Supplementary material

From magnetic order to spin liquid ground states on the S = 3/2 triangular lattice

J. Tapp, C. R. dela Cruz, M. Bratsch, N.E. Amuneke, L. Postulka, B. Wolf, M. Lang, H.O. Jeschke, R. Valentí, P. Lemmens, and A. Möller*

Table of content:

- (SM-1) Crystallographic data for RbAg₂Cr[VO₄]₂
- (SM-2) Crystallographic data for KAg₂Cr[VO₄]₂
- (SM-3) Crystallographic data for AgAg₂Cr[VO₄]₂
- (SM-4) Magnetic data
- (SM-5) *Ab-initio* calculations

Supplement references [37-42] are given in the main paper.

(SM-1) Crystallographic data for RbAg₂Cr[VO₄]₂

Trigonal <i>, P</i> 3̄ <i>, Z</i> = 1	$R_{\rm p} = 4.68$		
<i>a</i> = 5.44290(4) Å	$R_{wp} = 6.61$		
<i>c</i> = 7.3446(1) Å	<i>R</i> _{exp} = 8.23		
V = 188.43(1) Å ³	$R_{\text{Bragg}} = 3.01; R_f = 2.42$		
$\lambda = 2.4062 \text{ Å}$ $\chi^2 = 0.73$			
$2\theta_{min} = 8.50^{\circ}, 2\theta_{max} = 129.89^{\circ}, 2\theta_{step} = 0.07^{\circ}$			

SM-1_Table 1. Crystal data and refinement for $RbAg_2Cr[VO_4]_2$ (T = 5 K).

SM-1_Table 2. Fractional atomic coordinates and isotropic displacement parameters for $RbAg_2Cr[VO_4]_2$ (T = 5 K).

	X	у	Z	B _{iso} (Å ²)
Ag	1/3	2/3	0.2755(6)	0.3(1)
Rb	0	0	0	0.4(2)
Cr	0	0	1/2	0.3(3)
V	1/3	2/3	0.723(2)	0.1(2)
01	0.6704(7)	0.9143(4)	0.6552(4)	0.67(9)
02	1/3	2/3	0.9527(5)	0.5(1)

SM-1_Table 3. Lattice constants for $RbAg_2Cr[VO_4]_2$.

Т (К)	a (Å)	c (Å)	V (ų)
293 (XRD)	5.45596(9)	7.3781(3)	190.20(1)
5	5.44290(4)	7.3446(1)	188.43(1)
3	5.44289(4)	7.3444(1)	188.43(1)
2	5.43657(5)	7.3358(1)	187.77(1)
0.26	5.43531(4)	7.3335(1)	187.62(1)

(SM-2) Crystallographic data for KAg₂Cr[VO₄]₂

Trigonal, <i>P</i> 3̄, <i>Z</i> = 1	$R_{\rm p} = 4.94$			
<i>a</i> = 5.45796(4) Å	<i>R</i> _{wp} = 6.32			
<i>c</i> = 7.2384(1) Å	<i>R</i> _{exp} = 5.64			
V = 186.74(1) Å ³	$R_{\text{Bragg}} = 6.43; R_f = 7.77$			
$\lambda = 1.54056 \text{ Å} (XRD)$ $\chi^2 = 1.96$				
$2\theta_{min} = 10.19^{\circ}, 2\theta_{max} = 89.97^{\circ}, 2\theta_{step} = 0.04^{\circ}$				

SM-2_Table 1. Crystal data and refinement for $KAg_2Cr[VO_4]_2$ (T = 293 K).

SM-2_Table 2. Fractional atomic coordinates and isotropic displacement parameters for $KAg_2Cr[VO_4]_2$ (T = 293 K).

	X	у	Z	B iso (Å ²)
Ag	1/3	2/3	0.2876(7)	0.80(4)
К	0	0	0	0.68(4)
Cr	0	0	1/2	0.63(4)
V	1/3	2/3	0.734(1)	0.48(4)
01	0.666(2)	0.903(2)	0.662(2)	0.83(4)
02	1/3	2/3	0.969(1)	0.83(4)

SM-2_Fig. 1. XRD powder pattern refienement: experimental data (*black*), calculated pattern (*red*), difference plot (*blue*), and Bragg positions (*green*).

(SM-3) Crystallographic data for $AgAg_2Cr[VO_4]_2$

Monoclinic, $C2/c$, $Z = 4$	Nuclear (magnetic)		
<i>a</i> = 9.7094(3) Å	$R_{\rm p} = 5.44$		
<i>b</i> = 5.0944(2) Å	<i>R</i> _{wp} = 7.97		
<i>c</i> = 14.3469(3) Å	<i>R</i> _{exp} = 7.46		
β = 93.617(3)°	R _{Bragg} = 5.31 (21.62)		
V = 708.22(4) Å ³	<i>R</i> _f = 3.64		
λ = 2.4130Å	$\chi^2 = 1.15$		
$2\theta_{min} = 9.03^{\circ}, 2\theta_{max} = 130.50^{\circ}, 2\theta_{step} = 0.07^{\circ}$			

SM-3_Table 1. Crystal data and refinement for $AgAg_2Cr[VO_4]_2$ (T = 2 K).

SM-3_Table 2. Fractional atomic coordinates and isotropic displacement parameters for $AgAg_2Cr[VO_4]_2$ (T = 2 K).

	X	у	Z	B _{iso} (Å ²)
Ag1	0	0.036(2)	3/4	0.5(2)
Ag2	0.8416(5)	0.563(1)	0.8580(4)	0.3(2)
Cr1	0	0	1/2	0.4(2)
V1	0.6659(9)	0.039(2)	0.8953(6)	0.3(2)
01	0.6683(7)	0.882(1)	0.7920(4)	0.8(2)
02	0.6048(7)	0.823(1)	0.9754(5)	0.7(2)
03	0.5609(6)	0.310(1)	0.8850(4)	0.8(2)
04	0.8370(6)	0.127(1)	0.9251(5)	0.8(2)

SM-3_Table 3. Lattice constants for AgAg₂Cr[VO₄]₂.

Т (К)	a (Å)	b (Å)	c (Å)	β(°)	V (ų)
293 (XRD)	9.8108(4)	5.1045(2)	14.3245(5)	93.753(4)	715.82(5)
20	9.7091(3)	5.0933(2)	14.3453(3)	93.631(3)	707.97(3)
2	9.7094(3)	5.0944(2)	14.3469(3)	93.617(3)	708.22(4)

(SM-4) Magnetic part

SM-4_Fig. 1 shows the magnetic susceptibility χ (= dM/dB) of RbAg₂Cr[VO₄]₂ as a function of magnetic field *B* at three different temperatures. At the lowest temperature measured of *T* = 38 mK, (black circles) the data reveal a pronounced maximum at a field of $B_{max} \approx 0.8$ T followed by a plateau at intermediate fields of 2.8 T < *B* < 3.6 T. The strong decrease of χ observed above about $B \approx 4.5$ T marks the entrance into the fully-polarized state. Upon increasing the temperature to *T* = 0.28 K (blue circles) the maximum becomes more pronounced and slightly shifts to higher fields ($B_{max} \approx 0.9$ T). In contrast to the low-temperature data, the curve taken at *T* = 1.7 K (green circles) displays a monotonic decrease of χ with increasing field without indications for anomalous behavior.

SM-4 Fig 2 shows the magnetization *M* as a function of field B for $RbAg_2Cr[VO_4]_2$ at T = 1.7 K (green circles), measured in a static magnetic field, and KAg₂Cr[VO₄]₂ at T = 4.2 K (blue circles), measured in a pulsed field. For $RbAg_2Cr[VO_4]_2$ the fully-polarized state with a total moment of 3 $\mu_{\rm B}/{\rm Cr}^{3+}$ is reached at a saturation field of $B_{\rm s}$ \approx 8.5 T. In contrast, saturation is reached for $KAg_2Cr[VO_4]_2$ at much higher fields of about $B_s \approx 19$ T. This observation is consistent with the distinctly larger coupling constant J for the latter compound, as extracted from the experimentally determined Curie-Weiss temperature and the DFT calculations, presented in the main text. To determine the saturation field in the limit T = 0, $B_s(0)$, we use the crossing points of linear extrapolations as indicated by the dotted lines in SM-4_Fig. 2. This procedure yields $B_s(0) \approx 13.5$ T for the $KAg_2Cr[VO_4]_2$ compound and $B_s(0) \approx 5$ T for RbAg₂Cr[VO₄]₂. The latter value is in a good agreement with B_s determined from low-temperature (T = 0.038 K) measurements shown in the main text.

SM-4_Fig. 1. $\chi(B)$ for RbAg₂Cr[VO₄]₂ at 38 mK (black), 280 mK (blue), and 1.7 K (green). Data were taken with decreasing field.

SM-4_Fig. 2. Magnetization for RbAg₂Cr[VO₄]₂ (green) measured at T = 1.7 K and KAg₂Cr[VO₄]₂ (blue) measured at T = 4.2 K.

(SM-4) Magnetic part – continued

SM-4_Fig. 3 shows the temperature derivative of χ as a function of temperature for $RbAg_2Cr[VO_4]_2$ (a) and $KAg_2Cr[VO_4]_2$ (b). For $RbAg_2Cr[VO_4]_2$ we find a pronounced maximum in $d\chi/dT$ at $T_{max} \approx 0.57$ K for zero field (red circles) and at about 0.53 K at a small field of B = 0.1 T (orange circles). On increasing the field to B = 0.5T and 1 T, the maximum becomes blurred. Note that in this intermediate field range, an anomaly is observed in field-dependent susceptibility measurements, accompanied by hysteretic behavior (see main text), which we assign to a field-induced ordered state. On further increasing the field to $B \ge 1.5$ T, where no such anomaly is detected in the field-dependent susceptibility measurements, however, the maximum is recovered, although somewhat reduced in size and slightly shifted to lower temperatures.

According to *Ramirez* et al. [Ref. 37], such an extremum in $d\chi/dT$ and a crossing point of the various $C_m(T, B)$ curves around 1 K (see main text), are signatures for the crossover from a high-temperature paramagnetic state into a low-temperature spin liquid phase.

A similar scenario is also observed for $KAg_2Cr[VO_4]_2$ (b). Here we find that the extremal position in $d\chi/dT$ barely changes with the magnetic field. Note that around the same temperature of about 3 K, the specific heat curves taken in various fields cross in a single point, see main text.

SM-4_Fig. 3. Temperature derivative of χ for RbAg₂Cr[VO₄]₂ (a) and KAg₂Cr[VO₄]₂ (b). The data are taken at various magnetic fields. *Top* (a): red 0 T; orange 0.1 T; pink 0.5 T; magenta 1.0 T; cyan 1.5T ; violet 2.0 T; dark blue 3.0 T. *Bottom* (b): red 0.1 T; orange 1.0 T; pink 2.0 T; magenta 3.0 T; cyan 4.0 T; violet 2.0 T; dark blue 3.0 T.

(SM-5) Ab-initio calculations

We perform density functional theory calculations with the full potential local orbital (FPLO) method [Ref. 38] and generalized gradient approximation exchange correlation functional [Ref. 39]. We account for strong correlations on Cr 3*d* with a GGA+U correction [Ref. 40]. We fix the Hund's rule coupling J_{H} to 0.72 eV as suggested in Ref. 41. Theoretical values of the isotropic exchange couplings are obtained by mapping total energies of different spin configurations onto the Heisenberg Hamiltonian [Ref. 42]. For this purpose, we constructed 3×2×1 supercells with P1 symmetry in the case of KAg₂Cr[VO₄]₂ and RbAg₂Cr[VO₄]₂, respectively, and 2×2×1 supercells with P 1 symmetry for AgAg₂Cr[VO₄]₂ based on the crystallographic data, see above. This allows us to extract the exchange couplings listed in SM-5 Table 1.

For Ag₃Cr[VO₄]₂ we find an anisotropic triangular lattice (see SM-5_Fig. 1 (a)), with one-dimensional J₁ chain couplings about 63% of the nearly isotropic square lattice formed by J_{2a} and J_{2b}. Note that while J_{2a} and J_{2b} belong to the same Cr-Cr distance of 5.47 Å, they slightly differ in the orientation of the [VO₄] tetrahedra mediating the coupling. This leads to about 1% difference between J_{2a} and J_{2b}. We find that interlayer couplings are nearly negligible at around 1% of the largest coupling.

In contrast, $KAg_2Cr[VO_4]_2$ and $RbAg_2Cr[VO_4]_2$ are characterized by a perfect triangular lattice with nearly negligible second neighbor coupling in the plane (see SM-5_Fig. 1 (b)). Here substantial antiferromagnetic interlayer coupling of 11% and 9% of the largest coupling exists.

SM-5_Fig. 1: Geometry of the interlayer exchange couplings for (a) $Ag_3Cr[VO_4]_2$ and (b) $KAg_2Cr[VO_4]_2$ and $RbAg_2Cr[VO_4]_2$. In (a) two second nearest neighbors are at the same distance but differ in $[VO_4]$ tetrahedron orientation (not shown). Note, that the index *i* of the J_i enumerates with increasing Cr-Cr distances.

(SM-5) Ab-initio calculations - continued

SM-5_Table 1. Calculated exchange couplings (in Kelvin) for $AAg_2Cr[VO_4]_2$ (A = Ag, K, Rb). The geometry of the intra-plane couplings is illustrated in SM-5-Fig. 1. The interaction strength U = 2 eV for A = Ag and U = 1 eV for A = K, Rb is chosen by demanding that the mean field Curie-Weiss temperature matches the experiment.

Α	intra-plane couplings (K)		inter-layer couplings (K)		s (K)	
Ag	$J_1 = 2.98(1)$	$J_{2a} = 4.69(1)$	$J_{2b} = 4.74(1)$	$J_3 = -0.062(1)$	$J_4 = -0.006(1)$	$J_5 = -0.028(1)$
Rb	$J_1 = 0.427(3)$	$J_4 = 0.011(2)$		$J_2 = 0.046(3)$		
К	$J_1 = 2.81(1)$	$J_4 = -0.009(3)$		$J_2 = 0.261(4)$		