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Contrary to previous studies that classify Na2IrO3 as a realization of the Heisenberg-Kitaev model with

a dominant spin-orbit coupling, we show that this system represents a highly unusual case in which the

electronic structure is dominated by the formation of quasimolecular orbitals (QMOs), with substantial

quenching of the orbital moments. The QMOs consist of six atomic orbitals on an Ir hexagon, but each Ir

atom belongs to three different QMOs. The concept of such QMOs in solids invokes very different physics

compared to the models considered previously. Employing density functional theory calculations and

model considerations we find that both the insulating behavior and the experimentally observed zigzag

antiferromagnetism in Na2IrO3 naturally follow from the QMO model.
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High interest in the recently synthesized hexagonal iri-
dates [1–3] is due to the hypothesis [4,5] that the electronic
structure in these materials is dominated by the spin-orbit
(SO) interaction. In this case, the Ir t2g bands are most

naturally described by relativistic atomic orbitals with the
effective angular moment, jeff ¼ 3=2 and jeff ¼ 1=2. In
this approximation, the splitting between the 3=2 and 1=2
states is larger than their dispersion. The upper band jeff ¼
1=2 is half-filled and Ir atoms can be described as localized
(jeff ¼ 1=2, M ¼ 1�B) magnetic moments [6] with the
exchange interaction strongly affected by SO coupling. In
particular, this picture leads to a very appealing framework
known as the Heisenberg-Kitaev model [7,8], with highly
nontrivial physical properties. However, experimental evi-
dence for the jeff scenario is lacking [9].

In this Letter, based on ab initio density functional
theory (DFT) calculations and model considerations, we
show that this picture does not apply to the actual Na2IrO3.
Instead, this system represents a highly unusual case
where the formation of electronic structure is dominated
by quasimolecular orbitals (QMOs), which involve six Ir
atoms arranged in a hexagon. What distinguishes this
picture from molecular solids is that there is no associated
spatial clusterization, but each Ir atom (via its three t2g
orbitals) participates in three different QMOs, yet in the
first approximation there is no inter-QMO hopping and the
thus formed bands are dispersionless.

Such an electronic structure calls for a new approach.
There is no known recipe for handling its magnetic prop-
erties, or adding Coulomb correlations, for instance. While
we will not present a complete theory of spin dynamics
and correlations in the QMO framework, we will outline
the general directions and most important questions, in
the expectation that this will stimulate more theoretical
and experimental work and eventually generate more in-
sight. Yet, the key observable features of Na2IrO3: small

magnetic moment, unusual zigzag antiferromagnetism,
and Mott-enhanced insulating behavior, are naturally con-
sistent with the QMO framework.
The main crystallographic element of Na2IrO3 (see the

Supplemental Material [10]) is an Ir4þ (5d5) honeycomb
layer with a Na1þ ion located at its center. Each Ir is
surrounded by an O octahedron, squeezed along the cubic
[111] (hexagonal z) axis. Therefore, Ir d states are split
into an upper eg doublet and a lower t2g triplet. The [111]

squeezing further splits the t2g levels into a doublet and

singlet; initially this effect was neglected [4,7,8]; however,
it was later included [11,12] (and overestimated) to explain
the observed deviations from the Heisenberg-Kitaev
model.
In the previous works, after identifying the t2g � eg

splitting it was assumed that the energy scales are W <
ðJH; �Þ<U, where W � 4t is the d-electron band width,
t the effective hopping parameter, JH the Hund’s rule
coupling, � the SO parameter, and U the on-site Coulomb
repulsion. In this limit, the electrons are localized and
the system is a Mott insulator. While �� 0:4–0:5 eV for
5d ions, the bandwidth for 5d orbitals is 1.5–2 eV and
U� 1–2 eV, JH � 0:5 eV, reduced compared to typical
U� 3–5 eV and JH � 0:8–0:9 eV for 3d electrons. Many-
body renormalization may narrow the bands by a factor
ðm�=mÞ; however, given that in Ir U�W, it is unrealistic
to expect a large renormalization. Therefore, the usual
starting pointW < ðJH; �Þ<U is not valid here, rather, the
system is close to an itinerant regime. In this case, one
cannot justify reducing the description of Na2IrO3 (and
possibly other iridates) to an effective j ¼ 1=2 model,
decoupled from the other jeff states.
Thus, the first step (usually skipped) is to understand

the nonrelativistic band structure. We have therefore
performed DFT calculations (see the Supplemental
Material [10]) initially without SO effects (see Fig. 1, solid
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purple lines). Inverting the band structure results (see the
Supplemental Material [10]), we obtained the correspond-
ing tight-binding (TB) Hamiltonian. The leading channel
(by far) is the nearest neighbor (NN) O-assisted hopping
between unlike orbitals (see Fig. 2). This was also correctly
identified previously [4,5]. There are three different types
of NN Ir-Ir bonds; for one (we name it xy bond) (see Fig. 3)
this hopping is only allowed between dxz and dyz orbitals,

for the next (xz) between dyz and dxy orbitals and for the

third bond (yz) between dxy and dxz. In our calculations this

hopping, t01 (the prime indicates that the hopping is via O)

is about 270 meV. Perturbatively, this term is proportional
to t2pd�=ðEt2g � EpÞ, where p stands for the O p states.

Reference [5] pointed out another (next nearest neighbors,
NNN) O-assisted term, which we find to be �75 meV.
Jackeli and Khalliulin [4] invoked another NN hopping
process, between like orbitals pointing directly to each
other. Despite the short Ir-Ir distance, these matrix ele-
ments are surprisingly small, & 30 meV. Finally, some
authors [11,12] addressed the trigonal squeeze, which
creates nonzero matrix elements between the same-site
t2g orbitals.

The main feature of the calculated nonrelativistic band
structure (see Fig. 1) is the formation of a singly degenerate
(not counting spins) band state at �� 1:2 eV, a doubly
degenerate one at �0:7 eV, and a three-band manifold
between �0:3 and 0.2 eV. This clear separation, of the
order of 0.3 eV, cannot be related to the trigonal squeeze,
as this can only split the 6 t2g bands (there are two Ir per

cell) into a doublet and quartet.
In order to understand this, we start with the dominant

hopping, the NN O-assisted t01. Let us consider an electron

on a given Ir site in a particular orbital state, say, dxz. The
site has three NN neighbors. As discussed above, this
electron can hop, with the amplitude t01, to a neighboring

state of dyz symmetry, located at a particular NN site. From

there, it can hop further into a dxy state on the next site, and

so on (see Figs. 2 and 3). At each site, the electron has only
one bond along which it can hop. Following the electron
around, we see that after six hops it returns to the same
state and site from where it started. This means that in the
NN t01 approximation every electron is fully localized

within 6 sites forming a hexagon. Such a state could be
called a molecular orbital, except that there are no spatially
separated molecules on which electrons are localized. Each

FIG. 2 (color online). Most relevant O p-assisted hopping
paths in idealized Na2IrO3 structure. For each of the three
Ir-Ir bond types only hopping between two particular t2g orbitals

is possible. The same holds for the second and third nearest
neighbor hopping via O p and Na s orbitals. Ir-Ir bonds are color
coded as follows: xy bonds are shown by blue lines, xz bonds
by green, and yz bonds by red ones.
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FIG. 1 (color online). Electronic structure of the nonmagnetic
Na2IrO3 for the experimentally determined [18] crystal struc-
ture. The calculations were performed with the full potential
local orbital (FPLO) basis using the generalized gradient
approximation (see the Supplemental Material [10]). The solid
purple and dotted green lines refer to calculations without and
with SO interaction, respectively. Note that the Fermi levels
(shown by the horizontal dotted lines) are not aligned.

FIG. 3 (color online). (a) Schematic plot of a Ir6Na hexagon.
We use the same color coding as in Fig. 2, xy bonds are shown by
blue lines and dxy orbitals by blue dots, etc. (b) A quasimolecular

composite orbital on a given hexagon. (c) Three neighboring
quasimolecular orbitals.
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Ir belongs to three hexagons, and each Ir-Ir bond to two.
Thus, three different t2g orbitals on each Ir site belong to

three different QMOs and these QMOs are fully localized
in this approximation (Fig. 3).

Six QMOs localized on a particular hexagon form six
levels, listed in Table I, grouped into the lowest B1u singlet,
the highest A1g singlet, and two doublets E1g and E2u. The

energy separation between the lowest and the highest level
is 4t01, which is close to the calculated total nonrelativistic
t2g band width.

We now add the O-assisted NNN hopping t02. Here there
are several such paths. However, the dominant hopping
takes advantage of the diffuse Na s orbital (see Fig. 2), and
is proportional to t2pd�t

2
sp=ðEt2g � EpÞ2ðEt2g � EsÞ< 0. It

connects unlike NNN t2g orbitals that belong to the same

QMO, and therefore retains the complete localization of
individual QMOs. It does shift the energy levels though, as
shown in Table I. The upper singlet and doublet get closer
and the lower bands move apart providing the average
energy separations of �0:5, �0:6, and �0:1 eV among
the calculated nonrelativistic subbands (at jt01=t02j ¼ 2 the
upper two levels merge; in reality, jt01=t02j � 3:3). Given
that the subband widths are 0.2–0.3 eV, obviously, the
upper doublet and singlet merge to form one three-band
manifold.

Several effects contribute to the residual dispersion of
the QMO subbands. The trigonal splitting plays a role,
albeit smaller than often assumed: the trigonal hybridiza-
tion is � � 25 meV (the splitting being 3�). This may
seem surprising, given the large distortion of the O
octahedral. However, in triangular layers several factors
of different signs contribute to �, and strong cancellations
are not uncommon [13]. Trigonal splitting, combined with
various NN and NNN hoppings not accounted for above,
all of them on the order of 20 meV, trigger subband dis-
persions of 200–300 meV (see the Supplemental Material
for further discussion [10]).

We shall now address the SO interaction. The corre-
sponding bands and density of states (DOS) are shown in
Fig. 1. The lowest two subbands hardly exhibit any SO
effect, even though the spin-orbit parameter � in Ir is
�0:4–0:5 eV, larger than both the subband widths and
subband separation. However, a simple calculation shows

that not only are the orbital momentum matrix elements
between the QMOs on the same hexagon zero (this follows
from the quenching of the orbital momentum in the QMO
states), but they also vanish between the like QMOs,
located at the neighboring hexagons, such as B1u � B1u.
Furthermore, at � the matrix elements between the two
lowest subbands, B1u and E1g, vanish because of different

parities; away from the � point the effect of SO increases,
in the first approximation, as FðkÞ ¼ sin2kAþ sin2kBþ
sin2kC, where A, B, and C are the three vectors connect-
ing the centers of the hexagons, as can be worked out by
applying the L � S operator to the corresponding QMOs.
The situation becomes more complex in the upper

manifold, where three bands, A1g and two E2u, come very

close. Even though the diagonal matrix elements, as well as
nondiagonal elements at � still vanish, the fact that A1g and

E2u are nearly degenerate in energy induces a considerable
SO effect at all other k points [which grows linearly with k

as
ffiffiffiffiffiffiffiffiffiffiffi

FðkÞp

]. Note that deviations from the minimal model
(t01, t02) and SO coupling with the lower E1g states also

affect the bands at k ¼ 0. We also remind the reader that
the orbital moment of the individual electronic states can
only be finite if the QMOs mix (which is the case), and the
direction of the orbital moment is different in different
parts of the Brillouin zone: along one of the three cardinal
in-plane directions it is parallel to the cubic x, along
another to y, etc. Since the spin moment tends to be parallel
to the orbital moment, SO is competing with the Hund’s
rule coupling and suppresses the tendency to magnetism.
Let us now discuss the effect of the Hubbard correla-

tions. It was initially conjectured that Na2IrO3 was a Mott
insulator. This seems counterintuitive, since similar 4d
Ru and Rh compounds are correlated metals, and more
diffuse 5d orbitals have a smaller Hubbard U� 1:5–2 eV
and stronger hybridization. It is hard to justify that this U
can drive a 5=6 filled band of a similar width into an
insulating state. Recently, another more logical concept
has gained currency: on the DFT level Na2IrO3 is a semi-
metal, barely missing being a semiconductor, and a small
Hubbard U just helps to enhance the already (spin-orbit
driven) existing gap. Indeed, in our calculations the mini-
mal gap is�8 meV, but the average direct gap is 150 meV,
consistent with the optical absorption [14]. The minimal
direct (optical) gap is 50 meV, so it is plausible that it is
somewhat enhanced by correlation effects.
In order to include the effect of an on-site Hubbard U in

the QMO basis, a UQMO �U=6 has to be applied to each

QMO[15], with a residual Coulomb repulsion between
neighboring QMOs, VQMO �U=18 ¼ UQMO=3 (note that

two QMOs overlap on two sites). Overall, we expect that
the effect of the Coulomb repulsion in our system is
similar to that in a single-site two-orbital Hubbard model
at half-filling (the upper QMO band is half-filled) and
UQMO � W � 150–200 meV. In this case, since UQMO

does not compete with one-electron hopping any more,

TABLE I. Six quasimolecular orbitals formed by the six t2g
atomic orbitals on a hexagon [! ¼ expði�=3Þ]. Note that t01 > 0
and t02 < 0.

Symmetry Eigenenergy Eigenvector(s)

A1g 2ðt01 þ t02Þ (1, 1, 1, 1, 1, 1)

E2u t01 � t02 (1, !, !2, �1, !4, !5)

(Twofold) (1, !5, !4, �1, !2, !)

E1g �t01 � t02 (1, !2, !4, 1, !2, !4)

(Twofold) (1, !4, !2, 1, !4, !2)

B1u �2ðt01 þ t02Þ (1, �1, 1, �1, 1, �1)
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one should expect that the gap will be enhanced by a
considerable fraction of UQMO, which is consistent with

the experiment. Thus, Hubbard correlations are of no
qualitative importance, and only moderately enhance the
existing gap.

Since all electrons are fully delocalized over six sites,
any model assuming localized spins (whether Heisenberg
or Kitaev) is difficult to justify. On the other hand, the
QMOs are not magnetically rigid objects and neighboring
QMOs overlap on 2 out of 6 sites, which makes a model
with magnetic moments localized on QMOs equally un-
suitable [16].

We will consider therefore magnetism in the itinerant
approach. In the nonrelativistic case, the nonmagnetic
DOS shows a high peak at EF due to E2u and A1g merging

and rather flat band dispersion (see Fig. 1). Such a system
is unstable against ferromagnetism (FM) and the peak is
easily split gaining exchange energy (1�B=Ir) with little
loss of kinetic energy. The resulting FM state is half-
metallic (Fig. 4) (see the Supplemental Material [10]).

Turning on the SO interaction has a drastic effect on
magnetism. SO competes with the Hund’s rule that favors
all on-site orbitals to be collinear. The spin moment is then
reduced from 1�B to � 0:4�B=Ir for ferromagnetic, and
� 0:2�B=Ir for the zigzag and stripe antiferromagnetic
(AFM) arrangements (see the Supplemental Material [10]).
The orbital moment is parallel to the spin one, reminiscent
of the jeff ¼ 1=2 state, and is roughly equal in magnitude
and not twice larger, as it should be for jeff ¼ 1=2. The
energy gain for the FM case drops to a few meV=Ir [17],
and the zigzag pattern evolves as the most favorable AFM
state.

Qualitatively, two closely competing ground states
emerge from the relativistic DFT calculations: ferromag-
netic and zigzag. In the context of an itinerant picture,
we can argue as follows. SO creates a pseudogap at the
Fermi level in the nonmagnetic calculations (see Fig. 1).
This gains one-electron energy and any AFM arrangement
that destroys this pseudogap incurs a penalty. From the
three considered AFM states, only zigzag preserves (even

slightly enhances) the pseudogap (see the Supplemental
Material [10]). That gives this state an immediate energet-
ical advantage and leads to the energy balance described
above. Two notes are in place: first, all the above holds
in LDAþU calculations with a reasonable atomic U (we
have checked U up to 3.8 eV). The role of U in these
systems, as stated previously, is merely enhancing the
existing SO-driven gap. Second, if the DOS indeed plays
a decisive role in magnetic interactions, it is unlikely that
they can be meaningfully mapped onto a short-range ex-
change model, Heisenberg or otherwise.
Summarizing, our DFT calculations demonstrate that

Na2IrO3 is close to an itinerant regime. The electronic
structure of this system is naturally described on the
basis of quasimolecular orbitals centered each on its own
hexagon. This makes this, and similar materials rather
unique. Proceeding from this description, one can under-
stand the main properties of Na2IrO3, including its unique
zigzag magnetic ordering with small magnetic moment.
However, the main goal of our work is not a complete

understanding of the magnetic properties of Na2IrO3. We
realize that this understanding is still incomplete and
that full explanation of the weak antiferromagnetism, as
well as of the magnetic response in this compound remains
a challenge. Rather, we lay out the framework in which
this challenge has to be resolved. We demonstrate that both
the simplified (but correct) TB model proposed in previous
studies [4,5], and full ab initio calculations provide a
framework that is best described by the quasimolecular
orbitals. This is an as yet unexplored concept (as opposed
to molecular orbitals or atomic orbitals), and there are
many open questions about how to treat correlations, mag-
netic response, etc., in this framework; however, it appears
to be the only way to reduce the full 12 atomic orbitals
(t2g or their relativitsic combinations) problem to a smaller

subspace (3� 2 ¼ 6) QMOs.
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