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Stability of the spiral spin liquid in MnSc2S4

Yasir Iqbal,1,* Tobias Müller,2 Harald O. Jeschke,3 Ronny Thomale,2 and Johannes Reuther4,5

1Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
2Institute for Theoretical Physics and Astrophysics, Julius-Maximilian’s University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

3Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
4Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik,

Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
5Helmholtz-Zentrum für Materialien und Energie, Hahn-Meitner-Platz 1, 14019 Berlin, Germany

(Received 7 February 2018; revised manuscript received 25 July 2018; published 31 August 2018)

We investigate the stability of the spiral spin liquid phase in MnSc2S4 against thermal and quantum fluctuations
as well as against perturbing effects of longer-range interactions. Employing ab initio density functional theory
(DFT) calculations we propose a realistic Hamiltonian for MnSc2S4, featuring second (J2) and third (J3) neighbor
Heisenberg interactions on the diamond lattice that are considerably larger than previously assumed. We argue
that the combination of strong J2 and J3 couplings reproduces the correct magnetic Bragg peak position measured
experimentally. Calculating the spin-structure factor within the pseudofermion functional-renormalization group
technique, we find that close to the magnetic phase transition the sizable J3 couplings induce a strong spiral
selection effect, in agreement with experiments. With increasing temperature the spiral selection becomes weaker
such that in a window around three to five times the ordering temperature an approximate spiral spin liquid is
realized in MnSc2S4.
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I. INTRODUCTION

If magnetic frustration is sufficiently strong, a spin system
may evade spontaneous symmetry breaking at low temper-
atures and instead form a highly entangled state where the
spins fluctuate in a cooperative manner. This so-called spin
liquid state generally exists in two different flavors: the quan-
tum [1–3] and the classical spin liquid [4–7]. The first case
preferably occurs for small quantum spins in combination with
frustrated lattice geometries and/or anisotropic interactions
where quantum fluctuations may reach the size of the local
spin magnitude thus hindering the system from developing
magnetic long-range order. In the second case, spin liquid-like
behavior even survives in the complete absence of quantum
fluctuations such as for classical (S → ∞) spins. The suppres-
sion of long-range magnetic order now relies on a macroscopic
degeneracy of classical ground states through which the system
fluctuates collectively, thus justifying the notion of a classical
spin liquid. Paradigmatic examples are pyrochlore spin-ice
systems [4,5], where at zero temperature an ice rule (e.g.,
the famous two-in-two-out rule) imposes local constraints on
possible spin states. Since these rules leave the ground-state
spin configuration underdetermined, the system maintains a
macroscopic (extensive) classical degeneracy [8].

Interestingly, for certain lattice geometries and special
arrangements of frustrating interactions, classical spin liquids
even exist without a local ice-rule constraint. This rare sit-
uation is realized on the three-dimensional diamond lattice
[Fig. 1(a)] with first (J1) and second (J2) neighbor Heisenberg
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interactions when J2
|J1| > 1

8 and J2 is antiferromagnetic [6,9–
11]. The competing interactions force the system into clas-
sical coplanar spin-spirals. Remarkably, the ground state is
formed from a highly degenerate set of such spirals where
the corresponding wave vectors q occupy a closed surface in
reciprocal space (note that a similar scenario also occurs on
the two-dimensional honeycomb lattice [12–14]). Due to the
cooperative motion of spins through the degenerate manifold
of spirals, this state has been dubbed a spiral spin liquid.

Spiral spin liquids are generally very fragile to perturbations
of various different types. Any finite additional term in the
Hamiltonian such as third neighbor couplings J3 or dipolar
interactions typically selects specific spirals out of the degener-
ate manifold and consequently generates long-range magnetic
order. Even in the absence of such perturbations, a lifting of
the degeneracy takes place due to thermal fluctuations, i.e., a
finite temperature transition into a magnetically ordered state
is induced by an entropic “order-by-disorder” selection [15] of
spirals. As has been found in Ref. [6], by varying J2

|J1| > 1
8

the system goes through a sequence of different magnetic
phases. While strictly speaking this effect destroys spiral spin
liquids at any finite temperature, an approximate version of
this state may still survive in a temperature range above the
transition where the thermal selection is not yet active. Finally,
quantum fluctuations at large but finite spin magnitudes have
been found to induce an order-by-disorder effect similar to
thermal fluctuations [11].

Currently, the most promising material to approximately
realize a spiral spin liquid is the A-site spinel MnSc2S4

[7,16–20] where spin–5/2 Mn2+ ions occupy the sites of a
diamond lattice. At ∼2.9 K which is well below the Curie-
Weiss temperature of |�CW| = 23 K [16] but still inside the
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FIG. 1. (a) Cubic unit cell of the diamond lattice with first (J1),
second (J2), and third (J3) neighbor couplings. (b) Couplings J1-J4

from DFT as a function of the Hubbard U interaction. The vertical
line indicates the exchange couplings investigated in the main text.

paramagnetic phase of this compound (which survives down
to ∼2.3 K [7,16,18–20]) neutron scattering directly observes
surface-like scattering profiles in momentum space, reminis-
cent of a spiral spin liquid [7]. From the radius of this surface
a coupling ratio of J2

|J1| = 0.85 has been determined [6] (where
J1 is ferromagnetic). The measured spin-structure factor is
not evenly distributed on the spiral surface but shows higher
intensities for spirals with wave vectors q ∼ 2π (0.75, 0.75, 0)
and symmetry-related positions [7,18,20]. This spiral selection
turns into real magnetic long-range order below Tc = 2.3
K [18,20] (other works report slightly smaller values of Tc ≈
2.1 K [7,16,19]). It is worth emphasizing that this peak position
does not coincide with the thermal selection predicted in
Ref. [6] but rather points towards the presence of longer-range
J3 interactions.

This article complements recent experimental works by
theoretically investigating the fate of the spiral spin liquid when
assuming a realistic model for MnSc2S4. To this end, we first
employ ab initio density functional theory (DFT) calculations
to determine the microscopic Hamiltonian of this compound.
We then treat the resulting model within the pseudofermion
functional-renormalization group (PFFRG) method [21] which
is capable of resolving the effects of thermal and quantum
fluctuations, and we clarify the role of third neighbor J3

interactions. In particular, we investigate to which degree the
spiral spin liquid phase in MnSc2S4 remains stable under
such perturbations and compare the q–space resolved magnetic
susceptibility with neutron scattering experiments. Our main
results are summarized as follows: (i) We find that the J2 and
J3 interactions are both considerably larger than previously
assumed [6]. (ii) Close to the magnetic phase transition but
still inside the paramagnetic regime the spin correlations
are dominated by J3 couplings which induce a pronounced
selection of spirals with wave vectors q ≈ 2π (0.72, 0.72, 0),
in excellent agreement with experiments. (iii) We identify a
temperature regime around 3Tc to 5Tc where the spiral selection
due to J3 couplings is suppressed such that the system realizes
an approximate spiral spin liquid. (iv) PFFRG calculations for
our model Hamiltonian reproduce the measured spin structure
factor for MnSc2S4 with remarkable accuracy.

The paper is structured as follows: In Sec. II, we describe
the DFT and PFFRG methods, and provide details of the
calculations. In Sec. III we discuss the model Hamiltonian

TABLE I. Exchange couplings of MnSc2S4 calculated within
GGA+U at JH = 0.76 eV and 6 × 6 × 6 q points. The parameters
corresponding to U = 4.5 eV (marked in bold) are used for the
PFFRG simulations [see also Fig. 1(b)].

U (eV) J1 (K) J2 (K) J3 (K) J4 (K) �CW (K)

3.0 −0.465(2) 1.117(1) 0.364(1) 0.0039(6) −46
3.5 −0.433(2) 0.918(1) 0.305(1) 0.0029(5) −38
4.0 −0.404(1) 0.755(1) 0.257(1) 0.0022(4) −31
4.5 −0.378(1) 0.621(1) 0.217(1) 0.0015(3) −25
5.0 −0.356(1) 0.509(1) 0.184(1) 0.0009(3) −20

determined from DFT and compare our exchange couplings
with those of the previously proposed model. We also discuss
the physical implications of these new couplings for the
corresponding classical model employing the Luttinger-Tisza
method. Section IV contains the results obtained from the
PFFRG calculations for the newly proposed Hamiltonian,
which are also compared and contrasted with those obtained
for the previously proposed model. Finally, in Sec. V we
summarize and discuss our findings, and give concluding
remarks.

II. METHODS

We base our calculations on the cubic spinel structure
determined by neutron powder diffraction at T = 1.6 K [18].
The Mn2+ ions form a diamond lattice as shown in Fig. 1(a).
We use an energy mapping technique to determine the most
important exchange interactions in MnSc2S4 [22–24]. For this
purpose we construct a 2 × 2 × 1 supercell of the original
primitive cell containing two Mn2+ ions; in Pm space group,
this supercell has eight inequivalent Mn sites allowing for
20 distinct spin configurations. This allows us to determine
the first four exchange couplings, extending up to a Mn-Mn
distance of 10.6 Å. We perform density functional theory
calculations with the all electron full potential local orbital
(FPLO) [25] basis set and generalized gradient approximation
(GGA) [26] exchange correlation functional, accounting for
the strong correlations on the Mn 3d orbitals by a GGA+U [27]
correction. The Hunds rule coupling for Mn 3d was fixed at
JH = 0.76 eV [28]. The result of fitting the DFT total energies
against the Heisenberg Hamiltonian

Ĥ =
4∑

k=1

∑
〈ij〉k

JkŜi · Ŝj , (1)

where 〈ij 〉k denotes pairs of kth neighbor sites on the diamond
lattice, is shown in Fig. 1(b) and Table I for five values of
the interaction strength U . Note that each pair of sites in the
summation of Eq. (1) is accounted for only once, i.e., we
adopt the convention of single counting of bonds. As explained
below, the value of U is fixed by the experimentally observed
Curie-Weiss temperature �CW.

The spin Hamiltonian from DFT is taken as an input for
the PFFRG method [21]. To treat this model within standard
many-body techniques, the PFFRG first expresses the spin
operators in terms of Abrikosov pseudofermions [29]. The
implementation of the local spin-5/2 moments is performed
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FIG. 2. (a) Classical spin-spiral surface in the extended Brillouin zone formed by the wave-vectors of the degenerate spiral ground states
of the model with J2/|J1| = 1.64 and J3 = 0, (b) The classical spin-spiral surface in the qx-qy plane for J2/|J1| = 1.64 and J3 = 0 (red
line). The blue crosses indicate the Bragg peak position for an additional third neighbor coupling J3/|J1| = 0.57. Black dots highlight the
measured magnetic order at q ∼ 2π (0.75, 0.75, 0). (c) Red: Size of the spiral surface [given by the intersection with the line (q, q, 0)] as
a function of J2 and for J3 = 0. Blue: (q, q, 0) position of the ordering wave vector for J3/|J1| = 0.57. Vertical full (dashed) lines indicate
the coupling ratios J2/|J1| = 1.64 (J2/|J1| = 0.85 [6]). The shaded area marks the position and width of the measured magnetic Bragg peak
q ∼ 2π (0.75, 0.75, 0) [7].

as described in Ref. [14] where multiple copies of spin-
1/2 degrees of freedom effectively realize spins with larger
magnitudes. The resulting fermionic Hamiltonian is then
investigated using the well-developed FRG method [30,31],
which calculates the evolution of m-particle vertices as a
function of an RG parameter �. Effectively, the vertex flow
takes into account leading diagrammatic contributions in 1/S

[14] and 1/N [32–34], such that classical spin correlations
and quantum fluctuations (described in large S and large
N approaches, respectively) are both faithfully captured.
After its initial development in two dimensions [21], the
PFFRG was further refined and applied to various models
of frustrated magnetism including multilayer, and, eventu-
ally, three-dimensional magnets [11,14,24,32,33,35–50]. The
finite-size approximation in the PFFRG amounts to limiting
the real-space distance of spin correlations, which in our
calculations extends over 12 nearest-neighbor lattice spacings,
corresponding to a correlation volume of 1963 sites. Likewise,
the continuous frequency arguments of the vertex functions
are approximated by a discrete set of 64 frequencies. The
central physical quantity studied within the PFFRG is the
static (zero-frequency) momentum-resolved susceptibility (or
spin structure factor) which can be directly compared with
experimental neutron scattering data.

III. MODEL HAMILTONIAN AND CLASSICAL
CONSIDERATIONS

We first discuss the exchange couplings Jk in Eq. (1)
determined from DFT. As shown in Fig. 1(b), DFT calcu-
lates these couplings as a function of the Hubbard onsite
interaction U . Upon increasing U , all couplings decrease but
their ratios remain relatively constant. The actual size of U

is determined via the known Curie-Weiss temperature �CW =
− S(S+1)

3kB

∑4
k=1 zkJk = −23 K [16] (where zk is the coordina-

tion number of the kth neighbor bonds). This condition is best
fulfilled for U ≈ 4.5 eV, yielding three significant couplings

J1 = −0.378 K, J2 = 0.621 K, J3 = 0.217 K, and J4 =
0.0015 K. Since J4 is more than an order of magnitude smaller
than all other couplings it will be neglected in the ensuing
analysis. The small absolute values of the exchange couplings
can be understood from the fact that in the diamond lattice of
MnSc2S4 even the nearest-neighbor exchange couplings J1 are
mediated via rather long Mn-S-Sc-S-Mn superexchange paths.
While the exchange couplings of <1 K are small, importantly
the energy differences that need to be resolved within DFT are
not: due to the spin-5/2 moments, the energies for the different
spin configurations vary in a window of 20 meV, which is an
energy scale that can be comfortably resolved by our highly
converged all electron full potential DFT calculations.

The DFT couplings might first appear unexpected because
the ratios J2

|J1| = 1.64 and J3
|J1| = 0.57 are considerably larger

compared to the values J2
|J1| ≈ 0.85 and J3

|J1| � 0.1 proposed
earlier (see Refs. [6,9], respectively). These values were
obtained from matching calculated and measured inelastic
neutron scattering spectra under the assumption that J3 is
negligible [7]. However, in materials featuring a number of
competing interactions, fitting methods are known to be am-
biguous (see e.g., Refs. [51,52]), and thus, DFT based methods
provide an important complementary path towards extraction
of couplings allowing for an identification of the relevant
Hamiltonian. Indeed, our DFT results reproduce the sign of
the nearest- and next-nearest-neighbor exchange couplings of
MnSc2S4 proposed earlier [6], furthermore, they refine the
previous picture by highlighting the presence of significant J3

couplings, which considerably alters our understanding of the
mechanism leading to the stabilization of a spiral spin liquid.

To shed further light on the physical implications of these
new couplings, we first treat Eq. (1) in the classical limit, em-
ploying the Luttinger-Tisza method [53,54]. This method aims
at calculating the ground state of the corresponding classical
Heisenberg Hamiltonian by minimizing the energy given by
Eq. (1), and does so by relaxing the spins’ length constraint
at each site, however, on the diamond-lattice geometry this
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FIG. 3. The evolution of the spin susceptibility profile in the qx-qy plane with temperature for the Heisenberg Hamiltonian of MnSc2S4

as determined from DFT. (a)–(e) Evaluated for a J1-J2 only model with J2/|J1| = 1.64 and J3 = 0; (f)–(j) evaluated for the full J1-J2-J3

Hamiltonian with J2/|J1| = 1.64 and J3/|J1| = 0.57. The temperatures are expressed in units of the critical (ordering) temperature T J3
c of the

full model Hamiltonian with J3/|J1| = 0.57. Note that in both models, at each temperature, we have rescaled the susceptibility so as to make
the minimum and maximum plotted values lie between 0 and 1, which makes prominent the important features characterizing the spiral spin
liquid. The absolute values of the maxima can be read off from the temperature evolution of the susceptibility shown in Fig. 10 [see black curve
for system size L = 12]. For each of the above profiles, the variation of the susceptibility along the radial (q, q, 0) direction is shown in Fig. 7.

soft-spin approach even becomes exact (see Appendix A). Ig-
noring J3 for a moment, the J1-J2 only model with J2

|J1| = 1.64
exhibits a spiral surface in momentum space [see Fig. 2(a)],
which cuts through the first Brillouin-zone boundary [see
Fig. 2(b)]. This surface is slightly larger than the one for
J2
|J1| = 0.85, where the latter ratio has been determined in
Ref. [6] to match the measured magnetic Bragg peak position
q ≈ 2π (0.75, 0.75, 0) for J3 = 0. Although the spiral surface
only undergoes a moderate increase between J2

|J1| = 0.85 and
J2
|J1| = 1.64, the DFT couplings first seem to overestimate the
ordering wave vector even when the finite Bragg-peak width is
taken into account [see Fig. 2(c)]. The situation changes when
J3 couplings are considered. Already an infinitesimally small
J3 lifts the degeneracy and selects spirals with q = (q, q, 0)
along the surface. For larger (antiferromagnetic) J3 this Bragg-
peak position moves inwards in q space. As shown in Figs. 2(b)
and 2(c), the third neighbor coupling J3

|J1| = 0.57 from DFT
indeed shifts the Bragg peak back to q = 2π (0.73, 0.73, 0), in
very good agreement with the measured position. As discussed
in Ref. [9], small remaining discrepancies might disappear
when incommensurate/commensurate “lock-in” transitions are
considered.

IV. PFFRG RESULTS

Having argued that our model parameters are generally
compatible with the experimental findings, we next investigate
to what extent the strong J3 coupling together with thermal
and quantum fluctuations destabilize the spiral spin liquid.
To this end, we first calculate the spin-structure factor via
PFFRG for J2

|J1| = 1.64 and J3 = 0, where only the effects of
thermal and quantum fluctuations lift the spiral degeneracy
[see Figs. 3(a)–3(e)], and then compare with J3

|J1| = 0.57, to
study the influence of additional third neighbor couplings

[see Figs. 3(f)–3(j), and Figs. 8 and 9]. In both cases, the
spin-structure factor is investigated as a function of the RG pa-
rameter � which has been argued to mimic finite temperatures
T [36,38,46]. Indeed, the conversion factor between the RG
scale � and temperature T evaluates to T

J
= ( 2πS(S+1)

3 )�
J

. This
is determined by comparing the limit of PFFRG where only
the RPA diagrams contribute, i.e., a mean-field description, and
the conventional spin mean-field theory formulated in terms of
temperature T instead of � [14,36].

For J3 = 0 and at the critical RG scale (which corresponds
to �0

c = 0.83(1)|J1|), the PFFRG detects a sharp spiral contour
of strong intensities. Along finite segments centered around
(q, q, 0) we find somewhat larger (and nearly constant) re-
sponses; however, this modulation quickly disappears with
increasing temperature (i.e., RG scale �) such that an almost
perfect spiral surface appears. Interestingly, the size and shape
of the spiral surface remains nearly constant as a function
of temperature [see Fig. 4(a)] while its width increases con-
siderably (see inset of Fig. 5). Note that due to the missing
J3 coupling in Fig. 4(a) the calculated maximum position
q is considerably larger than the experimentally measured
wave vector 2π (0.75, 0.75, 0) [see also Figs. 2(b) and 2(c)];
however, the inclusion of a third neighbor coupling J3 =
0.57|J1| shifts the peaks to a position very close to the measured
value, as discussed below. A more quantitative measure for
the intactness of the spiral surface is shown in Fig. 5, where
the ratio of the intensity maximum along the (q, q, 0) and
along the (q, 0, 0) direction is plotted. For J3 = 0, this quantity
approaches unity, i.e., χ (q, q, 0)/χ (q, 0, 0) ≈ 1 at around
� ≈ 2�0

c , indicating that the spiral surface quickly recovers.
We also note that, compared to our classical Luttinger-Tisza
analysis, the location of the spiral surface does not undergo any
noticeable changes when including quantum fluctuations.
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FIG. 4. The variation with temperature of the peak-position q of
the susceptibility maximum along the radial (q, q, 0) direction for
the model Hamiltonian with J2

|J1| = 1.64 and (a) J3 = 0 and (b) J3 =
0.57|J1|.

Switching on the third neighbor coupling J3
|J1| = 0.57 in-

duces a much stronger spiral-selection effect. At criticality,
we observe pronounced peaks at q = 2π (0.719, 0.719, 0)
[see Fig. 3(f)], which are found to be shifted slightly in-
wards compared to the classical wave-vector position q =
2π (0.727, 0.727, 0). The critical RG scale �J3

c = 0.99(1)|J1|
is slightly larger compared to the one for J3 = 0, indicating that
third neighbor interactions reduce the frustration (see Figs. 8
and 9 for a general trend with J3). With increasing temperature,
the response again becomes more evenly distributed along the
spiral surface (see Fig. 5); however, this intensity smearing
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FIG. 5. The ratio of the susceptibility maxima along the (q, q, 0)
and (q, 0, 0) directions shown as a function of temperature T . Note
that this ratio does not need to diverge when approaching criticality.
(Inset) Temperature evolution of the width of the spiral surface along
the (q, q, 0) direction. The width is defined as the difference of
the q values for the maxima and half-maxima of the susceptibility,
respectively.

occurs more slowly than for J3 = 0 (see Fig. 8 for suscepti-
bility plots corresponding to different values of J3 for fixed
J2/|J1| = 1.64, and Fig. 9 for results with different J3 with
fixed J2/|J1| = 0.85 [6]).

We now highlight a number of features of our susceptibility
data which enable us to establish the existence, stability, and
extent of the spiral spin liquid. First, and foremost, a spiral
spin liquid is expected to display a near uniform distribution
of the susceptibility along a ring-like pattern. To this end, we
plot in Fig. 5 the ratio of the susceptibility maxima along
(q, q, 0) and (q, 0, 0) directions as a function of temperature.
We see that while the ratio starts with a large (diverging)
value at �J3

c , it slowly converges towards 1. Indeed, at around
� ≈ 3�J3

c we observe the beginning of a temperature regime
where the surface appears relatively intact (note that this
temperature reflects a smooth crossover and not a sharp
transition). Second, the width of the spiral surface is also
seen to decrease upon inclusion of a J3 coupling (see inset
of Fig. 5), implying that the response is concentrated within
a narrower stripe around the spiral surface compared to the
case with J3 = 0, leading to a well-defined and “intact” spiral
spin liquid. Third, we can obtain a rough estimate for the
upper crossover temperature into the spiral spin liquid regime,
defined as the temperature where the width of the peaks
in the (q, q, 0) direction (as shown in the inset of Fig. 5)
equals their separation [where the separation refers to the two
peaks which are approximately located at 2π (0.75, 0.75, 0)
and 2π (1.25, 1.25, 0)]. Below this temperature, individual
spiral surfaces are clearly discernible, which is an important
requirement for the realization of a stable spiral spin liquid.
For J3 = 0.57|J1| this crossover temperature is roughly given
by Tcrossover ≈ 5T J3

c , while for J3 = 0 we find Tcrossover ≈ 3T J3
c .

These results, taken together, lead to the following approximate
phase diagram: (i) Starting from the low-temperature regime,
we have for T/T J3

c � 1 long-range spiral magnetic order.
(ii) For 1 < T/T J3

c � 3, we see fingerprints of a “molten”
spiral order wherein the spectral weight remains concentrated
around the ordering wave vectors of the parent spiral or-
der, but the phase is not magnetically long-range ordered.
(iii) In the interval 3 � T/T J3

c � 5 we find that not only is
the spectral weight nearly uniformly distributed along a spiral
surface but also the individual classical spiral spin surfaces
are clearly discernible, and the system thus approximately
realizes a stable spiral spin liquid. It is worth noting that the
temperatures in this window are still much smaller compared
to the absolute value of the Curie-Weiss temperature |�CW| =
23 K. (iv) At higher temperatures T/T J3

c � 5, the different
spiral surfaces start merging, being no longer individually
distinguishable, and the spiral spin liquid becomes unstable
towards a high-temperature paramagnet. Most importantly,
our PFFRG results indicate that, in a temperature interval of
around three to five times the ordering temperature of Tc =
2.3 K, MnSc2S4 indeed realizes an approximate spiral spin
liquid.

Finally, to directly assess the quality of our simulations,
we compare the measured spin structure-factor at T = 2.9 K
= 1.33Tc [7] with the PFFRG result for the full DFT model
at the same RG-scale ratio � = 1.33�J3

c . For a proper
comparison between theory and experiment, one has to take
into consideration the extended orbital structure of the Mn2+
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(a) (b)

FIG. 6. Calculated (a) and measured (b) spin-structure factors
in the qx-qy plane for T/T J3

c = 1.33 and T = 2.9 K, respectively
[(b) has been reproduced from Ref. [7]]. The calculated susceptibili-
ties from PFFRG are given in units of 1/|J1|, while the experimental
data are shown in arbitrary units.

magnetic moments as probed by neutron scattering wherein the
measured spin structure factor is modulated by a |q|-dependent
function—the so called magnetic form factor [55]—which
describes the scattering from single moments (note that the
susceptibility profiles in Fig. 3 assume point-like magnetic
moments). The magnetic form factor is given by a sum
of Gaussian curves with coefficients that can be found in
Ref. [55]. We have therefore multiplied our PFFRG result
with the magnetic form factor of Mn2+ ions which leads to
a slight decrease of the intensity with increasing |q|. The
corresponding susceptibility profile is presented in Fig. 6.
As can be seen, the measured intensity modulation and, in
particular, the spiral selection (which is still pronounced at
these temperatures) is nicely reproduced by our calculations.
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FIG. 7. The variation of the susceptibility along the radial
(q, q, 0) direction at different temperatures for a model Hamiltonian
with J2/|J1| = 1.64 and (a) J3 = 0 and (b) J3 = 0.57|J1|.

V. DISCUSSIONS AND CONCLUSIONS

By combining ab initio DFT and PFFRG calculations we
have shown that close to criticality the magnetic ordering
process of MnSc2S4 is dominated by a pronounced (q, q, 0)
spiral selection due to strong J3 couplings, i.e., J3/|J1| = 0.57,
which are significantly larger than previously assumed [6]. Yet,
as temperature increases, thermal fluctuations largely restore
the spiral surface such that an approximate version of a spiral
spin liquid is realized at around three to five times the ordering
temperature. Interestingly, we find that the J3 coupling is not
entirely detrimental to a spiral spin liquid, since the selection
induced by such interactions is accompanied by a reduction of
the spiral surface’s width.

While the Heisenberg couplings considered here determine
the momentum structure of the spin correlations, they leave
the plane of spiral rotation undetermined. This remaining
degeneracy may be further lifted by anisotropic interactions
such as dipolar couplings [7,9]. However, with a magnitude of
a few percent of J1 (Ref. [7] gives an estimate of ∼0.026 K
on nearest-neighbor bonds) we expect dipolar interactions to
become relevant only very close to the ordering transition.
On the other hand, below criticality such couplings might be
crucial for explaining the measured multistep ordering process
involving sinusoidal collinear, incommensurate, and helical
spin orders [7]. Since the PFFRG in its current formulation
does not explicitly take into account spontaneous symmetry
breaking, an analysis of such phases goes beyond the scope of
the present work.
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APPENDIX A: LUTTINGER-TISZA METHOD

The Luttinger-Tisza method aims at calculating the ground
state of the classical limit of the Heisenberg model by minimiz-
ing the energy given by Eq. (1), where the spin operators are
substituted by classical continuous normalized vectors. To this
end, the normalization of the spin vectors is replaced by the
weak constraint that the normalization only holds on average in
a given spin configuration. This permits one to decompose the
spin system into its Fourier modes, which is done on the two
FCC sublattices of the diamond lattice separately, leading to
an interaction matrix in Fourier space

J̃αβ (k) =
∑
i,j

Jke
ık·Rα,i;β,j , (A1)
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FIG. 8. The evolution of the spin susceptibility profile in the qx-qy plane with temperature for the J1-J2-J3 Heisenberg Hamiltonian for
different ratios of J3/|J1| (different rows) keeping fixed the ratio J2/|J1| = 1.64. The ratio of J3/|J1| = 0.57 corresponds to the DFT model
parameters of MnSc2S4. The temperatures are expressed in units of the critical (ordering) temperature T J3

c of the model Hamiltonian with
J3/|J1| = 0.57. Note that at each temperature we have rescaled the susceptibility so as to make the minimum and maximum plotted values lie
between 0 and 1. Corresponding to the J3 = 0 and J3 = 0.57|J1| profiles, the variation of the susceptibility along the radial (q, q, 0) direction
is shown in Fig. 7.
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FIG. 9. The evolution of the spin susceptibility profile in the qx-qy plane with temperature for the J1-J2-J3 Heisenberg Hamiltonian for
different ratios of J3/|J1| (different rows) keeping fixed the ratio J2/|J1| = 0.85. The value of J3 = 0 (first row) corresponds to an estimation
of the model parameters of MnSc2S4 as previously determined from the radius of the spiral surface in Ref. [6]. The temperatures are expressed
in units of the critical (ordering) temperature T J3

c of the DFT model Hamiltonian of MnSc2S4 with J2/|J1| = 1.64 and J3/|J1| = 0.57. Note
that at each temperature we have rescaled the susceptibility so as to make the minimum and maximum plotted values lie between 0 and 1.
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FIG. 10. The RG flow of the susceptibility (in units of 1/|J1|) for different “system sizes” wherein L is the maximal extent of the spin-spin
correlator in real space in units of the nearest-neighbor distance for (a) the J1-J2 model with J2/|J1| = 1.64 and J3 = 0 and (b) the J1-J2-J3

model with J2/|J1| = 1.64 and J3/|J1| = 0.57.

where Rα,i;β,j is the vector connecting site i in the FCC
sublattice α and site j in the FCC sublattice β, which are
kth neighbors to each other. The ground state subject to the
weak constraint is subsequently given by the wave vectors k,
where the lowest eigenvalue of Eq. (A1) has its minimum.
The corresponding eigenvector gives the relative weight of
the mode on the sublattices, which has to have the same
absolute value for a configuration to also satisfy the strong
normalization constraint. Since in the diamond lattice the two
sublattices are equivalent, there is no contribution proportional
to σz in the interaction matrix and therefore this criterion is
always fulfilled, rendering the Luttinger-Tisza method exact
on this lattice.

Using this method, the spiral surface shown in Figs. 2(a)
and 2(b) is obtained. Along the radial (q, q, 0)-direction in
reciprocal space the energy minimum is found at the ordering
vector with

q = 2 arccos

(
−J1 + 4J2 + 3J3

4J2 + 8J3

)
(A2)

for ferromagnetic J1 < 0.

APPENDIX B: EXCHANGE COUPLINGS FROM DFT

In Table I we list the numerical values of the exchange cou-
plings J1, J2, J3, J4 for MnSc2S4 obtained from DFT [see also
Fig. 1(b)]. The couplings have been calculated for five different
values of the Hubbard interaction ranging from U = 3 eV to
U = 5 eV. Also shown is the Curie-Weiss temperature �CW

for each set of spin interactions. In our PFFRG calculations
we use the parameters corresponding to U = 4.5 eV since this
leads to the best agreement of the Curie-Weiss temperature
with the experimental value �CW = −23 K.

APPENDIX C: TEMPERATURE EVOLUTION OF THE
SUSCEPTIBILITY

In Fig. 7 we show the susceptibility along the radial (q, q, 0)
direction for different temperatures where the coupling

parameters are the same as in Fig. 4. For each plotted tem-
perature the susceptibility is normalized with respect to its
value at (2π, 2π, 0) to compensate for an overall decrease
with temperature. Our results for J3 = 0 [Fig. 7(a)] and
J3 = 0.57|J1| [Fig. 7(b)] both show a clear broadening of the
susceptibility along the radial (q, q, 0) direction as temperature
increases; see also the inset of Fig. 5 (the oscillating behavior
of the red curves at small susceptibilities is an artifact caused
by the finite number of Fourier components included in our
numerics). At small temperatures the susceptibility shows a
clear double peak structure, where the peak at smaller q; i.e.,
q/2π < 1 belongs to the spiral surface centered around (0,0,0)
and the peak with larger q, i.e., q/2π > 1, corresponds to
the spiral surface centered around (4π, 4π, 0). A pronounced
double peak indicates that different spiral surfaces are clearly
distinguishable, pointing towards an intact spiral spin liquid.
As can be seen in Fig. 7, with increasing temperature, the two
peaks smear out considerably faster for J3 = 0 as compared to
J3 = 0.57|J1|, implying that a finite J3 coupling may also aid
in stabilizing a spiral spin liquid. The most pronounced peak
structure is observed for J3 = 0.57|J1| close to criticality [red
curve in Fig. 7(b)]. In this case, however, a strong selection of
spiral states along the surface takes place [see Figs. 3(f) and 5],
indicating the onset of conventional long-range magnetic order
instead of the formation of a spiral spin liquid. We have also
investigated the temperature evolution of the susceptibility
profile for different values of J3 so as to systematically study
the role of a J3 coupling. The results for a model with fixed
J2/|J1| = 1.64 and varying J3/|J1| = 0, 0.2, 0.4, 0.57, 0.8, 1
are shown in Fig. 8, while results for a model with fixed
J2/|J1| = 0.85 and varying J3/|J1| = 0, 0.2, 0.4, 0.6, 0.8, 1
are shown in Fig. 9. A few trends are worth noticing. (i) The
critical (ordering) RG scale is found to increase with increasing
J3, pointing to the fact that third neighbor interactions relieve
the frustration. (ii) The spiral selection effect becomes progres-
sively more pronounced with increasing J3, and consequently
the intensity smearing with increasing temperature occurs at
a slower pace, such that the spiral surface is recovered at
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progressively higher temperatures with increasing J3. (iii)
The selection remains always of the (q, q, 0) wave vector
type.

APPENDIX D: FINITE-SIZE EFFECTS

In Fig. 10 we show PFFRG results for (a) J3 = 0.57|J1| and
(b) J3 = 0 when varying the system size (i.e., when varying

extent of the spin correlations in real space). We observe
that the critical ordering scale increases upon increasing the
system sizes; however, it appears to converge to a good degree
of accuracy for the largest system sizes we have simulated.
Nonetheless, at higher temperatures, i.e., T/Tc � 1.3, which is
the value used for comparison with experiments and is relevant
for observing the spiral spin liquid, the PFFRG results have
already converged.
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