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We present a general framework for deriving effective spin Hamiltonians of correlated magnetic systems
based on a combination of relativistic ab initio density functional theory calculations, exact diagonalization of
a generalized Hubbard Hamiltonian on finite clusters, and spin projections onto the low-energy subspace. A
key motivation is to determine anisotropic bilinear exchange couplings in materials of interest. As an example,
we apply this method to the pyrochlore Lu2V2O7 where the vanadium ions form a lattice of corner-sharing
spin-1/2 tetrahedra. In this compound, anisotropic Dzyaloshinskii-Moriya interactions (DMIs) play an essential
role in inducing a magnon Hall effect. We obtain quantitative estimates of the nearest-neighbor Heisenberg
exchange, the DMI, and the symmetric part of the anisotropic exchange tensor. Finally, we compare our results
with experimental ones on the Lu2V2O7 compound.
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I. INTRODUCTION

The Heisenberg Hamiltonian and its extensions are among
the most successful models for describing magnetism in
correlated systems [1,2]. However, for an accurate description
of real material properties, a sound understanding of the
role of the lattice structure (e.g., superexchange pathways)
and its consequence on the spin-spin exchange parameters
is indispensable. Various methods for determining exchange
parameters for real materials exist. A popular one consists of
fitting calculated properties obtained by assuming a particular
form of the spin Hamiltonian to experimental data (specific
heat, magnetic susceptibility, magnetization, inelastic neutron
scattering, etc.) [3–6]. A complementary procedure that is
gaining popularity is to estimate the coupling constants of
the Heisenberg Hamiltonian from methods based on first
principles, such as mapping total energies obtained from
spin-polarized density functional theory (DFT) calculations
to a Heisenberg model [5,7–12]. Both approaches are useful
for providing information on Heisenberg-only interactions.
These become, however, problematic when terms other than
rotationally invariant (isotropic) Heisenberg exchange Jij (�Si ·
�Sj ) are not negligible, as it happens in rare-earth pyrochlore
compounds [13]. Even when anisotropic terms are small, they
can play a crucial role in the physics of the system [14,15].
Common examples of such anisotropic couplings are the off-
diagonal Dzyaloshinskii-Moriya vector �Dij and the traceless
symmetric tensor K̂ij :

Hspin = Jij (�Si · �Sj ) + �Dij · (�Si × �Sj ) + �Si · K̂ij · �Sj . (1)

By broadly aiming to obtain reliable quantitative estimates of
the coupling constants in a general spin Hamiltonian such
as that of Eq. (1), we explore here, as a first motivation
for our work, a method that combines DFT calculations
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with exact diagonalization of the electronic (Hubbard-like)
Hamiltonian on finite clusters. This approach does not depend
on experimental input, except for the crystal structure.

As a specific application of the method, we evaluate the
bilinear spin-spin coupling constants in Eq. (1) of the insulating
Lu2V2O7 pyrochlore ferromagnet. This material has recently
been proposed as a candidate topological magnon insulator
with chiral edge states [16,17] and evidence for a magnon Hall
effect has also been reported [18]. The magnetic properties of
Lu2V2O7 are dominated by corner-sharing spin-1/2 vanadium
tetrahedra (see Fig. 1). Due to the lack of bond-inversion
symmetry for the pyrochlore lattice [19], the Dzyaloshinskii-
Moriya interaction (DMI) of spin-orbit origin [20,21] is
allowed by symmetry and may not be negligible. The DMI is
expected to play an essential role on the observed magnon Hall
effect in Lu2V2O7 and there is a debate about the magnitude of
the principal spin-spin interactions in this material. The need
to better understand the scale of the anisotropic interactions in
contemporary magnetic systems and their role on topological
magnon transport is further emphasized by the observation
of such phenomena in materials [22,23] other than Lu2V2O7.
From a broader context, the latter material may then possibly
be viewed as an important test bench for establishing close
contact between theory and experiment.

Coming back to Lu2V2O7, experimental and theoretical
results have been reported for the nearest-neighbor Heisenberg
exchange, Jij , and the Dzyaloshinskii-Moriya vector, �Dij .
However, no consensus has yet emerged on the value of
these two spin-spin couplings. Fitting transport and magnetic
specific heat data on Lu2V2O7 [18] leads to ferromagnetic
(negative) Jij � −3.4 meV [24] and | �Dij |/|Jij | � 1/3. In
contrast, recent inelastic neutron scattering measurements [25]
indicate that | �Dij |/|Jij | � 0.18. On the other hand, Xiang
et al. [26] obtained | �Dij |/|Jij | = 0.048 by mapping DFT total
energies to a spin Hamiltonian. This ratio is one order of
magnitude smaller than the values obtained from fitting to
experimental data. However, one should note that Ref. [26]
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FIG. 1. (a) Network of corner-sharing vanadium tetrahedra in the
pyrochlore Lu2V2O7. (b) Oxygen environment around a vanadium
tetrahedron.

includes an additional single-ion anisotropy term in the
effective spin Hamiltonian used to parametrize the energy
of magnetic moment configurations. In a quantum spin-1/2
Hamiltonian, any such even-power term should, however, be
absent as they are trivially proportional to the identity (Pauli σ0)
matrix. Considering the disparities between the values so far
determined for Jij and �Dij , one is naturally led to ask whether
additional symmetry-allowed terms, such as the symmetric
tensor K̂ij in Eq. (1), are truly negligible in this compound. It
is therefore of some importance to determine such couplings
consistently within a well-defined calculational procedure; this
is the second main motivation for our work.

The paper is organized as follows. Section II discusses
the various steps necessary to establish the generalized spin
Hamiltonian that we seek. We first present the framework for
obtaining tight-binding parameters and the spin-orbit coupling
constant λ out of relativistic DFT calculations. In a second
step, we perform an exact diagonalization of a generalized
Hubbard Hamiltonian that includes the ab initio tight-binding
parameters and λ. Introducing effective spin-1/2 operators,
we project the results on the low-energy subspace of the
system to extract an effective spin Hamiltonian allowing us
to determine the various exchange coupling constants. The
method is applied to Lu2V2O7 where we compare briefly to
experimental results. We conclude the paper with a summary
in Sec. III.

II. GENERALIZED MODEL HAMILTONIAN

A. Ab initio determination of the tight-binding hopping
and spin-orbit parameters

Our starting Hamiltonian is a generalized multiorbital
Hubbard model for d electrons that includes spin-orbit
coupling (SOC):

Htot = Hhop + Hsoc + Hint, (2)

where

Hhop =
∑
ij

∑
αβ

tiα,jβ d
†
iαdjβ (3)

is the hopping term with hopping parameters tiα,jβ where i,j

are site indices and α,β are orbital indices [27].

Hsoc = λ
∑

i

∑
αβ

∑
σσ ′

〈 i α σ | �L · �S| i β σ ′〉 d
†
iασ diβσ ′ , (4)

is the spin-orbit term where λ is the strength of the on-site spin-
orbit coupling and σ and σ ′ are the spin component indices.

Hint =
∑

i

∑
αβ

Uαβniα↑niβ↓

+ 1

2

∑
iσ

∑
α 	=β

(Uαβ − Jαβ)niασ niβσ

+
∑

i

∑
α 	=β

Jαβ(d†
iα↑d

†
iβ↓diα↓diβ↑ + d

†
iα↑d

†
iα↓diβ↓diβ↑)

(5)

is the two-particle interaction term for 3d electrons [28].
There are two independent parameters in this Hamiltonian,
the Coulomb repulsion of electrons on the same orbital, U0,
and the average Hund’s coupling, Javg = 1

2l(2l+1)

∑
α 	=β Jαβ ,

with Uαβ = 3 U01 − 2Jαβ . The explicit form of the interaction
matrix Jαβ is given in Appendix B.

We first determine via ab initio methods the hopping param-
eters tiα,jβ in Eq. (3) and then the spin-orbit coupling constant
λ in Eq. (4). We perform nonmagnetic, nonrelativistic DFT
calculations within an all-electron full-potential local orbital
(FPLO) [29] basis and use for the exchange-correlation func-
tional the generalized gradient approximation (GGA) [30]. The
hopping parameters are then obtained from projective Wannier
functions [31,32] as implemented in FPLO [33].

For the Lu2V2O7 pyrochlore, we use the experimental
structure determined by Haghighirad et al. [34]. We show
in Fig. 2 the total density of states, which is dominated by
vanadium 3d weights near the Fermi level. Because of the
distorted oxygen octahedra surrounding each vanadium atom,
illustrated in Fig. 1(b), there is a trigonal crystal field splitting
of the d orbitals [see right panel of Fig. 2(c)]. This results in
doubly degenerate dxy and dx2-y2 , as well as dxz and dyz orbitals.
Our choice of local coordinate systems at each vanadium ion is
the same as the one used in Ref. [35]. The z axes point along the
cubic 〈111〉 directions, the x axes point along the cubic 〈011̄〉
directions while the y axes point along the 〈2̄11〉 directions
such that 〈xyz〉 form a local orthogonal triad, as illustrated in
Fig. 2(c). For a detailed description, we list in Appendix C the
most relevant on-site (see Table III) and nearest-neighbor (see
Table IV) hopping parameters.

Having determined tiα,jβ , we next proceed to compute
λ. We first derive the analytical expressions for the spin-
orbit coupling matrix elements. The scalar product �L · �S =∑

ri
Lri

Sri
leads to a dependence on the direction of the local

axes ri = {xi,yi,zi} at site i. The matrix elements can be
evaluated using the Kronecker product,
∑
ri

〈iα σ |(Lri
Sri

)|iβ σ ′〉 =
∑
ri

〈αi |Lri
|βi〉 ⊗ 〈σ |Sri

|σ ′〉, (6)

where αi , βi label the site-dependent d orbitals at site i. The
spin operator Sri

should have the components aligned along
the local coordinate frame while the state |σ ′〉 = {|↑〉,|↓〉} is
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FIG. 2. (a) Nonrelativistic density of states (DOS) of Lu2V2O7 in
the energy range [−7 eV,4 eV] obtained in the GGA approximation.
Shown are the total, as well as partial DOS corresponding to V, O,
and Lu. (b) Vanadium orbital-resolved DOS around the Fermi level.
(c) Illustration of the local reference frame in one tetrahedron of
vanadium atoms, and orbital energy hierarchy in Lu2V2O7.

defined in a global coordinate frame. We therefore have to
rotate the spin operator in each local reference frame (see
Fig. 3). For example, for site No. 1, the local z axis, �z1,

x

z

y

z1 z2 S2S1

FIG. 3. Reference frames of spin and orbital degrees of freedom
on two neighboring sites. The spins S1, S2 are given in the global
reference frame and the orbitals are dz2 orbitals in the local reference
frame at each site. Due to the site-dependent local coordinate frame,
the spin operators have to be rotated in each local reference frame.

expressed in the global coordinate system is

�z1 = 1√
3

⎛
⎝

1
1
1

⎞
⎠.

Therefore, the spin operator measuring the local z component
at this site is

Sz1 = 1√
3

(Sx + Sy + Sz),

where the spin operators are �S = 1
2 �σ , with �σ the Pauli

matrices. On the other hand, the matrix elements of the angular
momentum are evaluated at each vanadium local coordinate
frame as given in Eq. (6).

By application of the Kronecker product in Eq. (6), the ana-
lytical expressions for the spin-orbit coupling matrix elements
at every site are obtained, leaving only the spin-orbit coupling
strength λ to be determined. Two main properties contribute
to the value of λ: the nature of the ion (vanadium V4+ here)
for which the spin-orbit interaction is being considered and,
to a smaller degree, the crystal environment. In order to
take into account these effects, we perform fully relativistic
DFT calculations with FPLO and map via a numerical fitting
procedure the sum of Hhop in Eq. (3) and HSOC in Eq. (4), where
Hhop contains the hopping parameters previously determined,
to the relativistic DFT band structure. The only parameter left
to fit the relativistic DFT band structure is then λ.

We illustrate this procedure in Fig. 4 for Lu2V2O7. As
expected, the spin-orbit coupling causes band splittings with
respect to the nonrelativistic band structure: compare the tight-
binding band structure represented by the purple curve (which
reproduces well the nonrelativistic DFT band structure; not
shown), with the fully relativistic band structure calculation,
given by the blue curve in Fig. 4(c). Including the spin-orbit
coupling contribution in the model Hamiltonian leads to a good
representation of the relativistic band structure [red curve in
Fig. 4(c)] from which we can extract λ through optimization.
For Lu2V2O7, we find λ ∼ 30.0 meV. As a reference, we note
that the experimental value is λexp = 30.75 meV for an isolated
vanadium V4+ ion [36].

B. Cluster diagonalization of Htot

At this point, having determined from ab initio calculations
tiα,jβ and λ, we still need to choose the interaction parameters
U0 and Javg in Hint, given in Eq. (5). These two values will
be left as model parameters and we will discuss them further
below. Our aim here is to obtain a low-energy spin Hamiltonian
out of the generalized Hubbard Hamiltonian Htot Eq. (2). To
this effect, we proceed with a cluster diagonalization of Htot,
focusing on the two-site case in the example of Lu2V2O7.

We note the importance of the Hund’s coupling for
this multiorbital system. In Lu2V2O7, the ground state is
ferromagnetic [37]. The angle between two vanadium atoms
and the nearest oxygen atom is θ = 131.44◦. This is neither
close to 180◦, where according to the Goodenough-Kanamori
rules antiferromagnetic coupling is favored, nor to 90◦, which
would lead to ferromagnetic coupling [38]. Miyahara et al. [39]
suggested that ferromagnetism in Lu2V2O7 is induced by
orbital ordering. These authors argue that the orbital or-
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FIG. 4. (a) Chosen high-symmetry k path in the Brillouin zone
of pyrochlore. (b) Relativistic band structure of Lu2V2O7 on the
high-symmetry path. (c) Relativistic band structure between the high
symmetry points L and W in a smaller energy window around the
Fermi energy [gray shaded region in (b)]. The dark blue (DFT + SOC)
curve is the result of the fully relativistic band structure calculation.
The purple curve (TB) represents the tight-binding band structure
from the nonrelativistic calculation. The red (TB + SOC) curve is
the result of the tight-binding band structure taking the spin-orbit
coupling term into account. The band splitting caused by relativistic
effects is well reproduced, as can be seen by comparing the blue
(DFT + SOC) and red (TB + SOC) curves.

dering in Lu2V2O7 leads to such a large ratio of hopping
amplitudes tiz2,jxy/tiz2,jz2 and tiz2,jx2-y2/tiz2,jz2 that a ferro-
magnetic ground state is induced. This is of course only
possible when a mechanism exists that favors ferromagnetic
arrangements on different orbitals, the Hund’s coupling.
We note that the interaction part used in Ref. [39] is a
simplified version of the correct 3d Hubbard Hamiltonian [28].
Nevertheless, these arguments suggest that it is not possible to

neglect the various Hund’s couplings, Jαβ , in the Hamiltonian
and, at the same time, reproduce the correct ferromagnetic
V-V exchange.

Notwithstanding the importance of considering the Jαβ

couplings, there is a critical reason why all five V 3d orbitals
need to be included in the calculations. The oxygen octahedra
surrounding the vanadium atoms are slightly distorted. This
induces a trigonal crystal field splitting of the d orbitals (see
Fig. 2), with the lowest level being nondegenerate. The neces-
sity of including all five d orbitals is made evident by invoking
simple perturbation-theory considerations. Specifically, the
importance of the various states to the effective spin Hamilto-
nian that we aim to determine scales roughly with the inverse
of the crystal field splitting. In a hypothetical case where the
lowest orbitals were degenerate, these would play the main
role in the physics of the system and it would be justified to
consider only those. Otherwise, one has to take all orbitals into
account. Furthermore, it is important to note that the difference
of the magnetic quantum numbers of the lowest orbital dz2

(ml = 0) with the next higher orbitals dxy/dx2-y2 (ml = ±2)
is two. As a result, the spin-orbit coupling �L · �S = 1

2 (L−S+ +
L+S−) + LzSz has almost no contribution if we neglect the two
highest-energy orbitals, dxz/dyz with ml = ±1 [see Fig. 2(c)].

Htot is diagonalized for two sites, five d orbitals and two
spin degrees of freedom. The filling counting in Lu2V2O7 is
one electron per V site so that we constrain the subspace to
states containing two vanadium ions. In second quantization,
the two-site/two-particle system has

(20
2

) = 190 states, and we
therefore need to diagonalize a 190 × 190 matrix. Note that
we have within this approach the constraint U0 − 3Jαβ > 0
for all orbitals; otherwise, states with two particles on a single
site would become favorable because the system then gains
energy with double occupation, and the projection onto singly
occupied states is no longer justified.

In the following paragraphs, we investigate the properties of
the four singly occupied states and their corresponding energy.
We define the low-energy state |ψ〉 via a linear combination
of singly occupied states with coefficients cσσ ′ (σ = ↑,↓)

|ψ〉 = c↑↑ |↑i,z2↑j,z2〉 + c↑↓ |↑i,z2↓j,z2〉
+ c↓↑ |↓i,z2↑j,z2〉 + c↓↓ |↓i,z2↓j,z2〉, (7)

where i,j are site indices.
We first discuss various limiting cases. In the nonrelativistic

atomic limit (λ = 0 and all hopping terms set to zero), the
ground state is fourfold degenerate with every site being singly
occupied with the electron located in the orbital of lowest
energy; in Lu2V2O7 this is the dz2 orbital. For two sites, the
ground-state energy is then ε0 = 2εz2 , which is twice the on-
site energy of the dz2 orbital.

If we switch on spin-orbit coupling, states with certain
orbitals and spins get admixed, and the eigenenergies undergo
a shift in the atomic limit. Henceforth, we deal with pseudo-
orbitals α̃ with an energy for the lowest state εSO

z̃2 . The ground-
state energy of the two-site system is then twice the on-site en-
ergy of the pseudo-orbital with the lowest energy εSO

0 = 2εSO
z̃2 .

If we switch on hopping, but neglect spin-orbit coupling,
we observe a triplet-singlet splitting in the energy spectrum
and additional contributions from states that are not the
low-energy states in the atomic limit are admixed. Without
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TABLE I. Coefficients of the low-energy states in Lu2V2O7, Upper table: Without spin-orbit coupling, there are two energy levels, one of
them triply degenerate with ε

hop
0 = 0.43907 eV, and a singlet with ε

hop
1 = 0.44769 eV. Lower table: Full Hamiltonian, there are four distinct

energy levels.

εhop (eV) c↑↑ c↑↓ c↓↑ c↓↓

0.43907 1 0 0 0
0.43907 0 0 0 1
0.43907 0 0.70 0.70 0
0.44769 0 0.70 −0.70 0
εSO+hop (eV) c↑↑ c↑↓ c↓↑ c↓↓
0.43300 0.69 − 0.06i 0 0 0.69 − 0.06i

0.43306 −0.47 + 0.15i 0.47 − 0.15i 0.47 − 0.15i 0.47 − 0.15i

0.43307 0.49 − 0.02i 0.49 0.49 − 0.05i −0.49 − 0.02i

0.44104 0.02i 0.69 − 0.03i −0.69 + 0.06i 0.02i

the Hund’s couplings, antisymmetric states are energetically
favored since the Pauli principle allows enhanced hopping
processes in this case. The Hund’s coupling Jαβ represents a
competing mechanism and can, depending on its strength, lead
to the symmetric states being lowest in energy. Results for the
energies εhop in Lu2V2O7 are given in the upper Table I where
we chose U0 = 3.3 eV and Javg = 0.845 eV.

By diagonalizing the full Hamiltonian, the mixing of
orbitals and spins due to spin-orbit coupling combined with
the orbital-dependent hoppings lead to an additional, very
small splitting of the three lowest states for Lu2V2O7 given
by the energies εSO+hop in the lower Table I. In Lu2V2O7 the
lowest energies are between ε

SO+hop
0 = 0.433 eV and ε

SO+hop
4 =

0.44104 eV while the next higher eigenenergy (not shown) is
ε

SO+hop
5 = 0.59827 eV. This energy gap leads to a well-defined

separation of the low-energy states from the excited states,
which allows us to focus on the low-energy states in the
analysis below.

C. Effective spin Hamiltonian

With the detailed information on the low-energy states of
the two-site system now in hand, we construct an effective spin
Hamiltonian acting within the low-energy subspace given by
the four states described above. Within these four states, we
neglect the very small coefficients of basis states, which do not
describe singly occupied states in the low-energy orbital. In
this way, we construct a basis that is not orthonormal, |bj 〉 =∑

i ci |si〉, where |si〉 are the four singly occupied low-energy
states as in Eq. (7). The coefficients ci are those of the lower
table in Table I. The overlap matrix P , with elements Pij ≡
c∗
i cj 〈si |sj 〉 for Lu2V2O7, is diagonal with overlaps around

0.96.
After orthonormalization [40], the coefficients ci are

slightly modified (shown in Table II) while the eigenvalues
are unchanged. At this point of the calculation, the effective

Hamiltonian is given in the orthonormalized basis |bj 〉, with
the coefficients given in Table II.

As an alternative approach for constructing the effective
spin Hamiltonian, as well as a check for consistency, we also
performed second-order perturbation theory and compared the
resulting effective Hamiltonian with the one obtained via the
cluster diagonalization. In second-order perturbation theory
[41], H PT

eff = PH
i 	=j

hop RH
i 	=j

hop P up to two intersite hopping pro-
cesses are considered. The operator P = ∑

i |si〉〈si | projects
onto the low-energy subspace while R = ∑

ij |ei〉〈ei |(ε0 −
H0)−1|ej 〉〈ej | projects onto the renormalized subspace of
excited states |ei〉. The unperturbed Hamiltonian H0 contains
the total Hamiltonian given in Eq. (2) except for the intersite
hopping H

i 	=j

hop . In the limit U0 � tiα,jβ , we obtain, as it
should be, the same results with both methods. In the region
of physically relevant model parameters U0 and Javg, there
are nevertheless higher-order corrections to the second-order
perturbation theory results.

We now use spin projectors to obtain the sought effective
spin Hamiltonian.

Spin projectors

Using the Abrikosov pseudofermion representation for spin
1/2 operators,

c
†
i↑ci↓ = S+

i , c
†
i↓ci↑ = S−

i ,

c
†
i↑ci↑ = 1

2 + Sz
i , c

†
i↓ci↓ = 1

2 − Sz
i ,

and the fact that an operator in second quantization is expressed
as

Â =
∑

μνμ′ν ′
〈μν|Â|μ′ν ′〉c†1μc

†
2νc2ν ′c1μ′ ,

we can translate an effective spin-1/2 Hamiltonian written in
second quantization to a spin Hamiltonian. For example, the

TABLE II. Coefficients of the states in the orthonormal low energy for Lu2V2O7.

ε (eV) c′
↑↑ c′

↑↓ c′
↓↑ c′

↓↓

0.43300 0.7043 − 0.0626i 0 0 0.7043 − 0.0626i

0.43306 −0.4758 + 0.1526i 0.4764 − 0.1529i 0.4764 − 0.1528i 0.4758 − 0.1526i

0.43307 −0.4995 + 0.0245i 0.4999 0.4975 + 0.0493i −0.4995 − 0.0245i

0.44104 −0.0012 − 0.0175i −0.7063 + 0.0295i 0.7039 − 0.0645i 0.0012 + 0.0175i
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operator

|↑i,z2↑j,z2〉〈↑i,z2↑j,z2 | = c
†
i,z2↑c

†
j,z2↑cj,z2↑ci,z2↑

leads to a term that couples the z components of the spin

c
†
i,z2↑c

†
j,z2↑cj,z2↑ci,z2↑ = (

1
2 + Sz

i

)(
1
2 + Sz

j

)
.

Having introduced spin-1/2 operators, we can recast the
relevant terms in the electronic Hamiltonian in the form of
3 × 3 matrices that describe (anisotropic) interactions between
the components of the spins 1/2 at sites i and j . The spin
Hamiltonian then reads

Hspin = �ST
i 
ij

�Sj (8)

where the bilinear spin-spin interaction matrix 
ij has compo-
nents (see also Ref. [42])


ij =

⎛
⎜⎝

Jij + Kxx
ij Dz

ij + Kxy

ij −Dy

ij + Kxz
ij

−Dz
ij + Kxy

ij Jij + Kyy

ij Dx
ij + Kyz

ij

Dy

ij + Kxz
ij −Dx

ij + Kyz

ij Jij − Kxx
ij − Kyy

ij

⎞
⎟⎠.

(9)

The matrix consists of the Heisenberg exchange Jij , the
Dzyaloshinskii-Moriya vector �Dij and the traceless symmetric
tensor K̂ij ; the spin Hamiltonian consequently has the form of
Eq. (1). The symmetric tensor K̂ij is chosen to be traceless to
ensure that the definition of the Heisenberg exchangeJij is not
modified by considering additional nonrotationally invariant
terms.

We can now determine the values for the coupling pa-
rameters in Eq. (9) from the previously derived ab initio
hopping parameters and λ. The details of the crystal structure,
which influences the form of the exchange parameters, like the
symmetry and the orbital hierarchy, are implicitly encoded in
these ab initio parameters.

D. �Di j and K̂i j in pyrochlore systems

Since Hspin in Eq. (8) ought to be invariant under the
symmetry operations of the crystal, we analyze now the sym-
metries of the pyrochlore lattice. It is known from the Moriya
rules [20] that the direction of the Dzyaloshinskii-Moriya
vector �Dij depends on the orientation of the mirror planes
as well as rotation axes in the system considered. In fact,
these symmetries also determine the number of independent
parameters in the symmetric tensor K̂ij .

For simplicity, let us assume that one bond between sites
A and B is in the direction of the global x axis, as shown in
Fig. 5(a). In the pyrochlore lattice, there are two mirror planes,
which are important for the determination of the symmetry
properties of the exchange parameters.

One mirror plane is perpendicular to A-B and passes
through C. Since spin is a pseudovector, it transforms under
this symmetry operation as

⎛
⎝

Sx
A

S
y

A

Sz
A

⎞
⎠ →

⎛
⎝

Sx
B

−S
y

B

−Sz
B

⎞
⎠ and

⎛
⎝

Sx
B

S
y

B

Sz
B

⎞
⎠ →

⎛
⎝

Sx
A

−S
y

A

−Sz
A

⎞
⎠,

with the spin Hamiltonian necessarily invariant under this sym-
metry operation. Therefore, those terms in the Hamiltonian for

FIG. 5. (a) Vanadium tetrahedron showing the two mutually
perpendicular mirror planes relevant to the A-B bond. One plane
includes the bond A-B, while the other bisects this bond at C. The
presence of such mirror planes constrains the form of the local DM
vectors and symmetric tensors. (b) Direction of the Dzyaloshinskii-
Moriya vectors in a pyrochlore system in the global coordinate system
considered in the calculations.

which the sign is changed under such mirror reflection have to
vanish,

Dx
AB = 0, Kxy

AB = 0, Kxz
AB = 0.

The second mirror plane includes A-B and lies in the xz plane
for the chosen global coordinate system. With the symmetry
operations

⎛
⎝

Sx
A

S
y

A

Sz
A

⎞
⎠ →

⎛
⎝

−Sx
B

S
y

B−Sz
B

⎞
⎠ and

⎛
⎝

Sx
B

S
y

B

Sz
B

⎞
⎠ →

⎛
⎝

−Sx
A

S
y

A−Sz
A

⎞
⎠,

one finds the restrictions

Dx
AB = 0, Dz

AB = 0, Kxy

AB = 0, Kyz

AB = 0.

In conclusion, the direction of the Dzyaloshinskii-Moriya
vector is, except for its sign, fully determined by symmetry
considerations. Its only nonvanishing contribution is in the
global y direction, perpendicular to the bond under considera-
tion and within the face of the cube enclosing the tetrahedron.
The symmetric tensor is diagonal for this choice of coordinate
system. We thus have

�DAB =
⎛
⎝

0
Dy

AB

0

⎞
⎠, K̂AB =

⎛
⎝
Kxx

AB 0 0
0 Kyy

AB 0
0 0 −Kxx

AB − Kyy

AB

⎞
⎠.

Hence, for the pyrochlore system with only nearest-
neighbor interactions, there is only one independent exchange
parameter for the Dzyaloshinskii-Moriya vector and there are
two independent parameters that characterize the symmetric
tensor K̂ij .

In our calculations, we worked in a global coordinate
system aligned along the cubes edges. We show in Fig. 5(b)
all the DM vectors for one tetrahedron, with their explicit
form given in Appendix D in this global coordinate system. To
find the correct contributions to both the DM vector and the
symmetric tensor K̂ within this description, one has to rotate
the coordinate system used above.

As an example, we give the result for the bond 1-2, as
defined in Fig. 5(b), which is obtained by a rotation of π/4
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about the z axis and a rotation of π/2 about the x axis

�D12 =
⎛
⎝

−Dx
12

0
−Dx

12

⎞
⎠, K̂12 =

⎛
⎝
Kxx

12 0 Kxz
12

0 −2Kxx
12 0

Kxz
12 0 Kxx

12

⎞
⎠,

with Kxx
12 = 1

2 (Kxx
AB + Kyy

AB), Kyy

12 = 1
2 (Kxx

AB − Kyy

AB), and

Dx
12 = Dy

AB√
2

.
As previously noted for odd electron ions in pyrochlore

systems [35], we therefore have, together with the isotropic
Heisenberg exchange J12, four independent bilinear spin-spin
couplings, in principle [43]. We discuss in Appendix A various
representations of equivalent spin Hamiltonians using different
spin quantization frames.

The dependence of the energy parameters in the spin
Hamiltonian on the model parameters U0 and Javg in Lu2V2O7

is shown in Fig. 6. The Hund’s coupling within 3d orbitals [38]
is estimated to be 0.8–0.9 eV. For the Coulomb repulsion U0

on the same orbital on V4+ ions, we considered values between
3 and 4 eV.

With the parameter choice U0 = 3.3 eV and Javg =
0.845 eV, we extract from the effective Hamiltonian (coef-
ficients given in Table II) the following energy parameters (all
in meV)

J12 = −7.99, �D12 =
⎛
⎝

−0.4
0

0.4

⎞
⎠,

K̂12 =
⎛
⎝

−0.05 0 0.02
0 0.1 0

0.02 0 −0.05

⎞
⎠. (10)

The isotropic Heisenberg exchange J12 is ferromagnetic and
in reasonably good agreement with the experimental value
J = −8.22 meV in Ref. [25], and not too far off from the
results obtained from ab initio calculations with the “energy
mapping method” of Ref. [26] (J = −7.09 meV). We focus
on a choice of interaction parameters, based on the agreement
of the Heisenberg exchange with the inelastic neutron scat-
tering experiment [25], so that our calculated values for the
Dzyaloshinskii-Moriya interaction and the symmetric tensor
can be more easily compared with the experimental results.

As explained above and as illustrated in Fig. 5(b), the
directions of the �Dij vectors are fully determined by symmetry
considerations [19,20], with only its sign depending on
microscopic atomic details. The numerical results completely
agree with the prediction of Moriya’s rules, which confirms
that the choice of local coordinate systems and the rotations
performed throughout our calculations implement the crystal
symmetry correctly. The orientation of the DM vectors that we
find here corresponds to the so-called indirect case of Ref. [19].
The ratio

| �D|
|J | ≈ 0.07, (11)

where | �D| is calculated as
√
D2

x + D2
y + D2

z , is lower than the
two experimental results [18,25] for this material. By fitting
transport data, Ref. [18] determined | �D/J | � 0.32, while
the ratio obtained from inelastic neutron scattering [25] is
| �D/J | � 0.18. The theoretical approach of Xiang et al. [26]
using differences of DFT total energies for various spin
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FIG. 6. Dependence of the calculated exchange parameters on
the interaction parameters U0 and Javg. The results for a certain
choice of interaction parameters are given in Eq. (10). The gray
area far left is the forbidden region where, for U0 − 3Jαβ < 0, the
projection on singly occupied states is no longer justified and the
white lines correspond to the theoretical results given in Eq. (10). (a)
Heisenberg exchangeJ12. For comparison, experiment [25] estimates
|J | = 8.22 meV. (b) Dx

12, given in the global coordinate system as
in Fig. 5(b). The results are below the experimental estimates, which
correspond to Dx

12 = −0.8 meV [18] and Dx
12 = −1.05 meV [25].

Note, that we are reporting Dx
12 and not | �D12| = √

2 |Dx
12|. (c), (d)

Independent contributions to the symmetric anisotropic exchange K̂.
The calculated values are for none of the interaction parameters U0,
Javg small enough to neglect them.

configurations determined a smaller ratio of | �D/J | � 0.048.
We discuss possible reasons for the large difference between
these two values in Sec. III.
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The symmetric tensor results in smaller corrections to the
nearest-neighbor Heisenberg spin Hamiltonian, though these
are not entirely negligible when compared to | �D|/|J | in
Eq. (11), with

|K̂|
|J | = 0.02,

where |K̂| is the Frobenius norm of the symmetric tensor.

III. SUMMARY

In summary, we presented a method to determine the
spin exchange parameters of a spin-1/2 system combining
nonrelativistic and relativistic ab initio density functional
theory (DFT) calculations with exact diagonalization of a
generalized Hubbard model on a finite cluster. Projecting the
Hamiltonian onto the low-energy subspace and using spin pro-
jectors, we transformed the effective Hamiltonian into a spin
Hamiltonian, considering all allowed isotropic and anisotropic
nearest-neighbor bilinear exchange parameters for a spin-1/2
system. Using this formalism, we determined for Lu2V2O7 the
four independent exchange parameters for a certain choice of
Hubbard repulsion U0 and Hund’s coupling Javg.

The isotropic (Heisenberg) exchange parameter Jij that
we determined, Jij ≈ −8 meV, is close to the experimental
value (Jij ≈ −8.22 meV) extracted from inelastic neutron
scattering (INS) data [25]. On the other hand, the ratio
of the Dzyaloshinskii-Moriya interaction to the Heisenberg
exchange in Eq. (11) is almost a factor 3 smaller than the
| �Dij |/|Jij | � 0.18 obtained from the same INS data. As such,
the discrepancy between the present calculations and the
| �Dij |/|Jij | value extracted from INS appears rather large,
perhaps at the verge of suggesting a paradox as per the
spin-spin interaction parameters of this material. We comment
further on that below. We note that the Jij ≈ −3.4 meV
value found by fitting the magnetic specific heat [24] in
Ref. [18] is significantly different from both the INS value
and the present DFT result. This may suggest a necessity
to reinvestigate the low-temperature magnetic specific heat
data of this compound as well as reanalyzing it. In the same
vein, the | �Dij |/|Jij | � 1/3 determined by fitting transport
data [18] is significantly larger than both the present DFT
ratio [Eq. (11)] and the INS results [25]. It is unclear to what
extent this surprisingly large ratio for a 3d transition metal
ion (V4+) results from the small Jij ≈ −3.4 meV found from
specific heat [18,24]. As the INS data directly determines the
spin stiffness, there appears to be no simple way in which
the magnetic specific heat value Jij ≈ −3.4 meV could be
reconciled with theJij ≈ −8.22 meV value that parameterizes
the spin stiffness directly probed by INS.

Returning to the aforementioned difference between the
INS and DFT | �Dij |/|Jij | ratios, a few comments are in
order. First of all, the fit to the INS data considered only
nearest-neighbor exchange and Dzyaloshinskii-Moriya inter-
actions, ignoring symmetric anisotropic exchange (the two
components of K̂ij ) as well as any interaction beyond nearest
neighbors. Incorporating those in the fitting could lead to a
renormalization of the | �Dij |/|Jij | ratio. This is due to the
fact that the spin stiffness, determined through the quadratic

momentum dependence of the magnon dispersion near the
zone center [25], would no longer solely, and uniquely, fix Jij .
It may also be worthwhile to explore the effect of the sublead-
ing anisotropic components (K̂ij ) on the dispersion. Similarly,
we only considered (two-site) nearest-neighbor interactions in
our calculations and, as such, the accuracy of our exchange
parameters are also hampered by the same distance truncation
of the spin Hamiltonian used in the INS data analysis.

Regarding the comparison of our results with the theoretical
results reported in Ref. [26] we find that the value of the
isotropic nearest-neighbor Heisenberg exchange interaction
is similar in both calculations. This is not surprising since
both calculations originate from an initial DFT analysis.
Reference [26] uses total DFT energy differences for various
spin configurations and maps them to an extended Heisenberg
model. We, on the other hand, take the DFT results for the
determined hopping parameters and project a generalized
Hubbard model with these hopping matrix elements to an ex-
tended Heisenberg model. As the nearest-neighbor Heisenberg
exchange interaction is the largest energy scale in the problem,
differences between the results of both methods should be
reasonably small for this interaction.

However, the two calculations differ significantly on the
choice of the mapping spin Hamiltonian and this has im-
portant consequences for the rest of the parameter estimates.
We consider the most general spin Hamiltonian describing
a quantum spin-1/2 system restricted to nearest-neighbor
interactions. Reference [26] focuses on a spin Hamiltonian
that does not include contributions from the symmetric part
of the anisotropic exchange. A notable result of our work
is that these terms are not entirely negligible in Lu2V2O7.
Furthermore, the authors of Ref. [26] include a single-ion
anisotropy term of the form −B(Sz)2 in their parametric spin
Hamiltonian which, in a quantum mechanical description of a
spin-1/2 system, is a trivial constant as the square of all four
Pauli matrices is twice the 2 × 2 identity matrix. This suggests
that there may exist a risk of confusion when parameterizing
polarized (classical) magnetic moment configurations within
DFT ultimately represented by quantum spin-1/2 degrees
of freedom. To avoid such a risk, we chose to strictly
stay within a quantum mechanical description of the spin
Hamiltonian where the single-ion anisotropy term is absent
at the very outset. Such considerations explain the differences
between the results of the two theoretical approaches; (i) the
Dzyaloshinskii-Moriya interaction is in our calculation a factor
of 1.5 larger than that of Ref. [26]; (ii) we find a nonzero
symmetric anisotropic term and (iii) there is, by construction,
no single-ion anisotropy term in our case. Furthermore, we
note that the calculations in Ref. [26] have been performed for
Y2V2O7 instead of Lu2V2O7, which may also result in (small)
differences in the exchange parameters.

At first sight, it would naively appear that the insulating
Lu2V2O7 pyrochlore, with its ferromagnetic ground state and
a transition temperature of Tc ≈ 70 K, should be a textbook
example of spin-1/2 ferromagnetism on a non-Bravais lat-
tice well described by isotropic Heisenberg exchange with
leading anisotropic exchange perturbations in the form of
Dzyaloshinskii-Moriya (DM) interactions. However, at the
present time, there appears to be some significant discrepancy
between the scale of the DM interaction determined from
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transport measurements [18], inelastic neutron scattering
data [25] and from our density functional theory calculations. It
would certainly be comforting, in terms of one’s understanding
of what would appear as simple ferromagnetism of localized
moments, to resolve this disagreement. Furthermore, in view
of the interests in topological aspects of magnon excitations
induced by antisymmetric spin-spin interactions [18,22,23], a
definite progress in obtaining a quantitative global understand-
ing of the magnetic properties of Lu2V2O7 would be useful.
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APPENDIX A: CHOICE OF SPIN HAMILTONIAN
REPRESENTATION

We discuss here the various representations of the gener-
alized bilinear anisotropic Hamiltonian for spins 1/2 on the
pyrochlore lattice. At least three different ways to parametrize
the nearest-neighbor spin Hamiltonian have been employed.

In our study, we have used Eq. (1), which, due to its general
form, is not limited to the description of pyrochlores, but
applicable to any other crystal symmetry. However, as it does
not explicitly expose the relevant symmetries of the specific
system considered, it has the disadvantage that it seems to have
more free parameters than there actually are. Consequently,
one has to introduce additional symmetry considerations such
as those presented in Sec. II D.

A more specific choice of parametrization for the case
of pyrochlores was used by Thompson et al. [45] with four
different nearest-neighbor bilinear exchange interactions

Hex = HIsing + Hiso + Hpd + HDM. (A1)

It contains an Ising-like term with the spin projection on the
local z axes on the site respectively

HIsing = −JIsing

∑
〈ij〉

(�Si · ẑi)(�Sj · ẑj ), (A2)

an isotropic term, which has Heisenberg character,

Hiso = −Jiso

∑
〈ij〉

�Si · �Sj , (A3)

a pseudodipolar term with projection on the bond r̂ij connect-
ing site i and j ,

Hpd = −Jpd

∑
〈ij〉

[�Si · �Sj − 3(�Si · r̂ij )(�Sj · r̂ij )], (A4)

and a term which was labeled as the Dzyaloshinskii-Moriya
term

HDM = −JDM ��ij

DM · (�Si × �Sj ). (A5)

This way of parametrization includes only four different
exchange parameters and is therefore convenient to describe
a pyrochlore system, as shown in Sec. II D. By introducing
the Ising-like term, there are additional contributions of
the Dzyaloshinskii-Moriya term, | �Dij | = −J ij

DM −
√

2
3 J ij

Ising,

so that J ij

DM and | �Dij | describe the strength of different
exchange processes. For the bond 1-2, the relation between
parameterizations is

J 12
Ising = 9Kxx

12 − 3Kxz
12, (A6)

J 12
iso = −J12 + Kxx

12 − 1
3K

xz
12, (A7)

J 12
pd = −2Kxx

12 + 4
3K

xz
12, (A8)

J 12
DM = −| �D12| − 3

√
2Kxx

12 +
√

2Kxz
12. (A9)

The relation for the other bonds can be obtained by considering
the pyrochlore symmetry.

Moreover, there is a third popular way of parametrization,
introduced in Ref. [35], which, in an appendix, already pointed
out the difference with the formalism used in Ref. [45]. In
Eq. (2) of Ref. [35], the parameter matrix is explicitly given
for a bond, which corresponds to bond 1-3 in Fig. 5(b),

Jpar =
⎛
⎝

J2 J4 J4

−J4 J1 J3

−J4 J3 J1

⎞
⎠. (A10)

This leads to a modification of the Heisenberg exchange used
in our notation and a renormalization of the Dzyaloshinskii-
Moriya parameter,

J1 = J13 − 1

2
Kxx

13 , (A11)

J2 = J13 + Kxx
13 , (A12)

J3 = Kyz

13, (A13)

J4 = − 1√
2
| �D13|. (A14)

APPENDIX B: INTERACTION PARAMETERS IN Hint

We use the definition for the orbital-dependent Coulomb
repulsion as used in Ref. [28],

Jαβ |dx2-y2〉 |dz2〉 |dxy〉 |dyz〉 |dxz〉
|dx2-y2〉 U0 j2 j3 j1 j1

|dz2〉 j2 U0 j2 j4 j4

|dxy〉 j3 j2 U0 j1 j1

|dyz〉 j1 j4 j1 U0 j1

|dxz〉 j1 j4 j1 j1 U0.

The interaction parameters jn can be expressed in terms of
the Slater integrals [44] Fk as follows [28]:
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j1 = 3
49F2 + 20

9
1

49F4 (B1)

j2 = −2Javg + 3j1 (B2)

j3 = 6Javg − 5j1 (B3)

j4 = 4Javg − 3j1, (B4)

and where

U0 = F0 + 8

5
Javg, and Javg = 5

7

(F2 + F4)

14
, (B5)

with F4 = 5
8F2. In this work, we choose as independent

parameters U0 and Javg. The Coulomb repulsion matrix used
in the interaction Hamiltonian (5) can be easily constructed as
Uαβ = 3 U01 − 2Jαβ .

APPENDIX C: LOCAL COORDINATE SYSTEM

For a unit cell with the vanadium positions as follows (used
within our calculations with full-potential local orbital (FPLO)
basis),

�v1 =

⎛
⎜⎝

1/2

1/2

1/2

⎞
⎟⎠, �v2 =

⎛
⎜⎝

1/4

1/2

1/4

⎞
⎟⎠,

�v3 =

⎛
⎜⎝

1/2

1/4

1/4

⎞
⎟⎠, �v4 =

⎛
⎜⎝

1/4

1/4

1/2

⎞
⎟⎠. (C1)

we use the local coordinate systems

�x1 = 1√
2

⎛
⎜⎝

0

1

−1

⎞
⎟⎠, �y1 = 1√

6

⎛
⎜⎝

−2

1

1

⎞
⎟⎠, �z1 = 1√

3

⎛
⎜⎝

1

1

1

⎞
⎟⎠,

�x2 = 1√
2

⎛
⎜⎝

0

1

1

⎞
⎟⎠, �y2 = 1√

6

⎛
⎜⎝

2

1

−1

⎞
⎟⎠, �z2 = 1√

3

⎛
⎜⎝

−1

1

−1

⎞
⎟⎠,

�x3 = 1√
2

⎛
⎜⎝

0

−1

1

⎞
⎟⎠, �y3 = 1√

6

⎛
⎜⎝

−2

−1

−1

⎞
⎟⎠, �z3 = 1√

3

⎛
⎜⎝

1

−1

−1

⎞
⎟⎠,

�x4 = 1√
2

⎛
⎜⎝

0

−1

−1

⎞
⎟⎠, �y4 = 1√

6

⎛
⎜⎝

2

−1

1

⎞
⎟⎠, �z4 = 1√

3

⎛
⎜⎝

−1

−1

1

⎞
⎟⎠.

Within these local coordinate systems and for the vanadium
atoms at the given positions, we obtain on-site energies as given
in Table III, the most important hopping parameter between
nearest neighbors are given in Table IV.

TABLE III. On-site energies t1α,1β (in eV) on vanadium site No. 1,
the other three vanadium ions are symmetry equivalent.

V1 dx2-y2 V1 dz2 V1 dxy V1 dyz V1 dxz

V1 dx2-y2 1.5815 0 0 −1.2612 0
V1 dz2 0 0.2351 0 0 0
V1 dxy 0 0 1.5815 0 −1.2612
V1 dyz −1.2612 0 0 1.8316 0
V1 dxz 0 0 −1.2612 0 1.8316

APPENDIX D: DIRECTION OF
DZYALOSHINSKII-MORIYA VECTORS

For a primitive unit cell with the basis coordinates as in
Eq. (C1), we have for the direction of the DM vectors

d̂12 = 1√
2

⎛
⎝

−1
0
1

⎞
⎠, d̂13 = 1√

2

⎛
⎝

0
1

−1

⎞
⎠,

d̂14 = 1√
2

⎛
⎝

1
−1
0

⎞
⎠, d̂23 = 1√

2

⎛
⎝

−1
−1
0

⎞
⎠,

d̂24 = 1√
2

⎛
⎝

0
1
1

⎞
⎠, d̂34 = 1√

2

⎛
⎝

−1
0

−1

⎞
⎠. (D1)

This corresponds to the indirect case discussed in Ref. [19].

TABLE IV. Dominant hopping parameters t1α,jβ (in eV) between
nearest neighbors always with respect to vanadium site No. 1, the
other hopping parameters result from symmetry operations.

V2 dx2-y2 V2 dz2 V2 dxy V2 dyz V2 dxz

V1 dx2-y2 −0.1384 0.0710 −0.0916 −0.0088 0.1113
V1 dz2 0.0710 −0.0421 0.1229 −0.0869 −0.1506
V1 dxy −0.0916 0.1229 −0.2441 0.1113 0.1198
V1 dyz −0.0088 −0.0869 0.1113 −0.0348 0.0383
V1 dxz 0.1113 −0.1506 0.1198 0.0383 0.0093

V3 dx2-y2 V3 dz2 V3 dxy V3 dyz V3 dxz

V1 dx2-y2 −0.2970 −0.1419 0 0.1840 0
V1 dz2 −0.1419 −0.0421 0 0.1738 0
V1 dxy 0 0 −0.0855 0 −0.0731
V1 dyz 0.1840 0.1738 0 0.0314 0
V1 dxz 0 0 −0.0731 0 −0.0569

V4 dx2-y2 V4 dz2 V4 dxy V4 dyz V4 dxz

V1 dx2-y2 −0.1384 0.0710 0.0916 −0.0088 −0.1113
V1 dz2 0.0710 −0.0421 −0.1229 −0.0869 0.1506
V1 dxy 0.0916 −0.1229 −0.2441 −0.1113 0.1198
V1 dyz −0.0088 −0.0869 −0.1113 −0.0348 −0.0383
V1 dxz −0.1113 0.1506 0.1198 −0.0383 0.0093
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