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We investigate the properties of a two-orbital Hubbard model with unequal bandwidths on the square

lattice in the framework of the dynamical cluster approximation (DCA) combined with a continuous-time

quantum Monte Carlo algorithm. We explore the effect of short-range spatial fluctuations on the nature of

the metal-insulator transition and the possible occurrence of an orbital-selective Mott transition (OSMT)

as a function of cluster size Nc. We observe that for Nc ¼ 2 no OSMT is present, instead a band insulator

state for both orbitals is stabilized at low temperatures due to the appearance of an artificial local ordered

state. For Nc ¼ 4 the DCA calculations suggest the presence of five different phases which originate out

of the cooperation and competition between spatial fluctuations and orbitals of different bandwidths and

an OSMT phase is stabilized. Based on our results, we discuss the nature of the gap opening.
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The correlation driven metal-insulator transition in two-
dimensional (2D) correlated systems is still poorly under-
stood. While the behavior of 2D one-band systems at half
filling seems to be settled, this is not the case for multi-
orbital systems. In one-band systems, long range correla-
tions or local order in small size clusters caused by perfect
nesting (Slater physics) [1–4] open a gap in the weak-
coupling regime, whereas in the strong-coupling regime
the on site Coulomb repulsion is the driving force for the
gap opening (Mott physics) [5]. On the other hand, even
though multiorbital models are better suited to describe
real materials [6] and display rich phase diagrams [7–9] as
well as interesting physics like the orbital-selective Mott
transition (OSMT) [10,11], they are still under debate. The
reason for that is their more complex structure compared to
the one-band model due to the orbital degrees of freedom,
crystal field splitting effects, and the Hund’s rule exchange
coupling. This situation gives us a strong motivation to
investigate the two-orbital system.

The OSMT has recently been intensively studied in the
context of a weakly correlated band coexisting and inter-
acting with a more strongly correlated one in a two-orbital
system [12–20]. Issues like (1) the importance of full or
Ising-type Hund’s rule coupling [12,14,16,18], (2) the con-
sequences of anisotropic Hund’s rule coupling [19], (3) the
role of the ratio of the two bandwidths [15], (4) the in-
clusion of the hybridization between bands [13], (5) the
effect of crystal field splitting [17], and (6) the extension to
the three-band case [21] have already been addressed.
Nevertheless, the importance of spatial fluctuations has
not yet been explored since most calculations have been
performed within the single-site dynamical mean field
theory (DMFT) [22,23] where spatial fluctuations are com-
pletely ignored. On the other hand, it has already been

noticed that even in a single-band case, inclusion of spatial
correlation will qualitatively change the scenario of the
Mott metal-insulator transition [4,24,25]. Therefore, it is
crucial to address the effect of spatial fluctuations on the
OSMT and the phase diagram.
Very recently, Bouadim et al. [20] studied the OSMT by

means of a determinant quantum Monte Carlo method
(DQMC) on the square lattice and showed that an itinerant
band can coexist with a fully localized band in a two-
orbital Hubbard model as long as long range antiferromag-
netic correlation is absent. However, since the DQMC
calculation was based on a simplified model where one
of the two orbitals is constrained to be fully localized, it
still remains unclear whether the OSMT survives in the
system with spatial fluctuations or not. Moreover, since
previous DMFT [12–19] and a slave spin mean field cal-
culation [21] are based on the Bethe lattice, it is interesting
to move in the direction of real systems by studying the
case of a two-dimensional model on the square lattice with
the Fermi level at a van Hove singularity at half filling.
In this Letter we concentrate on the nature of the gap

opening and the OSMT in a two-dimensional system. The
anisotropic two-orbital Hubbard model on the square lat-
tice at half filling is the simplest model which can describe
the OSMT including spatial fluctuations. The Hamiltonian
is given as

H ¼ � X

hijim�

tmc
y
im�cjm� þU

X

im

nim"nim#

þ X

i��0
ðU0 � ���0JzÞni1�ni2�0 ; (1)

where tm for orbital m ¼ ð1; 2Þ denotes the hopping inte-
grals between nearest-neighbor (NN) sites i and j, U and
U0 are intraorbital and interorbital Coulomb repulsion in-
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tegrals, respectively, and Jzni1�ni2� for spin � is the Ising-
type Hund’s rule coupling term. In our calculations we
ignore spin-flip and pair-hopping processes. We also set
t1=t ¼ 0:5 (narrow band), t2=t ¼ 1:0 (wide band), Jz ¼
U=4 and U0 ¼ U=2. For this model we employ the dy-
namical cluster approximation (DCA) method with cluster
sizesNc ¼ 2 and 4. The DCAmethod [26–28] can not only
overcome the problem of the single-site DMFT method
[22,23], where Mott physics rather than Slater physics is
emphasized in the paramagnetic phase due to the lack of
spatial fluctuations, but it is also computationally cheaper
than lattice calculations. We use a weak-coupling
continuous-time quantum Monte Carlo algorithm as an
impurity solver [29,30]. We shall present results on the
spin-spin correlations, double occupancy, self-energy, and
density of states (DOS).

First, let us discuss the results obtained from the DCA
with a two-site cluster (Nc ¼ 2). It is known that, for a one-
band system at low temperatures, the formation of a local
singlet state driven by Slater physics is responsible for the
gap opening. In the two-band system orbital fluctuations
are present. Because of the Hund’s rule coupling and the
Coulomb interaction, ferromagnetic (FM) correlation be-
tween orbitals and antiferromagnetic (AFM) correlation
between sites develop. In order to check for these correla-
tions we measure the on site (intersite) interorbital spin-
spin correlations hSzi;1Szi;2i (hSzi;1Sziþ1;2i) as a function of

U=t. The results are shown in Fig. 1(a).
As the Hund’s rule coupling Jz ¼ U=4 is increased, the

on site interorbital FM correlations (positive sign) and

intersite interorbital AFM correlations (negative sign) are
enhanced for both temperatures T=t ¼ 0:3 and T=t ¼ 0:1.
At high temperatures T=t ¼ 0:3 the on site interorbital FM
correlations are stronger than the intersite interorbital AFM
correlations which can be attributed to the fact that thermal
fluctuations suppress the AFM correlations. At T=t ¼ 0:1
both correlations are of the same magnitude. This behavior
suggests the appearance of a local ordered state in the low
temperature regime. In order to verify whether this state, in
analogy to the one-band model, is responsible for the gap
opening as described by Slater physics, we calculate the
temperature dependence of double occupancy for both
orbitals. If Slater physics is dominant, as the temperature
is decreased the formation of the local order which reduces
the potential energy Uhn"n#i should cause the gap opening.
In Fig. 1(b) we present the double occupancy as a function
of temperature T=t for U=t ¼ 2:4. The double occupancy
in both bands decreases with decreasing temperature and it
shows a more abrupt drop near T=t ¼ 0:2. This behavior
gives strong evidence of Slater physics, and the band
insulator in both orbitals should be present at zero tem-
perature for all positive interaction strengths U=t.
Next, we explore the DCA for a four-site cluster (Nc ¼

4). The inclusion of next nearest-neighbor (NNN) correla-
tions inNc ¼ 4 suppresses the local ordered state enhanced
artificially in the Nc ¼ 2 cluster. In addition, the system
shows a weak degree of frustration because of the absence
of long range correlations. In this way, the Mott physics
present in the single-site systems coexists with Slater
physics present in the two-site systems. Therefore we
believe that the description in terms of the Nc ¼ 4 clusters
is closer to the real materials at finite temperature. In
Fig. 2(a) we compare the on site and intersite interorbital
spin-spin correlation results for Nc ¼ 2 and 4 for T=t ¼
0:1. The same magnitude of both correlations for Nc ¼ 2
implies the presence of a relatively strong intersite local
ordered state, while the deviation of those for Nc ¼ 4
indicates that the local ordered state is released due to
the influence of the NNN correlations. In order to compare
directly the strength of this local ordered state for Nc ¼ 2
and 4, we plot NN and NNN correlations for the narrow
band in Fig. 2(b). In the weak-coupling regime the NN
correlation strength for Nc ¼ 2 due to enhanced Slater
physics is larger than that for Nc ¼ 4. In the strong-
coupling regime the NN correlation strength is similar
for Nc ¼ 2 and 4 since the insulating state for Nc ¼ 4 is
induced by cooperation of Mott and Slater physics. We also
find strong NNN correlations for Nc ¼ 4.
The competition among magnetic and orbital fluctua-

tions as well as weak frustration for Nc ¼ 4 should gen-
erate a rich phase diagram. In order to investigate this
complex situation we analyze, in what follows, the on
site self-energy. The imaginary part of the on site self-
energy Im�ði!nÞ provides information about the possible
Fermi-liquid or non-Fermi-liquid behavior of the system as
well as the nature of the gap opening. In Figs. 3(a) and 3(b)
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FIG. 1 (color online). (a) On site and intersite interorbital spin-
spin correlations for Nc ¼ 2 as a function of U=t at temperatures
T=t ¼ 0:1 and T=t ¼ 0:3. (b) Double occupancy for Nc ¼ 2 as a
function of T=t for U=t ¼ 2:4. Left and right axes are for the
double occupancy of the narrow band and the wide band,
respectively.
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we present Im�ði!nÞ for the narrow and wide band, re-
spectively, at T=t ¼ 0:1. According to Fermi-liquid theory,
Im�ð!Þ at T ¼ 0 at ! ! 0 extrapolates to 0. In the weak-
coupling regions below U=t ¼ 1:4 this Fermi-liquid be-
havior is seen in both bands. Between U=t ¼ 1:4 and 1.8
Fermi-liquid behavior is still present in the wide band,
while non-Fermi-liquid behavior is observed in the narrow
band. The electrons begin to localize in the narrow band
driven by both Slater and Mott physics, while those in the
wide band are still delocalized. As the interaction is in-
creased, non-Fermi-liquid behavior is observed in both
bands. At U=t ¼ 2:8, Im�ði!nÞ in the narrow band di-
verges, which indicates the opening of a gap, while the
metallic state (non-Fermi liquid) is still present in the wide
band. These results evidence a OSMT. In the strong-
coupling region U=t ¼ 3:4 the insulating state is observed
in both bands.

In what follows we shall analyze the nature of the gap
opening. According to recent results obtained for the
single-band plaquette Hubbard model [25], momentum
sectors K ¼ ð0; 0Þ=ð�;�Þ and ð�; 0Þ=ð0; �Þ undergo a
metal to band insulator transition and a metal to Mott
insulator transition, respectively. In Figs. 3(c) and 3(d),
respectively, we present the real and imaginary parts of
the self-energy at the lowest Matsubara frequency !0,
Re�ði!0Þ and Im�ði!0Þ, for K ¼ ð�;�Þ and (�, 0) in
both bands. While Re�ði!0Þ gives information about the
energy shift of the spectral function, Im�ði!0Þ introduces
the scattering rate. As the interaction is increased,
Re�ð�;�Þ ¼ �Re�ð0;0Þ increases while Im�ð�;�Þ ¼
Im�ð0;0Þ remains small in both bands. These results suggest

a metal to band insulator transition where the gap is opened
through separation of the poles away from the Fermi level.
On the other hand, as the interaction increases Im�ð�;0Þ ¼
Im�ð0;�Þ displays a divergent behavior and Re�ð�;0Þ ¼
�Re�ð0;�Þ in both bands is zero due to particle-hole sym-

metry. Therefore, in the strong-coupling region, the gap in
the K ¼ ð�; 0Þ and (0, �) sectors is only induced by the
divergence of Im�ði!0Þ which is a signature for Mott
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FIG. 3 (color online). The imaginary part of the on site self-
energy for U=t ¼ 1:0, 1.4, 2.2, 3.0, 3.4 at T=t ¼ 0:1 for Nc ¼ 4
(a) in the narrow band and (b) in the wide band. The real (c) and
imaginary (d) part of self-energy at the lowest Matsubara fre-
quency !0 for K ¼ ð�;�Þ and (�, 0) sectors as a function of
U=t.
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FIG. 4 (color online). Density of states at T=t ¼ 0:1 and Nc ¼
4 for (a) U=t ¼ 2:8 and (b) U=t ¼ 3:4. We employ the Padé
approximation method for the analytic continuation.
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FIG. 2 (color online). (a) The on site (intersite) interorbital
spin-spin correlations for Nc ¼ 2 and 4 as a function of U=t at
T=t ¼ 0:1. (b) The narrow band (next) nearest-neighbor spin-
spin (NNN, NN) correlations for Nc ¼ 2 and 4 as a function of
U=t at T=t ¼ 0:1.
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physics. These results are similar to the single-band pla-
quette Hubbard model results [25] but, while a first-order
transition occurs in the single-band Hubbard model, the
OSMT behavior is present in the two-band Hubbard model.
In order to show the OSMT more clearly, we present in
Fig. 4 the density of states (DOS) at T=t ¼ 0:1 for the
interaction values U=t ¼ 2:8 [Fig. 4(a)] and U=t ¼ 3:4
[Fig. 4(b)]. These interaction values have been identified
as onsets for the OSMT and insulator phases, respectively.
For U=t ¼ 2:8 the narrow band exhibits a gap at the Fermi
energy (! ¼ 0), while the wide band has a finite DOS at
! ¼ 0. This means that for a given interaction strength
U=t two stages of the Mott transition are present, with a
Mott insulator in the narrow band and a metal in the wide
band. At U=t ¼ 3:4 both bands show a gap at ! ¼ 0. The
gap in the narrow band is wider than that in the wide band.
Finally, we plot the phase diagram with the identified five
phases for Nc ¼ 4 in Fig. 5.

In summary, we have explored the anisotropic two-
orbital Hubbard model using the DCA method with cluster
sizes Nc ¼ 2 and 4. The DCA cluster with Nc ¼ 2 for the
single-band model is known to describe a system with
artificially strong local order between sites and the gap
opening is controlled by Slater physics. Our results show
that this intersite AFM correlation is still strong in spite of
orbital fluctuations, leading to a gap at low temperatures.
The appearance of the insulating states can be described by
Slater physics. We have also investigated within DCA the
Nc ¼ 4 cluster which includes NNN correlations. Unlike
the Nc ¼ 2 cluster, the local ordered states are not present
in the weak-coupling limit. In the very weak-coupling
regime Fermi-liquid behavior is present in both bands.
As the interaction increases, the electrons in the narrow
band weakly localize and non-Fermi-liquid behavior is
observed, even though the Fermi-liquid behavior is still
present in the wide band. In the intermediate region, non-
Fermi-liquid behavior is observed in both bands. In the
strong-coupling region the electrons in the narrow band are
completely localized and those in the wide band are par-
tially localized which can be described as the OSMT. In the
very strong-coupling region both orbitals are insulating.
The nature of the gap opening is that of coexisting Slater
physics in the momentum sector K ¼ ð0; 0Þ=ð�;�Þ and
Mott physics in momentum sector K ¼ ð�; 0Þ=ð0; �Þ.
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