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We investigate the connection between highly frustrated kagome based Hamiltonians and a recently synthe-
sized family of materials containing Ti3+ S = 1

2 ions. Employing a combination of all electron density functional
theory and numerical diagonalization techniques, we establish the Heisenberg Hamiltonians for the distorted
kagome antiferromagnets Rb2NaTi3F12, Cs2NaTi3F12, and Cs2KTi3F12. We determine magnetization curves
in excellent agreement with experimental observations. Our calculations successfully clarify the relationship
between the experimental observations and the magnetization-plateau behavior at 1

3 height of the saturation
and predict characteristic behaviors under fields that are higher than the experimentally measured region. We
demonstrate that the studied Ti(III) family of materials interpolates between the kagome strip and kagome lattice.
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Introduction. Quantum antiferromagnets on the kagome
lattice have fascinated experimental and theoretical physi-
cists for a long time; in particular, since the synthe-
sis of high quality samples of herbertsmithite [1], the
search for quantum spin liquid candidates in highly frus-
trated kagome lattice materials has intensified [2,3]. Cu2+

based materials such as ZnCu3(OH)6Cl2 (herbertsmithite) or
BaCu3V2O8(OH)2 (vesignieite) [4] or the vanadium oxyfluo-
ride [NH4]2[C7H14N][V7O6F18] [5] have been at the forefront
of the discussion. There are also effects of strong mag-
netic frustration and unconventional behavior in imperfect
kagome lattices such as ZnCu3(OH)6SO4 [6] or breathing
kagome lattices. Recently, an interesting new family of S =
1
2 kagome materials has been realized based on magnetic
Ti3+ ions; three compounds Rb2NaTi3F12, Cs2NaTi3F12, and
Cs2KTi3F12 have been reported [7]. They are new mem-
bers of a large class of materials; besides several members
involving Cu2+ such as the possible valence bond solid
Rb2Cu3SnF12 [8], there are S = 2 Mn3+ based members such
as Cs2LiMn3F12 [9] and the more recent S = 1 V3+ based
Cs2KV3F12 [10] or S = 3

2 Cr3+ containing Cs2KCr3F12 [11].
The Ti3+ based materials are particularly attractive because
spin orbit coupling is expected to be much smaller than in
Cu2+; thus, in the new S = 1

2 materials, the Dzyaloshinskii-
Moriya interaction which complicates the discussion of many
Cu2+ based frustrated magnets [12] promises to be much less
important.

Theoretically, the S = 1
2 kagome lattice antiferromagnet

has been studied intensively, using density-matrix renor-
malization group (DMRG) [13], numerical diagonaliza-
tion [14,15], series expansion methods [16], bosoniza-
tion [17], and many other techniques. One possible strong
distortion of the kagome lattice leads to kagome strips [18]
which have been discussed as � chains [19] or sawtooth
lattices [20] for many years. Recently, kagome strips were

studied using the DMRG technique [21]. It is interesting to
look for approximate realizations of kagome strips in real
materials. Crystal structures in which the symmetry of the
kagome lattice is broken by an orthorhombic distortion are
possible candidates for the realization of kagome strips; how-
ever, which model is actually realized needs to be discussed
at the level of electronic structure rather than crystal structure
only.

In this Rapid Communication, we address the problem that
while the new S = 1

2 materials Rb2NaTi3F12, Cs2NaTi3F12,
and Cs2KTi3F12 have been characterized structurally and
magnetically, their Hamiltonian is essentially unknown. We
will apply energy mapping techniques to evaluate the Heisen-
berg Hamiltonian up to third nearest neighbors in the distorted
kagome lattice. We find that the three materials interpolate
between a nearly pure � chain behavior and an only slightly
distorted kagome lattice behavior. Using numerical diagonal-
ization of clusters with up to 36 sites, we obtain excellent
agreement with the measured magnetization curves.

Methods. We calculate electronic structure and total ener-
gies with the full potential local orbital (FPLO) basis set [22]
and the generalized gradient approximation (GGA) func-
tional [23]. Strong electronic correlations in Ti 3d orbitals
are treated with the GGA+U [24] exchange and correla-
tion functional. Hund’s rule coupling for Ti 3d was fixed
at JH = 0.64 eV [25]. Heisenberg Hamiltonian parameters
are extracted by mapping total energies for 15 different spin
configurations to six exchange interactions [26–28].

To obtain magnetization processes, we also carry out nu-
merical diagonalizations of finite-size clusters with Heisen-
berg interactions determined from the density functional the-
ory calculations. Our numerical diagonalizations are per-
formed based on the Lanczos and/or Householder algorithms
in the subspace belonging to

∑
j Sz

j = Mz, where the z axis is

taken as the quantized axis of each S = 1
2 spin operator S j at
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FIG. 1. Crystal structure of Rb2NaTi3F12 with P 21/m space
group [7]. The kagome lattice formed by the three symmetry inequiv-
alent Ti3+ ions Ti(1), Ti(2), and Ti(3) is distorted and buckled.

site j. Our numerical diagonalizations give the lowest energy
of the Heisenberg Hamiltonian in the subspace characterized
by Mz, which leads to the magnetization curve. (See details in
Ref. [29].) Some of the Lanczos diagonalizations were carried
out using message passing interface parallelized code that
was originally developed in the study of Haldane gaps [30].
The usefulness of our program was confirmed in large-scale
parallelized calculations [15,31–41].

Results. Our calculations are based on the structures of
isostructural Rb2NaTi3F12 (shown in Fig. 1), Cs2NaTi3F12,
and Cs2KTi3F12 as determined by Goto et al. [7]. Two Ti3+ ion
chains running along the crystallographic b axis are different
by symmetry. Geometrically, the kagome lattices formed by
Ti(1), Ti(2), and Ti(3) sites are only about 1% distorted.
However, the decisive factor for the magnetic properties is
the electronic distortion, revealed by the result of the energy
mapping (Fig. 2). The top of the figure shows the exchange
couplings calculated by fitting total energies obtained with the
GGA+U exchange correlation functional as a function of the
on-site correlation strength U . We are fitting to the Heisenberg
Hamiltonian in the form

H =
∑

i< j

Ji jSi · S j . (1)

Total moments are exact multiples of 1μB. The energies of
the 15 considered spin configurations can be fitted extremely
well (see also Ref. [29]), and statistical error bars are smaller
than the size of the symbols. Gray vertical lines indicate the
interpolated U value at which the set of couplings matches
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FIG. 2. Heisenberg Hamiltonian parameters for (a) Rb2NaTi3F12, (b) Cs2NaTi3F12, and (c) Cs2KTi3F12 obtained from fits to DFT total
energies using a GGA+U functional for Ti 3d at JH = 0.64 eV as a function of U . Vertical lines indicate the U value at which the couplings
reproduce the experimental Curie-Weiss temperatures �CW. J1–J3 label exchange paths geometrically according to increasing Ti-Ti distance
dTi-Ti. J2a/J2b distinguish paths with identical dTi-Ti but symmetry inequivalent Ti environments. JA/JC label the kagome strip belonging to the
largest exchange coupling JA, and JB/JD label the other symmetry inequivalent kagome strip in the unit cell. The structures in the lower panels
represent the geometry and the topology; bond cross-sectional areas are proportional to the size of the couplings. A clear evolution from a
kagome strip plus 1D chain in Rb2NaTi3F12 to a slightly distorted 2D kagome model in Cs2KTi3F12 is observed.
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TABLE I. Exchange couplings for Rb2NaTi3F12, Cs2NaTi3F12,
and Cs2KTi3F12 determined by energy mapping, using the ex-
change correlation function GGA+U with U values that reproduce
the experimental Curie-Weiss temperatures �CW = −43 K, �CW =
−44 K, and �CW = −47 K, respectively. See Fig. 2 for the assign-
ment of JA, JB, JC, and JD.

Material JA (K) JB/JA JC/JA JD/JA

Rb2NaTi3F12 115.0 0.572 0.292 0.040
Cs2NaTi3F12 74.6 0.733 0.190 0.709
Cs2KTi3F12 70.4 0.558 0.552 0.673

the experimental Curie-Weiss temperature as determined in
Ref. [7]. These U values are in the range 2.3–2.8 eV, which
is reasonable for Ti. These sets of exchange couplings are
listed in Table I. The lower part of Fig. 2 illustrates the
obtained Hamiltonians by representing the relative strength
of the couplings as the cross-sectional area of the Ti-Ti
bonds. The first major result is the observation that the three
considered materials realize three quite different Hamilto-
nians even though they are very similar structurally. The
Hamiltonian of Rb2NaTi3F12 is dominated by an anisotropic
kagome strip formed by Ti(1) (JA) and Ti(3) (JC ≈ 0.3JA) and
a one-dimensional (1D) chain of Ti(2) (JB). In Cs2NaTi3F12,
we have an almost isotropic kagome strip formed by Ti(2)
and Ti(3) ions (JB ≈ JD) and, nearly decoupled from that, a
one-dimensional chain formed by the Ti(1) ions (JB). Finally,
while in Cs2KTi3F12 the one-dimensional coupling of Ti(1)
ions (JA) is a bit larger than the other three in-plane cou-
plings, all other couplings in the kagome plane (JB ≈ JC ≈
JD) are also substantial, making Cs2KTi3F12 a frustrated two-
dimensional (2D) antiferromagnet. We also determined two
selected interlayer couplings corresponding to fifth- and sixth-
nearest-neighbor Ti-Ti distances in the case of Rb2NaTi3F12,
to fifth-nearest-neighbor and ninth-nearest-neighbor in the
case of Cs2NaTi3F12 and to fifth-nearest-neighbor and tenth-
nearest-neighbor in the case of Cs2KTi3F12 [29]. They are so
small that they can be neglected in the further discussion.

We now connect the Hamiltonians to the magnetic mea-
surements by carrying out numerical diagonalization calcula-
tions for N = 24, N = 30, and N = 36 site clusters. We show
M(H ) curves for Rb2NaTi3F12, Cs2NaTi3F12, and Cs2KTi3F12

in Figures 3(a)–3(c). The theoretical magnetic field h given in
units of JA is converted to H in tesla using H = hJA/2/0.6717
T/K. The factor 1/2 is introduced because the DFT determi-
nation of the Ji in the Hamiltonian (1) is done without the
double counting of bonds. The experimental data points in
Fig. 3 are taken from Ref. [7]. Theoretical curves successfully
capture the characteristics of the experimental observations in
spite of the limitation that our theoretical results have a finite
resolution due to the size of the computationally accessible
clusters. It is, in particular, clarified that our results at and
around the 1

3 height of the saturation can explain the behavior
of the measured M(H ) curve for each material, as discussed
in detail in the following.

Discussion. A marked feature of the reported experimen-
tal result for Rb2NaTi3F12 shown in Fig. 3(a) is that there
appears a considerably large gradient in the M(H ) curve
from M = 0 to approximately M ∼ 0.2; above M ∼ 0.3, on
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FIG. 3. Comparison between experimental and calculated mag-
netization curves for all three compounds. The experimental data are
from Ref. [7].

the other hand, the M(H ) curve shows relatively smaller
gradients. Our numerical-diagonalization results reproduce
well a very steep gradient below M = 1

3 and a comparatively
small gradient around M ∼ 0.4 above M = 1

3 . Essentially, a
very weak magnetic field is necessary to polarize one-third
of the system. Considering our Hamiltonian [see Fig. 2(a)],
we have one-third of the spins which are only coupled to
the strong JA chain by the weak JC bond; as this is a weak
and frustrated interaction, a third of the spins are almost
free and can easily be polarized, explaining the large M(H )
gradients in both experimental and theoretical data. After
the initial steep magnetization increase, there is a roughly
linear magnetization increase which can be rationalized by
the expected initially linear magnetization behavior of the JB

spin chain [42]. Our results suggest that the saturation field
is H ∼ 200 T, which is much larger than the experimentally
measured region. Note also that our results predict that a
plateaulike behavior appears at M ∼ 0.8 from approximately
100 T to a field near the suggested saturation. This plateau
might arise from a 1

2 magnetization plateau of the JA − JC �

chain [43], combined with the fully polarized JB spin chain,
i.e., it could be a 1

2 + 1
3 = 5

6 magnetization plateau.
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In Fig. 3(b) for Cs2NaTi3F12, the experimental data show
that the gradient at M = 0 is larger than gradients around
M ∼ 0.4 but smaller than the steep gradient of Rb2NaTi3F12

at M = 0. Our numerical-diagonalization results, especially
around M = 1

3 , capture well these behaviors. The Hamiltonian
of Cs2NaTi3F12 [see Fig. 2(b)] has a spin chain with strong
antiferromagnetic JA and an isotropic � chain with JB ≈ JD <

JA. Therefore, the two-thirds of the spins forming the � chain
are expected to polarize first and reach a 1

2 magnetization
plateau [43] which translates into a 1

3 magnetization plateau
for the full system. Our results suggest that the saturation
field is H ∼ 120 T. Although the height at M = 2

3 seems as
a plateau for N = 24, this behavior is considered to be a
finite-size phenomenon because the widths for N = 30 and 36
become much smaller than that for N = 24. At large fields, we
find a jump to total magnetization which is expected for both
the � chain and kagome lattice [44].

Reference [7] reported that Cs2KTi3F12 shows a concave
behavior in the region approximately from 10 to 20 T in
its M(H ) curve as well as a peak at 23 T in its dM/dH .
The peak leads to an abrupt increase of magnetization. The
dM/dH for Cs2KTi3F12 in Ref. [7] reveals an inflection point
approximately at 30 T. Since an inflection point in dM/dH
corresponds to an edge of a specific plateau at a nonzero
temperature, the inflection point at 30 T can be considered
to correspond to the edge of the M = 1

3 plateau on the low-
field side. Our theoretical results for the edge are observed
around 30–36 T; thus, the experimental and theoretical results
agree well with each other. Our theoretical result for N = 36
shows a plateaulike behavior with a relatively wider region at
M = 1

9 with a rapid increase of M at the higher-field edge.
Our theoretical results are very similar to the experimental
observation although it is unclear at present whether or not
the behavior of M = 1

9 corresponds to a spin-gapped behavior.
Overall, the model Hamiltonian obtained for Cs2KTi3F12 [see
Fig. 2(c)] corresponds to a kagome lattice with one-third of the
spins coupled more strongly than the rest in a one-dimensional
chain. This situation is similar but not equal to the one studied
in Ref. [45]. Considering the rather complicated magnetiza-
tion dynamics seen both in experiment and theoretically, the
1D chain (comprising one-third of the spins) coupled in 2D
by a weaker kagome lattice might warrant further theoretical
study. Our theoretical results also suggest that the saturation
field is H ∼ 130 T and that a plateaulike behavior appears
at M ∼ 0.8 from approximately 90 T to a field near the
suggested saturation. Recently, Ref. [46] reported that the
measurements of another material Cs2LiTi3F12, which is a

member of the same family of distorted kagome systems,
show a behavior similar to that of Cs2KTi3F12. In the mag-
netization curve of Cs2LiTi3F12, a plateaulike behavior with
a height lower than M = 1/3 accompanied by the M = 1/3
plateau is observed [47]. Investigation of the magnetization
curve of the new systems with the methods of the present work
will be an interesting future study, strengthening the Ti(III)
fluorides as a platform for diverse distorted S = 1/2 kagome
systems.

Conclusions. We study three kagome-strip materials,
Cs2KTi3F12, Rb2NaTi3F12, and Cs2NaTi3F12, by density
functional theory and numerical-diagonalization calculations.
The S = 1

2 Hamiltonians revealed by density functional the-
ory based energy mapping indicate that the changes in
the alkali metal spacers tune the materials between one-
and two-dimensional magnetic behavior. We can show that
Rb2NaTi3F12 approximately realizes an anisotropic � chain,
and Cs2NaTi3F12 is close to an isotropic � chain. Thus, we
have demonstrated that these two materials are very close to
realizing important one-dimensional quantum spin systems.
Our theoretical results concerning the magnetization curves
agree well with experimental results reported in Ref. [7].
By revealing the underlying Hamiltonian, several features
of the measured magnetization curves are clarified. Since
the present systems reveal a quasi-one-dimensionality in the
two-dimensional lattices, the DMRG technique, which was
successfully used in Refs. [18,21] on related problems, could
provide valuable additional information. By predicting the
behavior at higher magnetic fields, we hope to inspire further
experimental studies.
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