enhanced suscepti-
bilities.

χs,RPA
L (~q) =

χ0
L(~q)

1− Uχ0
L(~q)

, χc,RPA
L (~q) =

χ0
L(~q)

1 + Uχ0
L(~q)

Here, χL with L = {llll} denotes the diagonal element
of the susceptibility tensor associated with an BEDT-
TTF site indexed by l. The total spin susceptibility
is given by the sum over all site-resolved contributions

χs(~q) = 1
2

∑
L χ

s,RPA
L (~q).
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FIG. 12. Experimental spectrum at 5 K and simulation pre-
sented in the main paper (s±+dx2−y2) compared to simulated
spectra of plain s-wave combined with dxy and dx2−y2 expres-
sions.

The pairing vertex in orbital space for the singlet chan-
nel can be calculated using the fluctuation exchange ap-
proximation19,20.

Γspqt(~k,~k
′) = [

1

2
Uχs,RPA(~k − ~k′)U + Uχs,RPA(~k + ~k′)U

−1

2
Uχc,RPA(~k − ~k′)U + U ]spqt

Momenta ~k and ~k′ are restricted to the Fermi surface. As
vectors ~k ± ~k′ do not necessarily lie on the grid used in
the calculation of the susceptibility χ0(~q), we use linear
interpolation of the grid data.

The pairing vertex in orbital space is transformed into

band space using the matrix elements alµ(~k).

Γ̃µν(~k,~k′) = Re
∑
spqt

at,∗µ (~k)ap,∗µ (−~k)[Γspqt(~k,~k
′)]

×asν(~k′)aqν(−~k′)

Finally, we solve the linearized gap equation by per-
forming an eigendecomposition on the kernel and obtain
the dimensionless pairing strength λi and the symmetry

function gi(~k).

−
∑
ν

∮
Cν

dk′‖

2π

1

2π vF (~k′)

[
Γµν(~k,~k′)

]
gi(~k

′) = λigi(~k)
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FIG. 13. Fit of the interpolation function for the solution of
the s-wave BCS self consistency equation to the temperature
dependent gap values obtained from the STS analysis. (a)
shows the gaps extracted from the fit using prefactors ci fixed
to the values determined from the microscopic calculation,
while (b) shows the gaps extracted from a fit to the STS
experiment, where also the ci were used as parameters.

In the gap equation we use the singlet symmetrized ver-

tex Γµν(~k,~k′) = 1
2 [Γ̃µν(~k,~k′)+Γ̃µν(~k,−~k′)]. The integra-

tion runs over the discretized Fermi surface and vF (~k) is
the magnitude of the Fermi velocity.

XII. THEORY: RPA SPIN-FLUCTUATION
PAIRING, COMPUTATIONAL DETAILS

For the intra-molecular Coulomb interaction we use a
value of U = 0.75 eV. The non-interacting susceptibil-
ity is calculated on a 50 × 50 k-point grid at an inverse
temperature of β = 40 eV−1. For the solution of the
gap equation we used 548 points on the two-dimensional
Fermi surface.
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