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We have studied a disordered Nc × Nc plaquette Hubbard model on a two-dimensional square lattice at
half-filling using a coherent potential approximation (CPA) in combination with a single-site dynamical mean
field theory (DMFT) approach with a paramagnetic bath. Such a model conveniently interpolates between
the ionic Hubbard model at Nc = √

2 and the Anderson model at Nc = ∞ and enables the analysis of the
various limiting properties. We confirmed that within the CPA approach a band insulator behavior appears for
noninteracting strongly disordered systems with a small plaquette size Nc = 4, while the paramagnetic Anderson
insulator with nearly gapless density of states is present for large plaquette sizes Nc = 48. When the interaction U

is turned on in the strongly fluctuating random potential regions, the electrons on the low energy states push each
other into high energy states in DMFT in a paramagnetic bath and correlated metallic states with a quasiparticle
peak and Hubbard bands emerge, though a larger critical interaction U is needed to obtain this state from the
paramagnetic Anderson insulator (Nc = 48) than from the band insulator (Nc = 4). Finally, we observe a Mott
insulator behavior in the strong interaction U regions for both Nc = 4 and Nc = 48 independent of the disorder
strength. We discuss the application of this model to real materials.

DOI: 10.1103/PhysRevB.93.224203

I. INTRODUCTION

The subtle interplay among kinetic energy, electronic
correlation, a periodic ionic potential, and disorder in a
two-dimensional electronic system has been an important
research topic for several decades and is still under debate
[1,2]. The metal-insulator transition driven by only one energy
scale in half-filled two-dimensional systems seems to be
relatively well understood: (i) The on-site Coulomb interaction
opens a Mott gap, (ii) the periodic ionic potential opens
a band gap, and (iii) disorder induces an Anderson gap
[3–8]. However, this is not the case when interactions and
disorder compete with electronic itinerancy. There has been
a lot of progress on analytical and numerical approaches
employed to tackle theoretically the complexity of competing
interactions and disorder [9–20] but a full understanding of
this intricate problem is difficult to achieve. Moreover, the
existence of a rich variety of real systems where correlation
and disorder play an important role such as disordered
perovskite compounds, layered dichalcogenide 1T-TaS2 with
Cu intercalation, Sr2Ir1−xRhxO4 at low doping, nano-arrays
on two-dimensional surfaces [21–24], granular deposits of
transition metal-based systems [25,26], or two-dimensional
metal-oxide-semiconductor field-effect transistors [27,28] to
mention a few, calls for further analysis of this problem.

The ionic Hubbard model with a periodic on-site potential
has been intensively studied via various numerical methods
such as quantum Monte Carlo and cluster-dynamical mean
field theory approaches [29–33]. The results of these studies
differ mostly in details. Overall they describe metallic, bond
order, band insulating, and antiferromagnetic and paramag-
netic (PM) Mott insulating phases. On the other hand, in the
absence of Coulomb interactions, the presence of a random
disorder that breaks the periodicity of the on-site ionic potential

induces a different phenomenon; if the hopping strength of
the electrons on a three-dimensional noninteracting system is
larger than the fluctuations induced by the random disorder,
an Anderson insulator to metal transition appears, while the
electrons are always confined in a random potential in one-
and two-dimensional noninteracting systems, regardless of
the disorder strength [4]. More controversial is, however, the
behavior of the disordered system in the presence of Coulomb
interactions.

Here we investigate some aspects of this problem by
considering a disordered two-dimensional Nc × Nc plaquette
Hubbard model on the square lattice at half-filling. Note that
by considering effects of interactions and different plaquette
sizes this study goes beyond noninteracting Anderson model
and ionic Hubbard model studies. The ionic and Anderson
models in the noninteracting limit are recovered for Nc = √

2
and Nc = ∞, respectively. The ionic model with Nc = √

2
has a gapped density of states ρ(ω) while ρ(ω) is gapless
and shows a flat behavior around the Fermi level in a
coherent potential approximation (CPA) for Nc = 48. These
features are identified as an Anderson insulator behavior. We
have systematically studied in the framework of single-site
dynamical mean field theory (DMFT) with a paramagnetic
(PM) bath [34] how ρ(ω) and the quasiparticle weight Z

evolves either from a PM metal, Anderson insulator, or a band
insulator to a Mott insulator via tuning of the plaquette size
Nc, the Coulomb interaction U and the disorder strength �.

We will show that (i) at moderate values of U the system
presents a first-order PM metal to Mott insulator transition in
the small randomness regime with �/t = 1 and 2 for both
plaquette sizes Nc = 4 and 48, in qualitative agreement with
former DMFT results for the system without disorder [35].
(ii) The noninteracting system with Nc = 4 and 48 in the
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strongly fluctuating potential regions behaves as a band
insulator and an Anderson insulator, respectively, and the
electrons occupy the low energy states. When interactions are
turned on, we find that the electrons lying in low energy states
push each other into high energy states and the system becomes
a correlated metal with a quasiparticle peak and Hubbard bands
in the moderate interaction U region. The critical interaction
Ucrit where the insulator to correlated metal transition occurs is
larger in the Nc = 48 than in the Nc = 4 system. (iii) Finally,
in the large interaction region, the systems are Mott insulators
independent of disorder strength and plaquette size.

II. MODEL

We consider the following Hamiltonian:

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.)

−
∑
i,σ

(μ − εi)niσ + U
∑

i

ni↑ni↓, (1)

where t describes the electron hopping strength between
nearest neighbors, εi is the on-site energy driven by the random
potential at site i, U is the repulsive Coulomb interaction,
μ is the chemical potential which is given as μ = U

2 at

half-filling, and c
†
iσ and ciσ are the electron creation and

annihilation operators at site i with spin σ , respectively.
The on-site energies εi on the Nc × Nc plaquette sites are
sampled randomly from the interval [−�/t : �/t], where �

is the strength of disorder. The translational invariance of a
Nc × Nc plaquette for a given random disorder is conserved
in the system. We set the hopping strength t = 1 and the
temperature to T/t = 0.025 for all single-site dynamical mean
field theory calculations with a paramagnetic bath [34]. We
employ a continuous-time quantum Monte Carlo algorithm as
the DMFT impurity solver [36,37] in our own implementation
[38]. Disorder effects are evaluated with the coherent potential
approximation [16,39].

III. RESULTS

A. Noninteracting disordered systems

While a band insulator appears in the noninteracting ionic
model limit with Nc = √

2 at finite �/t , an Anderson insulator
is observed in a two-dimensional noninteracting disordered
system when Nc = ∞ at finite �/t , according to a standard
scaling theory of localization [4]. On the other hand, since
we are considering finite Nc × Nc plaquettes, we estimate that
the finite size of the plaquette may disturb a localization of
electrons in the two-dimensional noninteracting system with
weak disorder whenever the Anderson localization length
exceeds the size of plaquette. In order to investigate this
behavior, we have studied the noninteracting two-dimensional
case both in the weak and strong disordered regions as a
function of plaquette size Nc with the CPA method.

While it has been shown that algebraic averaging one-
particle quantities within the CPA approach fail to account
for the Anderson localization in the disordered system exactly
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FIG. 1. (a) Energies E/t − E(Nc = 4)/t per site as a function of
inverse plaquette size N−1

c at �/t = 1 and 8 for the noninteracting
systems, where E(Nc = 4)/t are the energies per site at Nc = 4 for
�/t = 1 and 8. The values of E/t − E(Nc = 4)/t hardly change
with decreasing N−1

c in the weakly disordered regime �/t = 1,
while they continuously decrease in the strongly disordered regime
�/t = 8. (b) and (c) The ρ

avg
Nc

(ω) at Nc = 48 and 4 for �/t = 1 and
8 obtained from the Padé approximation.

unlike the recently developed cluster typical medium theory
[8] or typical medium dynamical cluster approximation [7,16]
methods with geometrical average where the density of states
ρ(ω = 0) act as the order parameter and disappear at the Fermi
level, such a technique is still useful to investigate the trends
showed by the system in the different regions of parameter
space as we argue below. In the absence of a well-defined order
parameter in this approximation, a PM Anderson insulator
behavior can be identified in terms of a gapless flat density of
states near the Fermi level.

We first discuss the energies E of the noninteracting
disordered plaquette systems with increasing Nc for several
�/t obtained from E = ∫

dω ωρ
avg
Nc

(ω) where ρ
avg
Nc

(ω) is
the averaged density of states obtained within CPA at Nc.
Figure 1(a) shows the values of E/t − E(Nc = 4)/t as a
function of N−1

c for �/t = 1 and �/t = 8, where E(Nc = 4)
are the energies per site at Nc = 4 for �/t = 1 and 8. We
observe two different behaviors: (i) At small random disorder
(�/t = 1) E/t − E(Nc = 4)/t remains rather constant as a
function of system size Nc, while (ii) at large disorder values
�/t = 8, the energy continuously decreases with increasing
Nc. Our interpretation is that in case (i), energy states around
the Fermi level in a pure system would be only slightly
perturbed by impurities and since the Anderson localization
length is expected to be much larger than the plaquette size Nc,
the energy values are barely changed with increasing Nc. A
PM metallic state is then realized where the electrons around
the Fermi level are easily pushed into high energy states by
small random fluctuations. In this limit of weak disorder the
finite plaquette size impedes observing the Anderson insulator
expected in the noninteracting case in two dimensions at
all disorder strengths. However, for strong random disorder
(�/t = 8) [case (ii)] the band insulator at small system sizes
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Nc is manifestly different from the appearance of a PM
Anderson insulator at large system sizes.

In order to investigate the differences between cluster sizes
Nc = 48 and Nc = 4 in more detail, we also plot the ρ

avg
Nc

(ω)
at Nc = 48 and 4 for �/t = 1 and 8 in Figs. 1(b) and 1(c),
respectively. At Nc = 4, both for �/t = 1 and 8 the band
insulator is realized. At Nc = 48 the slightly perturbed van
Hove singularity at the Fermi level is still present in the weakly
fluctuating regime (�/t = 1) as it is the case for �/t = 0
showing a PM metal behavior, while in the strongly fluctuating
regime �/t = 8 the van Hove singularity is completely absent
and ρavg(ω) shows a flat behavior around the Fermi level, as
expected for a PM Anderson insulator [13].

B. Interacting disordered systems

We now proceed with the disordered interacting systems
with increasing plaquette size Nc. We employ the single-site
DMFT approach with temperature T/t = 0.025 for these
calculations [34]. The DMFT self-consistent equation is given
by

GNc,σ (iωn) =
∫

dε
ρ

avg
Nc

(ε)

iωn + ε − �Nc,σ (iωn)
, (2)

where ωn is the Matsubara frequency and the ρ
avg
Nc

(ε) is the
averaged density of states over the cluster of size Nc × Nc

obtained from the CPA approach.
We consider first the weakly fluctuating disordered regime.

Figures 2(a) and 2(b) show the quasiparticle weight Z =
(1 − Im(�(iω0))

ω0
)−1 as a function of U/t for systems with two

plaquette sizes Nc = 4 with ionic potential and Nc = 48 with
random disorder for �/t = 1 and �/t = 2, respectively. A
first-order PM metal to Mott insulator transition appears in all
cases and the coexistence regimes include both PM metal and
Mott insulator behavior. We also reproduce previous results for
the critical interaction Uc1/t = 9.4 (Uc2/t = 10.4) of former
single-site DMFT on the square lattice for �/t = 0 [35]. The
critical U values increase with disorder strength to Uc1/t =
9.6(Uc2/t = 11.1) for �/t = 1 and Uc1/t = 10.8(Uc2/t =
12.3) for �/t = 2 and are almost independent of the system
size with only tiny differences between the Z values for
Nc = 4 and Nc = 48. These results suggest that if a weak ionic
potential (as the case Nc = 4) or disorder (as the case Nc = 48)
are included in a pure DMFT system with moderate Coulomb
interaction, any effect driven by the ionic potential or by the
random disorder is strongly mitigated by the strong frustration
between the averaged local impurity and the PM bath in DMFT.
Therefore, even though in a noninteracting system a weak ionic
potential (Nc = 4) induces a gapped insulator (see Fig. 1) and,
random disorder (Nc = 48) induces an Anderson insulator, the
physics exhibited in all weakly interacting systems with small
�/t values would be in agreement with the single-site DMFT
results of a pure system without random disorder �/t . In
this weakly interacting and weakly disordered regime, strong
frustration effects between impurity sites and paramagnetic
bath lead to the metallic state.

Next, we discuss the behavior of the electronic correlated
system in the strongly fluctuating disordered regime where a
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FIG. 2. (a) and (b) The quasiparticle weight Z as a function
of U/t at Nc = 4 and 48 for �/t = 1 and 2, respectively. T/t=
0.025 for the single-site DMFT calculations. “M” and “I” stand for
paramagnetic metal and Mott insulator, respectively. First-order PM
metal to Mott insulator transitions, where the coexistence regimes
including both metal and insulator are clearly seen, are present in all
cases with small �/t . For both Nc = 4 and 48, the critical interactions
at �/t = 1 are Uc1/t = 9.6 and Uc2/t = 11.1; at �/t = 2 they
are Uc1/t = 10.8 Uc2/t = 12.3. The critical interactions Uc1 and
Uc2 are obtained by starting, respectively, from the insulating and
metallic solutions as the initial Weiss field. These critical interaction
values are comparable to the critical interactions Uc1/t = 9.4 and
Uc2/t = 10.4 obtained from single-site DMFT calculations in the
pure two-dimensional Hubbard model on the square lattice [35].
(c) The quasiparticle weight Z as a function of U/t at Nc = 4 and 48
for �/t = 6 and 8. The coexistence regions are not observed in all
cases with large �/t .
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band insulator with a relatively large gap (Nc = 4) and a PM
Anderson insulator (Nc = 48) with a continuous broadened
energy band around the Fermi level in the CPA approach are
realized in the noninteracting case. We first investigate the
behavior of the imaginary part of the self-energy Im �(iω0)
and the quasiparticle weight Z. Figure 2(c) shows Z as a
function of U/t for �/t = 6 and �/t = 8. Z decreases with
increasing U/t in all cases. However for Nc = 48 the Mott
insulator behavior (Z= 0) appears at larger U/t values than
for Nc = 4. Moreover, we have not observed a coexistence
regime, unlike the results observed for the first-order PM metal
to Mott insulator transition in the weakly random disordered
regime in Figs. 2(a) and 2(b).

In the following, since βG(τ = β/2) is approximately
equal to the energy density at the Fermi level (βG(τ =
β/2) ≈ ρ(ω = 0)), we would like to check by computing
βG(τ = β/2), whether the system shows a gapped or gapless
state at the Fermi level (ω = 0). In Fig. 3 βG(τ = β/2) is
plotted as a function of U/t at �/t = 8 for both system sizes
Nc = 4 and Nc = 48. The noninteracting system with Nc = 4
at �/t = 8 is a band insulator with an energy gap of 1.0 and,
as expected, βG(τ = β/2) indicates an insulating behavior at
U/t = 0. The gapped state remains up to U/t = 12, where
the electrons with up and down spin simultaneously occupy
the lowest energy sites. For U/t > 12, the electron with spin
up (or down) pushes the electron with spin down (or up) at the
same site to high energy levels due to the repulsive Coulomb
interaction and these “pushed up” electrons are freely moving
in the high energy levels. This creates a metallic state in
the moderately interacting regions between U/t = 14 and
27 by competition and cooperation of �/t and U/t . For
large U/t > 27, the system becomes a Mott insulator and
βG(τ = β/2) converges to zero.
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FIG. 3. βG(τ = β/2) as a function of U/t at �/t = 8 and
βt = 40 for Nc = 4 and 48. βG(τ = β/2) approximates ρ(ω = 0),
where ω = 0 is the Fermi level. The inset shows G(τ ) for Nc = 48
and �/t = 8 at three different interaction values U/t = 0, 11.8,
and 28.3.

The case of Nc = 48 is distinctly different. At the value
�/t = 8 a PM Anderson insulator may be expected for
the noninteracting system. As U/t increases, the value
βG(τ = β/2) = 0.187 remains unchanged up to U/t = 25.
This behavior suggests that the physical state corresponding
to a PM Anderson insulator remains up to this U/t value. In
the inset of Fig. 3 we have plotted G(τ ) for U/t = 0, 11.8,
and 28.3 in order to confirm this suspicion. We confirm that
G(τ ) for U/t = 0 and 11.8 fall on top of each other. This may
indicate that for strong disorder the PM Anderson insulator is
still preserved in the weakly interacting regime, even though
interactions are involved. Around U/t = 28.3, βG(τ = β/2)
shows a kink that hints to the presence of a correlated metallic
state due to the fact that interactions push up the electrons of
low states into high states. In the strongly correlated regime
U/t > 28.3 in Fig. 3, βG(τ = β/2) converges to zero which
indicates the Anderson-Mott insulator behavior.

In order to establish more clearly the various physical
phases, we explore ρ(ω) calculated by a stochastic analytical
continuation from G(iωn) [40]. Figures 4(a) and 4(b) show
ρ(ω) at �/t = 8 and various U/t for Nc = 4 and Nc = 48,
respectively. ρ(ω) for Nc = 4 [Fig. 4(a)] exhibits a band
insulator at U/t = 11.8 and a Fermi liquid behavior with a
quasiparticle peak at U/t = 26.8 and agrees with the results of
the density of states at the Fermi level estimate βG(τ = β/2) in
Fig. 3. ρ(ω) for Nc = 48 [Fig. 4(b)] shows flat behavior around
the Fermi level at U/t = 11.8 and this result is similar to that
at U/t = 0 [Fig. 1(b)] which hints to a PM Anderson insulator.
At U/t = 28.3, ρ(ω) shows a quasiparticle peak at the Fermi
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FIG. 4. (a) and (b) Present the density of states ρ(ω) of systems
with �/t = 8, U/t = 11.8, and 26.8 for Nc = 4 and U/t = 11.8
and 28.3 for Nc = 48 under the condition of ρ(ω) = ρ(−ω) by the
particle-hole symmetry, respectively.
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FIG. 5. Phase diagrams of the two-dimensional Nc × Nc pla-
quette disordered interacting systems at (a) Nc = 4 and (b) 48 via
the single-site dynamical mean field theory. The coexistence regions
including behaviors of both PM metal and Mott insulator are located
between the PM metal and the Mott insulator in the weakly disordered
regions. The critical interaction Uc is obtained by sweeping in steps
of 0.4 the value of the interaction U . The critical interactions Uc at
�/t = 0 are obtained from Ref. [35]. The error bars are given by the
size of the symbols. Note that the determination of the crossover line
between PM metal and Anderson insulator for the case of Nc = 48 in
(b) is much more difficult since the physical quantities that account
for an accurate phase boundary between Anderson insulator and PM
metal are absent within CPA. Therefore, we determine the correlated
metallic regimes, where the electrons in low energy states push each
other into high energy states, and phase boundary only in the strong
disorder region with �/t = 8 and Nc = 48 in (b), via estimation of
βG(τ = β/2) in Fig. 3.

level and a Hubbard band around ±ω/t = 11. The repulsive
Coulomb interaction pushes the electrons at low energies into
high energy states inducing an Anderson insulator to correlated
metal transition. This region is, however, very narrow.

IV. CONCLUSIONS

We summarize the results of this study by plotting the
phase diagrams for disordered interacting systems at Nc = 4
and 48 in Figs. 5(a) and 5(b), respectively. Even though the
single-site DMFT approach emphasizes local fluctuations in a
fully frustrated PM bath and thus overestimates the PM metal
regions in both cases, it still captures basic properties of the
systems considered such as band insulator, Anderson insulator,
correlated metal, and Mott insulator induced by random
disorder and electronic correlations. In more detail, the metal
to Mott insulator transition in the weak disordered regions are
closer to those of DMFT results without disorder because the
strong local fluctuations of the DMFT approximation, most
probably, overwhelm effects driven by disorder, while we
find sandwiched correlated metallic states between a band
insulator and a Mott insulator with Nc = 4 and between an
Anderson insulator and a Mott insulator with Nc = 48 at strong
disordered regimes. Such states can be understood by the fact
that electrons in the low energy states push each other into high
energy states and correlated metallic states with a quasiparticle
peak and Hubbard bands emerge.

Even though we considered a simple model, the emergence
of the various competing phases as a function of cluster size,
electron-electron interaction and disorder may provide further
hints, for instance, to the microscopic origin of the metal-
insulator transition observed in two-dimensional metal-oxide-
semiconductor field-effect transistors [27,28]. Furthermore,
confinement of Fermionic atoms in an optical lattice to realize
ionic-type Hubbard models is conceivable and could be guided
by our results for small Nc.

Finally, in view of the physics uncovered in this work for
the two-dimensional plaquette Hubbard model, a next step
would be, when very fast multisite impurity solvers become
available, to employ the more advanced recently developed
typical medium dynamical cluster approximation [7,8] which
can account for nonlocal spatial correlations and for the
Anderson localization length beyond the CPA in combination
with the DMFT approach.
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26, 274209 (2014).

[9] V. Dobrosavljevic and G. Kotliar, Mean Field Theory of the
Mott-Anderson Transition, Phys. Rev. Lett. 78, 3943 (1997).

[10] K. Byczuk, W. Hofstetter, and D. Vollhardt, Mott-Hubbard
Transition Versus Anderson Localization in Correlated Electron
Systems with Disorder, Phys. Rev. Lett. 94, 056404 (2005).

[11] K. Byczuk, W. Hofstetter, and D. Vollhardt, Competition
Between Anderson Localization and Antiferromagnetism in
Correlated Lattice Fermion Systems with Disorder, Phys. Rev.
Lett. 102, 146403 (2009).

[12] D. Heidarian and N. Trivedi, Inhomogeneous Metallic Phase
in a Disordered Mott Insulator in Two Dimensions, Phys. Rev.
Lett. 93, 126401 (2004).

[13] H. Shinaoka and M. Imada, Soft Hubbard Gaps in Disordered
Itinerant Models with Short-Range Interaction, Phys. Rev. Lett.
102, 016404 (2009).

[14] S. Chiesa, P. B. Chakraborty, and W. E. Pickett, and R. T.
Scalettar, Disorder-Induced Stabilization of the Pseudogap in
Strongly Correlated Systems, Phys. Rev. Lett. 101, 086401
(2008).

[15] W. S. Oliveira M. C. O. Aguiar, and V. Dobrosavljevic,
Mott-Anderson transition in disordered charge-transfer model:
Insights from typical medium theory, Phys. Rev. B 89, 165138
(2014).

[16] C. E. Ekuma, C. Moore, H. Terletska, K.-M. Tam, J. Moreno, M.
Jarrell, and N. S. Vidhyadhiraja, Finite-cluster typical medium
theory for disordered electronic systems, Phys. Rev. B 92,
014209 (2015).

[17] V. Dobrosavljevic, A. A. Pastor, and B. K. Nikolic, Typical
medium theory of Anderson localization: A local order param-
eter approach to strong-disorder effects, Europhys. Lett. 62, 76
(2003).

[18] M. E. Pezzoli, F. Becca, M. Fabrizio, and G. Santoro, Local
moments and magnetic order in the two-dimensional Anderson-
Mott transition, Phys. Rev. B 79, 033111 (2009).

[19] M. E. Pezzoli and F. Becca, Ground-state properties of the
disordered Hubbard model in two dimensions, Phys. Rev. B
81, 075106 (2010).

[20] H. Shinaoka and M. Imada, Single-Particle Excitations under
Coexisting Electron Correlation and Disorder: A Numerical
Study of the Anderson-Hubbard Model, J. Phys. Soc. Jpn. 78,
094708 (2009).

[21] K. W. Kim, J. S. Lee, T. W. Noh, S. R. Lee, and K. Char, Metal-
insulator transition in a disordered and correlated SrTi1−xRuxO3

system: Changes in transport properties, optical spectra, and
electronic structure, Phys. Rev. B 71, 125104 (2005).

[22] K. Maiti, R. S. Singh, and V. R. R. Medicherla, Evolution
of a band insulating phase from a correlated metallic phase,
Phys. Rev. B 76, 165128 (2007).

[23] E. Lahoud, O. Nganba Meetei, K. B. Chaska, and N. Trivedi,
Emergence of a Novel Pseudogap Metallic State in a Disordered
2D Mott Insulator, Phys. Rev. Lett. 112, 206402 (2014).

[24] S. Chikara, D. Haskel, J.-H. Kim, H.-S Kim, C.-C Chen,
G. Fabbris, L. S. V. Viega, N. M. Souza-Neto, J. Terzic,

K. Butrouna, G. Cao, M. J. Han, and M. van Veenendaal,
Sr2Ir1−xRhxO4(x < 0.5): An inhomogeneous jeff = 1

2 Hubbard
system, Phys. Rev. B 92, 081114(R) (2015).

[25] K. Muthukumar, H. O. Jeschke, R. Valentı́, E. Begun, J.
Schwenk, F. Porrati, and M. Huth, Spontaneous dissociation
of Co2(CO)8 and autocatalytic growth of Co on SiO2: A
combined experimental and theoretical investigation, Beilstein
J. Nanotech. 3, 546 (2012).

[26] K. Muthukumar, R. Valentı́, and H. O. Jeschke, Simulation
of structural and electronic properties of amorphous tungsten
oxycarbides, New J. Phys. 14, 113028 (2012).

[27] S. V. Kravchenko, D. Simonian, M. P. Sarachik, W. Mason, and
J. E. Furneaux, Electric Field Scaling at a B = 0 Metal-Insulator
Transition in Two Dimensions, Phys. Rev. Lett. 77, 4938
(1996).

[28] Ping V. Lin and Dragana Popovic, Critical Behavior of a Strongly
Disordered 2D Electron System: The Cases of Long-Range and
Screened Coulomb Interactions, Phys. Rev. Lett. 114, 166401
(2015).

[29] S. S. Kancharla and E. Dagotto, Correlated Insulated Phase
Suggests Bond Order Between Band and Mott Insulators in
Two Dimensions, Phys. Rev. Lett. 98, 016402 (2007).

[30] N. Paris, K. Bouadim, F. Hebert, G. G. Batrouni, and R. T.
Scalettar, Quantum Monte Carlo Study of an Interaction-Driven
Band-Insulator-to-Metal Transition, Phys. Rev. Lett. 98, 046403
(2007).

[31] A. Go and G. S. Jeon, Phase transitions and spectral properties
of the ionic Hubbard model in one dimension, Phys. Rev. B 84,
195102 (2011).

[32] V. Tugushev, S. Caprara, and M. Avignon, Spin-density-wave
transition in systems with chemical dimerization, Phys. Rev. B
54, 5466 (1996).

[33] S. Caprara, M. Avignon, and O. Navarro, Spin-density-wave
transition in systems with chemical dimerization, Phys. Rev. B
61, 15667 (2000).

[34] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[35] H. Park, K. Haule, and G. Kotliar, Cluster Dynamical Mean Field
Theory of the Mott Transition, Phys. Rev. Lett. 101, 186403
(2008).

[36] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Continuous-
time quantum Monte Carlo method for fermions, Phys. Rev. B
72, 035122 (2005).

[37] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Continuous-time Monte Carlo methods
for quantum impurity models, Rev. Mod. Phys. 83, 349
(2011).

[38] H. Lee, Y.-Z. Zhang, H. O. Jeschke, and R. Valentı́, Competition
between band and Mott insulator in the bilayer Hubbard model:
A dynamical cluster approximation study, Phys. Rev. B 89,
035139 (2014).

[39] P. Soven, Coherent-potential model of substitutional disordered
alloys, Phys. Rev. 156, 809 (1967).

[40] K. S. D. Beach, Identifying the maximum entropy method as
a special limit of stochastic analytic continuation, arXiv:cond-
mat/0403055.

224203-6

http://dx.doi.org/10.1103/PhysRevB.89.081107
http://dx.doi.org/10.1103/PhysRevB.89.081107
http://dx.doi.org/10.1103/PhysRevB.89.081107
http://dx.doi.org/10.1103/PhysRevB.89.081107
http://dx.doi.org/10.1088/0953-8984/26/27/274209
http://dx.doi.org/10.1088/0953-8984/26/27/274209
http://dx.doi.org/10.1088/0953-8984/26/27/274209
http://dx.doi.org/10.1088/0953-8984/26/27/274209
http://dx.doi.org/10.1103/PhysRevLett.78.3943
http://dx.doi.org/10.1103/PhysRevLett.78.3943
http://dx.doi.org/10.1103/PhysRevLett.78.3943
http://dx.doi.org/10.1103/PhysRevLett.78.3943
http://dx.doi.org/10.1103/PhysRevLett.94.056404
http://dx.doi.org/10.1103/PhysRevLett.94.056404
http://dx.doi.org/10.1103/PhysRevLett.94.056404
http://dx.doi.org/10.1103/PhysRevLett.94.056404
http://dx.doi.org/10.1103/PhysRevLett.102.146403
http://dx.doi.org/10.1103/PhysRevLett.102.146403
http://dx.doi.org/10.1103/PhysRevLett.102.146403
http://dx.doi.org/10.1103/PhysRevLett.102.146403
http://dx.doi.org/10.1103/PhysRevLett.93.126401
http://dx.doi.org/10.1103/PhysRevLett.93.126401
http://dx.doi.org/10.1103/PhysRevLett.93.126401
http://dx.doi.org/10.1103/PhysRevLett.93.126401
http://dx.doi.org/10.1103/PhysRevLett.102.016404
http://dx.doi.org/10.1103/PhysRevLett.102.016404
http://dx.doi.org/10.1103/PhysRevLett.102.016404
http://dx.doi.org/10.1103/PhysRevLett.102.016404
http://dx.doi.org/10.1103/PhysRevLett.101.086401
http://dx.doi.org/10.1103/PhysRevLett.101.086401
http://dx.doi.org/10.1103/PhysRevLett.101.086401
http://dx.doi.org/10.1103/PhysRevLett.101.086401
http://dx.doi.org/10.1103/PhysRevB.89.165138
http://dx.doi.org/10.1103/PhysRevB.89.165138
http://dx.doi.org/10.1103/PhysRevB.89.165138
http://dx.doi.org/10.1103/PhysRevB.89.165138
http://dx.doi.org/10.1103/PhysRevB.92.014209
http://dx.doi.org/10.1103/PhysRevB.92.014209
http://dx.doi.org/10.1103/PhysRevB.92.014209
http://dx.doi.org/10.1103/PhysRevB.92.014209
http://dx.doi.org/10.1209/epl/i2003-00364-5
http://dx.doi.org/10.1209/epl/i2003-00364-5
http://dx.doi.org/10.1209/epl/i2003-00364-5
http://dx.doi.org/10.1209/epl/i2003-00364-5
http://dx.doi.org/10.1103/PhysRevB.79.033111
http://dx.doi.org/10.1103/PhysRevB.79.033111
http://dx.doi.org/10.1103/PhysRevB.79.033111
http://dx.doi.org/10.1103/PhysRevB.79.033111
http://dx.doi.org/10.1103/PhysRevB.81.075106
http://dx.doi.org/10.1103/PhysRevB.81.075106
http://dx.doi.org/10.1103/PhysRevB.81.075106
http://dx.doi.org/10.1103/PhysRevB.81.075106
http://dx.doi.org/10.1143/JPSJ.78.094708
http://dx.doi.org/10.1143/JPSJ.78.094708
http://dx.doi.org/10.1143/JPSJ.78.094708
http://dx.doi.org/10.1143/JPSJ.78.094708
http://dx.doi.org/10.1103/PhysRevB.71.125104
http://dx.doi.org/10.1103/PhysRevB.71.125104
http://dx.doi.org/10.1103/PhysRevB.71.125104
http://dx.doi.org/10.1103/PhysRevB.71.125104
http://dx.doi.org/10.1103/PhysRevB.76.165128
http://dx.doi.org/10.1103/PhysRevB.76.165128
http://dx.doi.org/10.1103/PhysRevB.76.165128
http://dx.doi.org/10.1103/PhysRevB.76.165128
http://dx.doi.org/10.1103/PhysRevLett.112.206402
http://dx.doi.org/10.1103/PhysRevLett.112.206402
http://dx.doi.org/10.1103/PhysRevLett.112.206402
http://dx.doi.org/10.1103/PhysRevLett.112.206402
http://dx.doi.org/10.1103/PhysRevB.92.081114
http://dx.doi.org/10.1103/PhysRevB.92.081114
http://dx.doi.org/10.1103/PhysRevB.92.081114
http://dx.doi.org/10.1103/PhysRevB.92.081114
http://dx.doi.org/10.3762/bjnano.3.63
http://dx.doi.org/10.3762/bjnano.3.63
http://dx.doi.org/10.3762/bjnano.3.63
http://dx.doi.org/10.3762/bjnano.3.63
http://dx.doi.org/10.1088/1367-2630/14/11/113028
http://dx.doi.org/10.1088/1367-2630/14/11/113028
http://dx.doi.org/10.1088/1367-2630/14/11/113028
http://dx.doi.org/10.1088/1367-2630/14/11/113028
http://dx.doi.org/10.1103/PhysRevLett.77.4938
http://dx.doi.org/10.1103/PhysRevLett.77.4938
http://dx.doi.org/10.1103/PhysRevLett.77.4938
http://dx.doi.org/10.1103/PhysRevLett.77.4938
http://dx.doi.org/10.1103/PhysRevLett.114.166401
http://dx.doi.org/10.1103/PhysRevLett.114.166401
http://dx.doi.org/10.1103/PhysRevLett.114.166401
http://dx.doi.org/10.1103/PhysRevLett.114.166401
http://dx.doi.org/10.1103/PhysRevLett.98.016402
http://dx.doi.org/10.1103/PhysRevLett.98.016402
http://dx.doi.org/10.1103/PhysRevLett.98.016402
http://dx.doi.org/10.1103/PhysRevLett.98.016402
http://dx.doi.org/10.1103/PhysRevLett.98.046403
http://dx.doi.org/10.1103/PhysRevLett.98.046403
http://dx.doi.org/10.1103/PhysRevLett.98.046403
http://dx.doi.org/10.1103/PhysRevLett.98.046403
http://dx.doi.org/10.1103/PhysRevB.84.195102
http://dx.doi.org/10.1103/PhysRevB.84.195102
http://dx.doi.org/10.1103/PhysRevB.84.195102
http://dx.doi.org/10.1103/PhysRevB.84.195102
http://dx.doi.org/10.1103/PhysRevB.54.5466
http://dx.doi.org/10.1103/PhysRevB.54.5466
http://dx.doi.org/10.1103/PhysRevB.54.5466
http://dx.doi.org/10.1103/PhysRevB.54.5466
http://dx.doi.org/10.1103/PhysRevB.61.15667
http://dx.doi.org/10.1103/PhysRevB.61.15667
http://dx.doi.org/10.1103/PhysRevB.61.15667
http://dx.doi.org/10.1103/PhysRevB.61.15667
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevB.89.035139
http://dx.doi.org/10.1103/PhysRevB.89.035139
http://dx.doi.org/10.1103/PhysRevB.89.035139
http://dx.doi.org/10.1103/PhysRevB.89.035139
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.809
http://arxiv.org/abs/arXiv:cond-mat/0403055



