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We investigate the electronic properties of the three-dimensional stripyhoneycomb γ -Li2IrO3 via relativistic
density functional theory calculations as well as exact diagonalization of finite clusters and explore the details
of the optical conductivity. Our analysis of this quantity reveals the microscopic origin of the experimentally
observed (i) optical transitions and (ii) anisotropic behavior along the various polarization directions. In particular,
we find that the optical excitations are overall dominated by transitions between jeff = 1/2 and 3/2 states and
the weight of transitions between jeff = 1/2 states at low frequencies can be correlated to deviations from a
pure Kitaev description. We furthermore reanalyze within this approach the electronic excitations in the known
two-dimensional honeycomb systems α-Li2IrO3 and Na2IrO3 and discuss the results in comparison to γ -Li2IrO3.
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I. INTRODUCTION

The two-dimensional honeycomb iridates Na2IrO3 and
α-Li2IrO3 have been suggested as candidate materials for
the realization of bond-dependent anisotropic interactions as
described by the Kitaev model [1]. The appropriate description
of the electronic structure of these materials is currently being
discussed. In the limit of strong spin-orbit coupling (SOC)
and electron-electron interactions, the low-energy degrees of
freedom are predicted to be localized spin-orbital doublet
jeff = 1/2 states [2–7]. These localized moments are thought
to persist despite relatively weak correlations in the 5d Ir
orbitals due to an effective bandwidth reduction via SOC.
That is, once SOC is included, the highest occupied jeff = 1/2
bands become very narrow, enhancing the role of correlations.
A complementary perspective was also given from the limit
of weak correlations. In this case, the electronic properties
of these systems can be described in terms of a recently
proposed quasimolecular orbital (QMO) basis [8–12]. When
SOC is included in this picture, a (pseudo)gap was found
at the Fermi energy for Na2IrO3, suggesting the material
is relatively close to a band insulating state in the weak
correlation limit [8]. Thus even weak correlations may be
sufficient to induce an insulating state. Overall, a correct
understanding of the electronic structure is important for
evaluating the relevance of localized spin-Hamiltonians such
as the (extended) Heisenberg-Kitaev models currently under
discussion for these materials. It is generally agreed that long-
range second and/or third neighbor interactions are required to
understand the magnetism in the 2D honeycomb Na2IrO3 and
α-Li2IrO3 [13], suggesting relatively delocalized moments.

Three-dimensional generalizations of the honeycomb lat-
tices were also recently synthesized; the hyperhoneycomb
β-Li2IrO3 [14,15] and the stripyhoneycomb γ -Li2IrO3 [16,17]
(Fig. 1). These materials are expected to display 3D Kitaev
physics and to potentially support quantum spin liquid states
analogous to the 2D case [18–20]. Resonant magnetic x-ray
diffraction experiments found that γ -Li2IrO3 hosts, at low
temperatures, a noncoplanar counter-rotating long range spiral
magnetic order with incommensurate ordering wave vector
q = (0.57,0,0) along the orthorhombic a axis [15,17]. Various
investigations of the combined Kitaev-Heisenberg spin Hamil-
tonian suggest that Kitaev interactions must dominate over the

Heisenberg terms in order to produce the observed complex
spin spirals [7,17,19–22], although long-range antisymmetric
interactions cannot be ignored [13].

In order to gain microscopic insight on the electronic
properties of γ -Li2IrO3 in comparison to its 2D counterparts,
we consider the electronic structure and optical conductivity
of each material within density functional theory (DFT) and
the exact diagonalization (ED) method. Optical conductivity
measurements for γ -Li2IrO3 [23] show anisotropic behavior
between polarizations along the a and b axes, but both polar-
izations show a broad peak structure at 1.5 eV, similar to that
of Na2IrO3. However, the observed optical conductivity was
significantly reduced in magnitude for γ -Li2IrO3 compared
to Na2IrO3. This difference was initially attributed to the
inherently 3D versus 2D structure rather than the replacement
of Na by Li [23]. This issue is addressed in Sec. III. The
remaining paper is organized as follows. In Sec. II, we discuss
the electronic structure of γ -Li2IrO3 from the perspective of
both DFT calculations and exact diagonalization of small
clusters. In Sec. III, we relate the electronic structure to
the optical conductivity, including detailed discussion of the
differences between DFT and ED results. Finally, in Sec. IV,
we compare the results for γ -Li2IrO3 to the 2D honeycomb
lattice analogues Na2IrO3 and α-Li2IrO3. In particular, in this
last section, we present results based on the newly available
single-crystal structure of α-Li2IrO3 [24].

II. ELECTRONIC PROPERTIES OF γ -Li2IrO3

A. Crystal structure

The experimental structure of γ -Li2IrO3 [16,17] [see
Figs. 1(a) and 1(b)] has two hexagonal chains oriented in
the directions a ± b linked along the c direction. There are
three kinds of Z bonds in γ -Li2IrO3: the ZC bond bridges two
chains of hexagons, while the ZA and ZB bonds complete each
Ir hexagon in the layered structure. The Cartesian coordinates
x, y, and z for the orbitals are displayed in Fig. 1(b). The unit
cell has two nonequivalent Ir atoms and a total of eight Ir: Ir(1)
atoms are linked by ZA and ZB bonds, while Ir(2) atoms are
linked by ZC bonds. XA, YA, XB , and YB link Ir(1) and Ir(2)
sites. Details of the crystal structure are given in Table I.
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FIG. 1. (a) Crystal structure of stripyhoneycomb
γ -Li2IrO3 [16,17]. Honeycomb rows alternate in orientation
along c. The black axes a, b, and c are the vectors of the unit cell.
(b) Crystal structure showing only Ir atoms. The red, green, and
blue bonds show the seven different types of bonds XA, XB , YA, YB ,
ZA, ZB , ZC . x, y, z are the cartesian coordinates for the d orbitals.
(c) Zigzag magnetic configuration used in our GGA+SO+U

calculations.

B. Density functional theory calculations

We performed linearized augmented plane-wave (LAPW)
calculations [25] with the generalized gradient approximation
(GGA) [26]. We chose the basis-size controlling parameter
RKmax = 8 and a mesh of 432 k points in the first Brillouin
zone (FBZ) of the primitive unit cell. Relativistic effects were
taken into account within the second variational approxima-
tion. A Ueff = 2.4 eV as implemented in GGA+SO+U [27]
was employed in order to keep consistency with previous
calculations [10]. The hopping parameters between Ir 5d

orbitals in γ -Li2IrO3 were computed via the Wannier function
projection method [9,13,28,29] and we employed the optics
code package [30] within LAPW to calculate the optical
conductivity. The density of states and optical properties were
computed with 10 × 10 × 10 k points in the full Brillouin
zone while the hopping parameters were evaluated using 12 ×
12 × 12 k points.

The nonrelativistic GGA density of states (DOS) for
γ -Li2IrO3 is displayed in Figs. 2(a)–2(c). The iridium 5d

states are split into eg (2.2 to 3.6 eV) and t2g (–1.6 to 0.2 eV)
states [Fig. 2(b)] due to the octahedral crystal field of IrO6

with the Fermi level lying within the t2g manifold. The t2g

band is further slightly split into lower dxy and higher dxz, dyz

TABLE I. Nearest-neighbor distances (in angstroms) and Ir-O-Ir
angles for the different bond types, determined in the experimental
γ -Li2IrO3 structure [see Fig. 1(b) for bond notation].

γ -Li2IrO3 XA, YA YB , XB ZA, ZB ZC

Ir-Ir distance 2.976 2.982 2.96
Ir-O1 distance 1.99,2.14 2.10 1.97
Ir-O2 distance 2.01,2.01 2.10 1.97
Ir-O1-Ir angle 92.00◦ 90.37◦ 97.40◦

Ir-O2-Ir angle 95.52◦ 90.37◦ 97.40◦

 0

 2

 4

−2 −1  0  1  2  3  4

(b)

E − EF (eV)

D
O

S
 (

st
at

es
/e

V
/fo

rm
ul

a 
un

it)

Ir t2g
Ir eg

 0

 2

 4

−1.5 −1 −0.5  0  0.5

(d)

E − EF (eV)

j3/2
j1/2

 0

 4

 8 (a) Total
Ir
O

 0

 1

 2 (c)dxy   
dxz/yz

FIG. 2. Density of states (DOS) for γ -Li2IrO3 in the nonmagnetic
configuration obtained (a)–(c) within GGA and (d) GGA+SO.

[Fig. 2(c)], arising from an additional weak trigonal field. By
using the projection method described in Ref. [9], we obtained
the hopping parameters from the GGA bandstructure. Table II
displays the crystal field splitting compared with Na2IrO3. Full
hopping integral tables are given in Appendix A. In terms of
the t2g d-orbital basis

�c†i = (c†i,yz,↑ c
†
i,yz,↓ c

†
i,xz,↑ c

†
i,xz,↓ c

†
i,xy,↑ c

†
i,xy,↓), (1)

the crystal field terms can be written

HCF = −
∑

i

�c†i {Ei ⊗ I2×2}�ci , (2)

where I2×2 is the 2 × 2 identity matrix (for the spin variables);
the crystal field tensor Ei is constrained by local twofold
symmetry at each Ir site to be

Ei =
⎛
⎝ 0 �1 �2

�1 0 �2

�2 �2 �3

⎞
⎠. (3)

The t2g crystal fields �1, �2 denote the on-site hopping
between dxz and dyz orbitals, and between dxy and dyz/xz

orbitals, respectively (Table II). �3 is the on-site energy of
dxy minus that of dyz/xz [13]. �3 is –213.5 meV for Ir(1) and
– 110.9 meV for Ir(2) (see Fig. 1), which is much larger in
magnitude than in Na2IrO3 (–27.2 meV) [13]. This means that
in the 3D γ -Li2IrO3 structure, the t2g crystal field is of the same
order of magnitude as the spin-orbit coupling λ ∼ 400 meV

TABLE II. Crystal field splitting compared with Na2IrO3. The
t2g crystal fields �1, �2 denote, respectively, the on-site hopping
between dxz and dyz orbitals, dxy and dyz/xz orbitals. �3 is the on-site
energy of dxy minus dyz/xz [13].

Crystal field
γ -Li2IrO3

Paramater Na2IrO3 [13] Ir(1) Ir(2)

�1 –22.9 –24.4 –29.9
|�2| 27.6 4.2 37.4
�3 –27.2 –213.5 –110.9
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TABLE III. Nearest-neighbor hopping integrals in meV between
Ir t2g orbitals for the experimental γ -Li2IrO3 structure [see Fig. 1
(b) for bond notation]. The labels t1‖, t1O and t1σ are the same as in
Ref. [9], and the notations t1, t2 and t3 are given in Refs. [6,13].

γ -Li2IrO3 XA, YA YB , XB ZA, ZB ZC

t1‖ (t1) 91.4 91.4 91.8 77.4
69.2 69.2 91.8 77.4

t1O (t2) –262.5 262.5 132.8 294.1
–240.5 240.5 132.8 294.1

t1σ (t3) –168.3 –168.3 –319.7 –17.1

and this likely has significant effects on the local magnetic
interactions.

Table III shows the nearest-neighbor hopping parameters
where t1‖, t1O , and t1σ are defined as in Ref. [9] (labelled t1, t2,
and t3 in Refs. [6,13]); t1O (t2) refers to effective Ir-Ir hopping
through the bridging oxygens, t1σ (t3) and t1‖ (t1) refer to
σ - and δ-type direct metal-metal hopping, respectively. A full
table of hopping integrals in the t2g basis are given in Tables IV
and V. There are three significant differences in the nearest-
neighbor hoppings of the 3D γ -Li2IrO3 (see Table III) when
compared with Na2IrO3: (i) the direct metal-metal hopping t3
(dxy → dxy) along the ZA and ZB bonds [Fig. 1(b)] is larger
than the oxygen-assisted hopping t2 (dxz → dyz, dyz → dxz)
due to the nearly 90◦ Ir-O-Ir angle (Table I). (ii) the t2 in the
XA (YA), XB (YB) bonds have opposite signs, as a result of
different local environments (see Appendix A). The different
sign arises because such bonds are related to one another by
crystallographic twofold rotations. Finally, (iii) the absence of
inversion symmetry for the majority of nearest-neighbor bonds
allows for some asymmetry in the t2 hopping, e.g., for the XA

bond, dxy → dxz and dxz → dxy hoppings are unequal. For
this reason, a finite Dzyaloshinskii-Moriya (DM) interaction
is both allowed and expected to appear for the majority of
first-neighbour bonds: XA, XB , YA, YB , and ZC . This result
is in contrast to Na2IrO3 and α-Li2IrO3, for which a weaker
DM interaction only exists for the second nearest-neighbor
bonds [13]. Since these antisymmetric interactions are likely
to strongly stabilize the observed incommensurate magnetic

TABLE IV. Hopping parameters for the on-site terms (meV) in
γ -Li2IrO3. A is for hexagon including XA, YA, ZA bonds, while B is
for hexagon including XB , YB , ZB .

Ir(1) xy → xy –592.6
xz → xz –379.1
yz → yz –379.1

Ir(2) xy → xy –651.3
xz → xz –540.4
yz → yz –540.4

Ir(1) xy → xz 4.2 (A), – 4.2 (B)
xy → yz 4.2 (A), – 4.2 (B)
xz → yz –24.4

Ir(2) xy → xz 37.4 (A), – 37.4 (B)
xy → yz 37.4 (A), – 37.4 (B)
xz → yz –29.9

TABLE V. Nearest-neighbor tight-binding hopping matrix ele-
ments (meV) for γ − Li2IrO3.

γ − Li2IrO3 XA XB YA YB ZA ZB ZC

xy → xy 91.4 91.4 91.4 91.4 –319.7 –319.7 –17.1
xz → xz 69.2 69.2 –168.3 –168.3 91.8 91.8 77.4
yz → yz –168.3 –168.3 69.2 69.2 91.8 91.8 77.4
xy → xz –262.5 262.5 4.2 –4.2 63.9 –63.9 –18.7
xz → xy –240.5 240.6 76.5 –76.5 63.9 –63.9 18.7
xy → yz 4.2 –4.2 –262.5 262.5 63.9 –63.9 –18.7
yz → xy 76.5 –76.5 –240.5 240.6 63.9 –63.9 18.7
xz → yz –60.2 –60.2 –10.6 –10.6 132.8 132.8 294.1
yz → xz –10.6 –10.6 –60.2 –60.2 132.8 132.8 294.1

order [17], one may question the completeness of previous
interaction models for γ -Li2IrO3 including only symmetric
exchange interactions [19,21].

Unlike the 2D Na2IrO3, the 3D γ -Li2IrO3 does not allow
a clear description of the DFT electronic structure in terms of
QMOs. Indeed, there is no pseudogap at the Fermi energy at
the GGA+SO level [Fig. 2(d)], in contrast with Na2IrO3. As
in the P 3112 structure of α-RuCl3 [31], the oxygen assisted
hopping t1O , which is crucial for the formation of the QMOs,
is smaller than t1σ [9,31]. In addition, since not all local Ir
5d orbitals can be attributed to a single hexagon, the QMO
basis is incomplete. We therefore choose to work with the jeff

basis. Fig. 2(d) shows the projection of the GGA+SO DOS
onto the jeff basis. At the Fermi level, the DOS is dominantly
jeff = 1/2 with a small contribution from jeff = 3/2.

According to experiment, the magnetic ground state in
γ -Li2IrO3 is spin spiral [17] and the magnetic structure
shows that the zigzag chains in the a direction are connected
along the c direction [see Fig. 1(c)]. In order to perform
spin-polarized DFT calculations in the magnetically ordered
state, we employed a collinear zigzag magnetic configuration
with spin polarization along the c direction as an approximate
representation of the ordered configuration [17]. Calculations
with the spin polarization along a are shown in Appendix B
for comparison. Inclusion of U within the GGA+SO+U

approach in the zigzag magnetic configuration [Fig. 1(c)]
opens a gap of 242 meV (Fig. 3), which is smaller than the
experimentally measured value of 0.5 eV [23]. We note that the
size of the gap is influenced by the choice of U . We, however,
decided here to use the same U parameter as for previous
calculations for Na2IrO3 and α-Li2IrO3 [10] in order to allow
a better comparison below. The magnetic moment converged
to 0.58 μB for Ir(1) and 0.44 μB for Ir(2).

C. Exact diagonalization of finite clusters

While the GGA+SO+U calculations are able to de-
scribe many significant aspects of the electronic structure of
γ -Li2IrO3 they do not fully capture effects originating from
correlations beyond GGA+SO+U , which are expected to be
relevant when analyzing electronic excitations. Therefore we
consider here a complementary approach to DFT, namely exact
diagonalization of the fully interacting Hamiltonian on finite
clusters [32] and compare with DFT results.
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FIG. 3. Ir 5d t2g band structure and relativistic DOS for γ -Li2IrO3

in zigzag magnetic order, obtained with GGA+SO+U (Ueff = U −
JH = 2.4 eV).

We have employed four-site clusters shown in the inset of
Fig. 5 and obtained the exact eigenstates of the Ir t2g-only
Hamiltonian described in Ref. [13]:

Htot = Hhop + HCF + HSO + HU (4)

including the kinetic hopping term Hhop, the crystal field split-
ting HCF, spin-orbit coupling HSO, and Coulomb interaction
HU . In terms of the t2g basis introduced above, spin-orbit
coupling (SOC) is described by

HSO = λ

2

∑
i

�c†i

⎛
⎝ 0 −iσz iσy

iσz 0 −iσx

−iσy iσx 0

⎞
⎠�ci (5)

where σμ, μ = {x,y,z} are Pauli matrices. The Coulomb terms
are

HU = U
∑
i,a

ni,a,↑ni,a,↓ + (U ′ − JH)
∑

i,a<b,σ

ni,a,σ ni,b,σ

+U ′ ∑
i,a �=b

ni,a,↑ni,b,↓ − JH

∑
i,a �=b

c
†
i,a↑ci,a↓c

†
i,b↓ci,b↑

+ JH

∑
i,a �=b

c
†
i,a↑c

†
i,a↓ci,b↓ci,b↑, (6)

where c
†
i,a creates a hole in orbital a ∈ {dyz,dxz,dxy} at site i;

JH gives the strength of Hund’s coupling, U is the intraorbital
Coulomb repulsion, and U ′ = U − 2JH is the interorbital
repulsion. For 5d Ir4+, we take U = 1.7 eV, JH = 0.3 eV [4].
For the four-site clusters, we retain all hoppings including
second neighbor.

For γ -Li2IrO3, there are four translationally inequivalent
clusters constructed from bonds (XA, YA, ZA), (XB , YB , ZB),
(XA, YA, ZC), and (XB , YB , ZC). Of these, the first two are
related to one another by twofold rotation and the last two
are also related by twofold rotation. The results presented
correspond to an average over these four clusters. In each
four-site cluster, we consider states with a total of four holes
in the t2g orbitals; each Ir site contains six relativistic orbitals
including two jeff = 1/2 and four jeff = 3/2 levels. As in

S1
j1/2

j3/2

S2
j1/2

j3/2

S4
j1/2

j3/2

S5
j1/2

j3/2

FIG. 4. Schematic diagrams of lowest-energy subspace S1 and
one particle excitations S2, S4, and S5. Solid circles indicate electrons
while empty circles are holes. S1 are all the states with (j3/2)4(j1/2)1,
S2 are the states obtained from S1 by promoting an electron
j3/2 → j1/2 on the same site. S4 are the states obtained from S1

by promoting an intersite j1/2 → j1/2 transition, and S5 are the states
with promotion of an electron j3/2 → j1/2.

Ref. [32], the many-body basis states for the cluster can be
divided into several subspaces based on the occupancy of the
various orbitals and sites. Basis states with site occupancy
d5 − d5 − d5 − d5 are included in subspaces S1 − S3, states
with site occupancy d4 − d6 − d5 − d5 belong to S4 − S7,
and S8 contains all higher excitations. We show representative
diagrams of the lowest energy subspace S1 and one particle
excitation S2, S4, and S5 in Fig. 4. Subspace S1 contains
all states with (j3/2)4(j1/2)1 occupancy at every site, which
represent a significant contribution to the ground state and
low-lying magnonlike spin excitations.

From these configurations, promotion of a single electron
via onsitej3/2 → j1/2 generates subspace S2, containing all
states with a single spin-orbital exciton; the characteristic
excitation energy for such states is given by �E2 ∼ 3λ/2 ∼
0.6 eV. All states with multiple excitons are grouped into
subspace S3, and represent n-particle excitations from the
ground state, with energies �E3 ∼ 3nλ/2 ∼ 1.2, 1.8, . . . eV.

Starting from S1, promotion of an electron via intersite
j1/2 → j1/2 yields subspace S4, containing states with charac-
teristic energy �E4 ∼ A−1, where [13]

A = − 1

3

[
JH + 3(U + 3λ)

6J 2
H − U (U + 3λ) + JH (U + 4λ)

]
. (7)

Taking U = 1.7 eV, JH = 0.3 eV, and λ = 0.4 eV suggests
�E4 ∼ 1.1 eV.

Starting from S1, promotion of an electron via intersite
j3/2 → j1/2 yields subspace S5, containing states with charac-
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FIG. 5. The investigated four-site cluster (inset) and spectral
weight (SW) of projected excitations spectra for γ -Li2IrO3. P1

includes all states with (j3/2)4(j1/2)1 (S1), P2 and P3 include the states
with an exciton on one site (S2) or on more sites (S3), respectively.
P4 includes states from S1 with promotion of an electron j1/2 → j1/2

to another site (S4), and P5 includes states with promotion of an
electron j3/2 → j1/2 to another site (S5). P6 is for states that contain
two-particle excited states for which the d4 site contains occupancies
(j3/2)2(j1/2)2 (S6), while P7 includes all other excitations with
occupancy of d4 − d6 − d5 − d5 (S7). �E2 ∼ 0.6 eV, �E4 ∼ 1.1 eV,
and �E5 ∼ 1.6 eV are the excitation energies for P2, P4, and
P5 respectively.

teristic energy �E5 ∼ C−1 ∼ 1.6 eV, where [13]

C = 6

8

[
1

2U − 6JH + 3λ
+ 5

9

(3U − 7JH + 9λ)

JH

η

]
, (8)

η = JH

6J 2
H − JH (8U + 17λ) + (2U + 3λ)(U + 3λ)

. (9)

Subspace S6 contains two-particle excited states for which
the d4 site contains occupancies (j3/2)2(j1/2)2, while subspace
S7 contains all other excitations with occupancy of d4 −
d6 − d5 − d5. Single-particle excitations most relevant for
the optical conductivity in the next section are contained
in S1,S4,S5. The effect of intersite hopping (and Hund’s
coupling) is to mix states from different subspaces, but the
characteristic energies remain valid.

In order to show this, we project the exact cluster eigenstates
φm on different subspaces

�m
i =

∑
s∈Si

|〈φm|s〉|2, (10)

and take the spectral weight (SW) of the projected excitation
spectra Pi [33]

Pi(ω) =
∑
m

�m
i δ(ω − Em). (11)

P1 to P7 are shown in Fig. 5. As expected, the ground state
and low-lying magnonlike spin excitations (ω ∼ 0 eV) have
the dominant S1 character (large P1), while intersite hopping
perturbatively mixes in some S2, S4, and S5 character. Indeed,

from the localized picture, it is the intersitej3/2 → j1/2 mixing
that is the origin of the anisotropic Kitaev exchange couplings.

Regarding the higher excitations: centered at ω = �E2 ∼
0.6 eV are the single excitonlike states, with dominant S2

character. These states weakly mix with the single-particle S4

and S5 and multi-particle S6 and S7 excitations via intersite
hopping. As expected, excitations with dominant S4 character
(i.e., j1/2 → j1/2) are centered around ω = �E4 ∼ 1.1 eV,
and excitations with dominant S5 character (i.e., j3/2 → j1/2)
are centered around ω = �E5 ∼ 1.6 eV. The widths of these
bands are approximately 1 and 2 eV, respectively, which is
consistent with the GGA+SO+U results above. It is worth
noting that the total spectral weight

∫
Pi dω is much larger

for S5 than S4, such that j3/2 → j1/2 excitations dominate the
projected excitation spectra. Similar results were obtained in
Ref. [32] in the analysis of the excitation spectrum of Na2IrO3.

III. OPTICAL CONDUCTIVITY

We employ two methods to compute the optical con-
ductivity. The interband contribution to the real part of the
optical conductivity in the DFT calculations is approximated
by [30,34]

σμν(ω) ∝ 1

ω

∑
c,v

∫
dk〈ck|pμ|vk〉〈vk|pν |ck〉

× δ(εck − εvk − ω), (12)

where μ and ν correspond to the cartesian axes x ′, y ′, z′,
which is chosen as the direction of a, b, c in this system.
ω indicates the energy of the incident photon, and p is the
momentum operator. The states |ck〉 in k space with energy
εck belong to occupied single-particle states, while |vk〉, εvk

describe unoccupied states.
For the exact diagonalization calculations, we calculate

the real part of the optical conductivity at finite temperature
using [33]

σμν(ω) ∝π (1 − e−ω/(kBT ))

ωV

∑
nm

BnM
m,n
μ,ν δ(ω + En − Em),

(13)

where V is the volume, Bn is the probability density of
eigenstate |φn〉.

Bn = e−βEn∑
n′ e−βEn′ (14)

and Mm,n
μ,ν are matrix elements of the current operator:

Mm,n
μ,ν = 〈n|jμ|m〉〈m|jν |n〉. (15)

The current operator jμ is given by [35]

jμ = ie

�

∑
i < j

a,b,σ,σ ′

(c†i,a,σ cj,b,σ ′ − c
†
j,b,σ ′ci,a,σ ) t

a,b
i,j rμ

ij , (16)

where t
a,b
i,j are the hopping parameters between the t2g orbitals

and rμ

ij is the μ component of the vector from site j to site i.
Note that the expression of the optical conductivity considered
in Eq. (12) is defined at zero temperature and in k space, while
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FIG. 6. Optical conductivity components for γ -Li2IrO3.
(a) Results from DFT within GGA+SO+U. (b) Results from
exact diagonalization and (c) results reported from experimental
observations [23]. �E2 ∼ 0.6 eV, �E4 ∼ 1.1 eV, and �E5 ∼ 1.6
eV are the characteristic excitation energy for subspaces S2, S4, and
S5, respectively. The inset of (b) is the crystal structure projected in
the ab plane.

in Eq. (13) we consider the definition in real space and at finite
temperature kBT = 30 meV (room temperature). We observe
that the finite temperature modifies the zero temperature results
only slightly. The optical conductivity is normalized by the
sum-rule that the energy integral of the optical conductivity
in both ED and DFT methods is proportional to the effective
density of electrons.

For γ -Li2IrO3, the orthorhombic symmetry of the space
group allows the optical conductivity tensor to be defined in
terms of the three independent components σa , σb, σc (σa =
σx ′x ′ , σb= σy ′y ′ , and σc = σz′z′):⎛

⎝Ja

Jb

Jc

⎞
⎠ =

⎛
⎝σa 0 0

0 σb 0
0 0 σc

⎞
⎠

⎛
⎝Ea

Eb

Ec

⎞
⎠. (17)

In Fig. 6, we compare the DFT (GGA+SO+U ), ED and
experimental optical conductivity tensor components for
γ -Li2IrO3. Both DFT and ED capture correctly the anisotropy
σa < σb < σc, which is due to the structural orientation
of the planes shown in the inset of Fig. 6 (b). Given that

FIG. 7. Optical conductivity component σa for γ -Li2IrO3 and
different d-d transitions in the relativistic basis calculated (a) with
DFT within GGA+SO+U and (b) with the ED method. The
comparison to experiment is also shown [23].

interplane hopping is very weak, the in-plane component
of σ (ω) dominates. The magnitude of σ (ω) for polarization
along each axis is therefore related to the projection of that
axis on to the Ir planes. For light polarized along the c

axis, the response is solely due to in-plane processes, while
polarization along the a or b axes measures only a fraction of
the in-plane response. This observation explains the reduction
of the measured σ (ω) (σa,σb) for γ -Li2IrO3 discussed in
Ref. [23], when compared with the in-plane measurements
of Na2IrO3.

While ED calculations show a dominant peak around ω =
1.6 eV for all polarizations, consistent with the experimental
data, the DFT results suggest also significant spectral weight
at lower frequencies. The origin of this anomalous spectral
weight can be found in Fig. 7. For the DFT calculations, we
show the decomposition of σ (ω) into intraband j1/2 → j1/2

and interband j3/2 → j1/2 excitations. For the ED calculations,
we plot the projection of σ (ω) onto the S5 → S2 (i.e., spin-
orbital excitons), S1 → S4 (i.e., j1/2 → j1/2), and S1 → S5

(i.e,. j3/2 → j1/2) excitations. Although direct S1 → S2 exci-
tations are optically forbidden, the spin-orbital excitonic states
S2 also make a weak contribution to σ (ω) in the mid-energy
range due to a nonzero weight of S5 configurations in the
ground state. Both the DFT and ED calculations suggest that
the peak around 1.6 eV is due primarily to interband j3/2 →
j1/2 contributions. The anomalous low-frequency (ω < 1 eV)
spectral weight in the DFT arises primarily from j1/2 → j1/2

excitations between the upper and lower Hubbard bands, the
intensity of which are dramatically suppressed in the ED
results. This difference can be traced back to two main effects:

(i) From a localized perspective, we can consider the ground
state for two sites as having an electronic configuration S1: site
1 = (j3/2)4(j1/2)1, site 2 = (j3/2)4(j1/2)1. Intersite j1/2 → j1/2

transitions yield local configurations like S4 : (j3/2)4(j1/2)0 −
(j3/2)4(j1/2)2, which have a low spin degeneracy as a re-
sult of the filled or empty j1/2 states. Intersite j3/2 → j1/2

excitations yield local configurations like S5 : (j3/2)3(j1/2)1 −
(j3/2)4(j1/2)2, which have a larger spin-degeneracy due to the
partially filled j3/2 and j1/2 states. Overall, the ratio of the total
spectral weight associated with these transitions should be∫

P4(ω) :
∫

P5(ω) = 1 : 8, as shown in Fig. 5. In contrast, the
DFT calculations take an effective single-particle momentum
space perspective, in which the j3/2 band is fully occupied, and
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the j1/2 band is half-occupied. The spectral weight associated
with j1/2 → j1/2 and j3/2 → j1/2 transitions is therefore 1 : 4,
which overestimates the contributions of the former in DFT
calculations compared to the localized picture. In other words,
DFT does not correctly capture the spin-multiplicity associated
with the localized states.

(ii) In a localized picture, the current operator depends
on the intersite hopping matrix elements via Eq. (16). It
is therefore useful to rewrite the nearest-neighbor hopping
integrals in the relativistic basis. For example, for the Z bonds,
these are

tij (j1/2 → j1/2) ∝ (2t1 + t3), (18)

tij (j3/2; m±1/2 → j1/2) ∝ (t3 − t1), (19)

tij (j3/2; m±3/2 → j1/2) ∝ t2. (20)

Via the current operator Eqs. (15) and (16), the optical conduc-
tivity associated with each transition scales with σ (ω) ∝ (tij )2.
Typically, in the corner-sharing iridates such as γ -Li2IrO3, t1
and t3 have opposite sign (and may be quite small), which
suppresses the (j1/2 → j1/2) hopping, reducing the influence
of such excitations on the optical conductivity. This effect is
partially captured in DFT, as can be seen from comparing the
relative widths of the j1/2 and j3/2 bands in Fig. 3. However,
DFT likely overestimates the degree of j1/2 − j3/2 mixing
which leads, effectively, to larger optical matrix elements
between low-energy states. Overall, we conclude that the ED
calculations, based on DFT hopping integrals, provides the
best description of the optical conductivity.

IV. COMPARISON TO Na2IrO3 AND α-Li2IrO3

Despite differences in crystal architecture, the experimental
optical conductivity of γ -Li2IrO3 and Na2IrO3 share a very
similar profile that we will analyze in what follows. As stated
in the previous section, σ (ω) should be dominated by intersite
j3/2 → j1/2 excitations, at ω ∼ C−1 ∼ 1.6 eV, as observed.
The soft shoulder observed at lower energies results from a
combination of low spectral weight from intersite j1/2 → j1/2

excitations centered at ω ∼ A−1 ∼ 1.1 eV, and weak mixing
with optically forbidden local j3/2 → j1/2 excitons near ω ∼
0.6 eV. These assignments are consistent with the fitting of
σ (ω) in Ref. [36] for Na2IrO3, which suggested peaks in the
vicinity of 0.72, 1.32, and 1.66 eV. However, the “band gap”
reported to be 0.32 eV is likely to be significantly contaminated
by low-lying excitonic states, and may therefore not represent
the natural charge gap of the material. The origin of the peaks
for Na2IrO3 in the relativistic basis are shown in Fig. 8 for
both calculations.

In Fig. 9, we display the theoretical DFT and ED results
for the in-plane σc component for Na2IrO3, α-Li2IrO3, and
γ -Li2IrO3. For α-Li2IrO3, we employed the recently obtained
single-crystal structure [24]. Hopping integrals and crystal
field parameters for the revised structure are given in Tables VI
and VII. It should be noted that the results obtained for
α-Li2IrO3 in this work therefore differ slightly from the results
in Ref. [10], which employed previously available structures
obtained from powder x-ray analysis and structural relaxation.

FIG. 8. Optical conductivity component σc for Na2IrO3 and
different d-d transitions in the relativistic basis calculated (a) with
DFT within GGA+SO+U and (b) with the ED method. Comparison
with experimental results from Ref. [37] and Ref. [36] is also shown.
σc of Na2IrO3 corresponds to the σzz component in Ref. [10].

Generally, for these materials, the electronic structure is
strongly affected by the competition between spin-orbit cou-
pling (λ ∼ 0.4 eV) and crystal-field terms (�n ∼ 0–0.2 eV),
which leads to an enhanced dependence of the spectra on
structural details. Nonetheless, both DFT and ED calculations
give a strong main peak in σ (ω) near ω = 1.6 eV for
α-Li2IrO3, γ -Li2IrO3, and Na2IrO3. This peak is predicted to
be more intense in the former two materials by both methods.
Furthermore, both DFT and ED calculations show an enhanced
spectral weight at lower energies in γ -Li2IrO3 with respect
to Na2IrO3, which is consistent with experimental results.
The differences can be understood as follows. For materials
dominated by oxygen-assisted hopping such as Na2IrO3, the
hopping integrals in the d-orbital basis satisfy t2 � t1,t3,
so in the relativistic basis the hopping is dominated by
tij (j3/2; m±3/2 → j1/2). This observation suggests negligible
spectral weight for j1/2 → j1/2 excitations in σ (ω). In contrast,
for significant direct metal-metal hopping t1, t3, additional
spectral weight may appear in the mid-energy region due to
enhanced tij (j1/2 → j1/2). This is worth noting because the

 0
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FIG. 9. Optical conductivity σc for Na2IrO3, α-Li2IrO3, and
γ -Li2IrO3 calculated (a) with DFT within GGA+SO+U and
(b) with the ED method. σc for Na2IrO3 and α-Li2IrO3 corresponds
to σzz in Ref. [10]. Please note that for α-Li2IrO3 differences in the
DFT optical conductivity with respect to results in Ref. [10] lie in the
employed crystal structure.
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TABLE VI. Hopping parameters for the on-site terms (meV)
for α-Li2IrO3 for the recently available single-crystal structure from
Ref. [24].

xy → xy –401.8
xz → xz –517.4
yz → yz –517.4
xy → xz –39.0
xy → yz –39.0
xz → yz –33.5

values of these hopping integrals are directly related to the
magnetic interactions. Indeed, up to second order in hopping,
the magnetic interactions are given by [13]

J1 = 4A

9
(2t1 + t3)2 − 8B

9
[2(t1 − t3)2], (21)

K1 =8B

3

[
(t1 − t3)2 − 3t2

2

]
, (22)

�1 = 8B

3
[2t2(t1 − t3)], (23)

where B is a constant similar to A and C:

B = 4

3

[
(3JH − U − 3λ)

(6JH − 2U − 3λ)
η

]
. (24)

The desirable Kitaev limit (K1 � J1,�1) is obtained only for
t2 � t1,t3, and will therefore be most closely approached by
materials with the low spectral weight near ω ∼ 1.1 eV. This
identifies Na2IrO3 as the closest material to the Kitaev limit
from all three investigated here, in agreement with Ref. [13].

V. SUMMARY

We have investigated the electronic structure, hopping
parameters and optical excitation spectrum of the three-
dimensional γ -Li2IrO3. Due to the lower symmetry of the local
Ir-O-Ir environment, the hopping integrals display significant
deviations from the ideal case, suggesting, e.g., large metal-
metal hoppings and departures from inversion symmetric
values. This situation likely leads to highly complex magnetic
interactions in this system and manifests itself in certain
signatures in the optical conductivity.

TABLE VII. Nearest-neighbor tight-binding hopping matrix ele-
ments (meV) for α-Li2IrO3 for the recently available single-crystal
structure from Ref. [24].

α-Li2IrO3 X Y Z

xy → xy 70.2 70.2 –139.3
xz → xz 83.6 –124.0 77.7
yz → yz –124.0 83.6 77.7
xy → xz 239.0 –34.9 –30.7
xz → xy 239.0 –34.9 –30.7
xy → yz –34.9 239.0 –30.7
yz → xy –34.9 239.0 –30.7
xz → yz –38.6 –38.6 285.5
yz → xz –38.6 –38.6 285.5

FIG. 10. Local octahedral environment of (a) type 1 and (b) type
2 in γ -Li2IrO3.

We computed the optical conductivity by two methods;
(i) relativistic DFT calculations within GGA+SO+U and
(ii) exact diagonalization of the full interacting Hamiltonian
on finite clusters where the hopping integrals were obtained
from DFT. Both methods reproduce the main peak of the
in-plane component of the optical conductivity σc. However,
GGA+SO+U seems to overestimate the contribution of the
j1/2 → j1/2 transition at low energies in σa and σb. The ED
results, in contrast, validate the model parameters (U,JH ,λ)
and suggest that the high-lying excitations appear to be
well captured within a localized picture in γ -Li2IrO3. The
comparison with the optical conductivity analysis of Na2IrO3

shows that the peak near 1.5 eV in both Na2IrO3 and γ -Li2IrO3

can be identified in terms of intersite j3/2 → j1/2 excitations.
The comparison of σ (ω) for the various materials suggests that
the relative spectral weight of the transitions provide insight
into the magnitudes of various hopping integrals, and therefore
the local magnetic interactions.
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FIG. 11. Optical conductivity tensor components with spin po-
larization (a) along c and (b) along a in the zigzag configuration.
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APPENDIX A: HOPPING PARAMETERS FOR THE
NONMAGNETIC NONRELATIVISTIC SYSTEM

Tables IV and V show all onsite and nearest-neighbor-
hopping parameters in γ -Li2IrO3. As noted above, the t1O in

the XA (YA), XB (YB) bonds have opposite signs, as a result of
different local environments. The negative value corresponds
to type 1 bonds in Fig. 10, while the positive values are type
2 bonds in Fig. 10. Tables VI and VII show all on-site and
nearest-neighbor-hopping parameters in α-Li2IrO3.

APPENDIX B: OPTICAL CONDUCTIVITY WITH SPIN
POLARIZED TO a DIRECTION

In order to compare the dependence of the optical con-
ductivity along various spin directions in the zigzag magnetic
configuration, we show the results for spins along a and c

direction in Fig. 11. The results show that the σc component
does not depend significantly on the spin-polarized direction,
while σa and σb are more sensitive to it.
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