
Multistep Approach to Microscopic Models for Frustrated Quantum Magnets:
The Case of the Natural Mineral Azurite

Harald Jeschke,1 Ingo Opahle,1 Hem Kandpal,2 Roser Valentı́,1 Hena Das,3 Tanusri Saha-Dasgupta,3 Oleg Janson,4

Helge Rosner,4 Andreas Brühl,5 Bernd Wolf,5 Michael Lang,5 Johannes Richter,6 Shijie Hu,7 Xiaoqun Wang,7

Robert Peters,8 Thomas Pruschke,9 and Andreas Honecker9

1Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
2IFW Dresden, Post Office Box 270116, 01171 Dresden, Germany

3Satyandranath Bose National Centre for Basic Sciences, Kolkata 700098, India
4Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

5Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
6Institut für Theoretische Physik, Universität Magdeburg, Post Office Box 4120, 39016 Magdeburg, Germany

7Department of Physics, Renmin University of China, Beijing 100872, China
8Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

9Institut für Theoretische Physik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
(Received 6 December 2010; published 23 May 2011)

The natural mineral azurite Cu3ðCO3Þ2ðOHÞ2 is a frustrated magnet displaying unusual and contro-

versially discussed magnetic behavior. Motivated by the lack of a unified description for this system, we

perform a theoretical study based on density functional theory as well as state-of-the-art numerical many-

body calculations. We propose an effective generalized spin-1=2 diamond chain model which provides a

consistent description of experiments: low-temperature magnetization, inelastic neutron scattering,

nuclear magnetic resonance measurements, magnetic susceptibility as well as new specific heat mea-

surements. With this study we demonstrate that the balanced combination of first principles with powerful

many-body methods successfully describes the behavior of this frustrated material.

DOI: 10.1103/PhysRevLett.106.217201 PACS numbers: 75.50.Ee, 71.15.Mb, 75.10.Jm, 75.30.Et

The natural mineral azurite Cu3ðCO3Þ2ðOHÞ2 has been
used as a blue pigment since the time of the ancient
Egyptians; the beautiful intense blue color [see Fig. 1(a)]
is due to the crystal field splitting of Cu 3d orbitals in
square planar coordination. More recently, the discovery
of a plateau at 1=3 of the saturation value in the low-
temperature magnetization curve [1,2] has triggered inten-
sive interest in the magnetic properties of azurite. From the
point of view of magnetism, the most important structural
motives [3] are diamondlike chains which are formed by
the spin-1=2 copper atoms [Fig. 1(b)]. If all exchange
constants were antiferromagnetic, azurite would fall into
the class of geometrically frustrated magnets. These sys-
tems are fascinating since the competition of the magnetic
interactions suppresses classically ordered states and may
give rise to new states of matter with exotic excitations (see
Ref. [4] for a recent review). In particular, for a certain
class of frustrated magnets including diamond chains, one
expects localized (dispersionless) many-body states at high
magnetic fields [5]; indeed inelastic neutron scattering
(INS) on azurite exhibits an almost dispersionless branch
of excitations [6].

There have been a number of attempts [1,6–10] to derive
a microscopic model for the complex magnetic properties
of azurite. The results are, however, contradictory and up to
now none of these models was able to yield a fully con-
sistent picture of the experimentally observed behavior.
Some authors favor a diamond chain model with all ex-

changes antiferromagnetic [1,9,11] while other authors
proposed one of the dominant exchange constants to be
ferromagnetic [6–8]. Even more, Ref. [10] has argued that
interchain coupling is important in azurite. The latter may
be in agreement with the observation of a magnetic order-
ing transition at about 2 K [1,12,13], but raises the question
why no dispersion perpendicular to the chain direction is
observed by INS [6].
In the present work, we combine first principles

density functional theory (DFT) calculations with model
computations based on different variants of the density-
matrix renormalization group (DMRG) method [14–17]
and resolve the underlying model for azurite. We find
that an effective generalized spin-1=2 diamond chain
model with a dominant next-nearest-neighbor antiferro-
magnetic Cu dimer coupling J2, two antiferromagnetic
nearest- and third-nearest-neighbor Cu dimer-monomer
exchanges J1 and J3, and a significant direct Cu
monomer-monomer exchange Jm [see Figs. 1(b) and 3(a)]
explains a broad range of experiments on azurite [1,2,6,18]
and resolves the existing controversies.
Since the experimentally determined positions of the

lighter atoms in a structure usually carry larger error
bars than those of more heavy elements, we first performed
a Car-Parrinello molecular dynamics calculation [19] in
order to optimize the positions of the C, O, and H atoms
in azurite. With the optimized structure with a total of
30 atoms in the unit cell we determined the electronic
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properties of azurite [20]. The band structure shows six
narrow Cu 3dx2�y2 bands at the Fermi level—correspond-

ing to the six Cu atoms per unit cell—separated by an
energy of 0.9 eV from the occupied Cu 3dz2 bands and

by a gap of Eg ’ 3 eV from the higher unoccupied bands

[Figs. 2(a) and 2(b)]. Figure 2(c) shows a charge density
isosurface, where a dx2�y2 symmetry of the Cu d orbitals is

evident without contribution of dz2 character, contrary to

previous suggestions [21,22].
While the GGA calculation describes this system as

metallic, the insulating behavior is correctly given within
the GGAþ U approach (see below). Here we first analyze
the interaction paths based on the GGA band structure. We
perform Nth order muffin tin orbital (NMTO) downfolding
[23,24] to obtain the tight-binding Hamiltonian parameters
ti describing the six Cu 3dx2�y2 bands [see Fig. 2(b)].

Under the assumption that the exchange couplings are
antiferromagnetic, we can estimate the magnitude of the
exchange couplings via second-order perturbation theory:
JAFMi ¼ 4t2i =U where U is the Cu 3d on-site Coulomb

interaction strength. From this analysis we identify six
further relevant couplings in addition to J1, J2 and J3:
the monomer-monomer exchange Jm also considered by
Rule et al. [6] and the nearest-neighbor Cu dimer interac-
tion Jd along the chain. In addition, J4 and J7 provide
couplings between Cu dimer atoms in neighboring chains,
whereas J5 and J6 correspond to Cu monomer-dimer
interchain interactions. The interaction paths between
chains are visualized in Figs. 1(c) and 1(d).
Next, we obtain the correct sign (ferro- or antiferromag-

netic) and magnitude of the Ji from total energy calcula-
tions for different Cu spin configurations in supercells with
up to 60 atoms. We employ the full potential local orbital
(FPLO) method [25] with the GGAþ U functional for
U ¼ 4, 6, and 8 eV. We map the energy differences of
the frozen collinear spin configurations onto a spin-1=2
Heisenberg model and evaluate the exchange constants
J in a dimer approximation [26]. The nine relevant
Cu-Cu interaction paths obtained from the downfolding
calculations have been probed with 10 different antiferro-
magnetic spin configurations together with the ferromag-
netic configuration. The result for a choice of U ¼ 8 eV
and JH ¼ 1 eV is shown in the first line of Table I. As
expected from experimental observations, J2 dominates
and exhibits a 1=U dependence [17]. The two couplings
J1 and J3 are very similar in magnitude, suggesting an
almost symmetric diamond chain. We observe that except
for J1, J2, and J3, the coupling strengths are of the order of
a few Kelvin. Comparing our set of parameters in Table I,
line 1 to that obtained in Ref. [10], the main differences are
that we determined the additional 3D couplings J4, J5, and
J7, and our value for Jm, double-checked with two full
potential methods [20,25], is clearly nonzero.
At first sight, the fact that interchain coupling turns

out to be appreciable is surprising because INS did not
observe any dispersion perpendicular to the chain direction
[6]. However, since the dimer exchange J2 dominates, one
can use perturbative arguments along the lines of Ref. [27]
to show that there are no low-energy excitations dispersing
perpendicular to the chains. The essential ingredients of
the argument are that (i) the interchain exchange cons-
tants J4 to J7 are small compared to J2 and (ii) they connect
only to dimers of the neighboring chains [compare
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FIG. 2 (color). Electronic structure of azurite, calculated with
FPLAPW. (a) Band structure in a wide energy window. At the
Fermi level the bands are dominantly of Cu 3dx2�y2 character

(blue bands). (b) Blow-up of the six bands at the Fermi level.
(c) Electron density above E ¼ �0:75 eV for an isovalue of
0:1 e=a:u:3. All density is centered at the Cu sites and it has
3dx2�y2 symmetry.

FIG. 1 (color). (a) Example of an azurite crystal aggregate. (b)–(d) Arrangement of Cu2þ ions in the structure of azurite. The two
inequivalent Cu2þ ions form dimers (cyan) and monomers (blue). (b) Most important exchange paths within the diamond chain
running along the b axis: Dimer coupling J2 (black), dimer-monomer couplings J1 and J3 (magenta and green), and monomer-
monomer coupling Jm (orange). (c)–(d) Three-dimensional couplings between diamond chains, connecting (c) monomer and dimer
ions: J5 (yellow) and J6 (red) and (d) dimer ions only: J4 (pink) and J7 (light green).
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Figs. 1(c) and 1(d)], i.e., they contribute only in second or
third order in perturbation theory [17]; this would suggest
using an effective one-dimensional model with the values
of J1, J2, J3, and Jm adjusted to incorporate the effect of the
three-dimensional couplings. Table I line 2 shows the
results obtained by solving the 10 spin configurations
only for the diamond chain couplings. This corresponds
to an averaging over the 3D couplings and translates into a
significant asymmetry of the diamond chain J1 > J3. The
effective one-dimensional model has the additional advan-
tage that it is amenable to detailed quantum mechanical
model calculations, thus allowing a quantitative compari-
son with experimental data for azurite.

From these results salient experimental features of azur-
ite can already be understood at a qualitative level: two
thirds of the Cu2þ spins are strongly bound by J2 into
dimer singlets while another third consists of monomer
spins which interact weakly by Jm and additional effective
monomer-monomer interactions which are generated by
integrating out the dimers. In an applied magnetic field, the
monomer spins are therefore polarized first while the dimer
spins remain in the singlet state, giving rise to the 1=3
plateau [1,2,18]. Furthermore, the two energy scales, i.e.,
the low-energy scale given by the monomer-monomer
interactions and the high-energy scale associated to the
dimers give rise to the double-peak structures observed in
the magnetic susceptibility [1] and the specific heat [1,6].
Finally, we expect a band of low-energy monomer excita-
tions dispersing along the chain direction and a band of
dimer excitations at higher energies whose dispersion is
additionally suppressed by the competition of J1 and J3, as
indeed observed by INS [6].

We will now show that we can also describe these
experimental results quantitatively. The DFT results leave
some freedom concerning the overall energy scale, how-
ever the ratios of the Ji are expected to be subject only to
small errors [28]. We therefore first slightly refined the
parameter ratios using the magnetization and INS experi-
ments, leading to J1=J2 ¼ 0:47, J3=J2 ¼ 0:21, and
Jm=J2 ¼ 0:14. The global energy scale is finally adjusted
to the magnetization curve (see below) and we obtain the
exchange coupling constants Ji in Table I, line 3.

In order to fully account for the quantum nature
of the spins residing on the Cu2þ ions, we use a spin 1=2

Heisenberg model H ¼ P
hi;jiJi;j ~Si � ~Sj � g�BH

P
iS

z
i ,

where ~Si are spin 1=2 operators, Ji;j is the exchange

constant connecting sites i and j [see Fig. 3(a)], H an
external magnetic field and �B the Bohr magneton.
The gyromagnetic ratio g is set to 2.06 [29].
Figure 3(b) shows a comparison for the experimental

and computed magnetization curves. The overall energy
scale is J2 ¼ 33 K, leading to our final parameter set in
Table I, line 3. The agreement of the theoretical magneti-
zation curve in Fig. 3(b) with the experimental result for
H ? b [2] is excellent. Note that the experimental curve
for H ? b exhibits a nice plateau as expected for a
Heisenberg model whereas forH k b the plateau is washed
out [1], indicative of noncommuting fields. Therefore we
compare our results for the isotropic Heisenberg model
with experiments for H ? b. We find that dimer spins
should be about 2.7% polarized each [17], i.e., dimers are
essentially in the singlet state whereas the single
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FIG. 3 (color). (a) Generalized diamond chain model.
(b) Comparison of computations for the magnetization curve
for T ¼ 0 and N ¼ 300 spins with experimental data at T ¼
80 mK for H ? b [2]. (c) Experimental and theoretical zero-
field magnetic susceptibility. (d) Experimental (upper panel) and
theoretical (lower panel) specific heat results for various H
fields. Arrows indicate the response to increasing magnetic field.
(e) Theoretical transverse dynamic structure factor on the 1=3
plateau (H � 14 T) and peak positions of INS spectra from
Ref. [6] (white symbols). Color coding represents the intensity
in arbitrary units.

TABLE I. Exchange constants in Kelvin (K) derived from FPLO GGAþ U calculations with U ¼ 8 eV and JH ¼ 1 eV for the
various model steps considered in the present work (see text for explanation). The error margin for each Ji in the third line is estimated
to be of the order 1 to 2 K.

J1 J2 J3 J4 J5 J6 J7 Jm Jd

1 full model 13.5 42.8 12.5 2.7 0.6 4.4 �1:7 2.6 �0:4
2 minimal model 17.9 43.9 12.0 � � � � � � � � � � � � 2.4 � � �
3 refined model 15.51 33 6.93 � � � � � � � � � � � � 4.62 � � �
4 Ref. [1] model 19 24 8.6 � � � � � � � � � � � � � � � � � �
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‘‘monomer’’ spins are almost fully polarized in the 1=3
plateau. This is qualitatively consistent with recent
63;65Cu NMR [18].

At this stage, the values of all Ji are fixed and we have a
parameter-free prediction of the magnetic susceptibility �.
Figure 3(c) compares our computations [15] with our
measurement of the magnetic susceptibility of azurite for
H ? b, which is very similar to the original experiment of
Ref. [1]. Our parameter set (Table I, line 3) leads to a small,
but qualitative improvement compared to the original one
of [1] (see Table I, line 4): we reproduce a double-peak-like
structure at the correct temperatures whereas only a single
peak [7] is obtained with the parameters of [1].

Analogous to the magnetic susceptibility, we also have a
parameter-free prediction for the magnetic specific heat. At
zero-field, two anomalies have been observed in the spe-
cific heat at T ¼ 18 K [1] and T ¼ 4 K [1,6]. Figure 3(d)
compares the field-dependence of the experimental spe-
cific heat with results calculated [15] for the parameters of
Table I, line 3. The sharp peak in the experimental curves
slightly below 2 K [1,12] signals an ordering transition
which is out of reach of a one-dimensional model.
Nevertheless, not only are the numerical values of the
specific heat for 2 K< T & 10 K comparable between
theory and experiment, but also important features are
reproduced correctly: (i) a low-temperature peak appears
for H ¼ 0 at T � 3 to 4 K. Note that this low-temperature
peak at H ¼ 0 is absent [8] for the original parameter set
of Ref. [1] [compare the black dashed curve in the lower
panel of Fig. 3(d)]. (ii) The low-temperature peak is
gradually suppressed by an applied field, as emphasized
by down arrows in the figure. (iii) In the temperature range
7 K � T � 10 K, the specific heat increases not only with
temperature but also with increasing magnetic field
(marked by up arrows).

Figure 3(e) shows our numerical result [16,17] for the
transverse dynamic structure factor on the 1=3 plateau as a
function of momentum transfer k along the chain direction
and energy E. The peak values of the dynamic structure
factor trace two dispersion curves nicely. Comparison with
the corresponding INS results [6] [white symbols in
Fig. 3(e)] shows that the computed ratio of the bandwidths
is extremely close to the experimental value of about 1=6
[30]. Also the total intensities in the peaks compare favor-
ably with the experimental results [6,17].

To summarize, we have shown that the combination of
first principles DFT with state-of-the-art many-body cal-
culations successfully provides a microscopic model for
the frustrated magnet azurite, which explains a wide range
of experiments [1,2,6,18]. We believe that attempts to fit
such a range of experiments, using at least four exchange
constants Ji, are bound to fail. Hence, the guiding DFT
computations were essential. There are several issues for
further experimental and theoretical study [17]. In particu-
lar, the implications of the full three-dimensional model
which we have derived remain to be explored.
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