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I. DENSITY FUNCTIONAL THEORY CALCULATIONS

A. Prediction of high pressure structures

We predict high pressure structures using the Vienna ab initio simulation package (vasp) implementation [1, 2] of
DFT within the generalized gradient approximation (GGA) [3]. We base our calculations on the structures of Krause
et al. [4] for kapellasite, and of Malcherek et al. [5] for haydeeite. We obtain a P = 0 GPa relaxed structure by fixing
the experimental volume and relaxing all lattice and internal structural parameters. The DFT calculated pressure at
this volume, due to the well known underbinding of the GGA exchange correlation functional, is Poffset = 1.54 GPa
for kapellasite and Poffset = 0.93 GPa for haydeeite. We then proceed to reduce the volume in steps of 3%, relaxing
all lattice and internal structural parameters. The physical pressure values are obtained by subtracting Poffset from
the calculated pressure at each reduced volume.

B. Determination of Hamiltonian parameters

The calculations were performed with the full potential local orbital (FPLO) basis set [6] and the GGA functional [3].
Total energies for sets of different spin configurations were calculated with GGA+U using the atomic limit double
counting correction [7], and we employed orthogonal projection of the Cu 3d densities. We would like to note that the
results are very sensitive to (i) the choice of exchange correlation functional (LDA or GGA), (ii) the double counting
correction in the LDA+U approach, and (iii) the choice of projection scheme for the Cu 3d orbitals in the FPLO basis.
In Ref. [8] the calculations were performed with the LDA exchange correlation functional and the around mean field
double counting correction was chosen for the LDA+U functional. With this setup the ferromagnetic contribution in
J1 for kapellasite is strongly suppressed, however, with the same setup the results of our two groups agree [9].

We fix JH = 1 eV and vary U . Tables I and II show the result of fitting to 9 spin configurations of an orthorhombic√
2 ×
√

2 × 1 supercell with P 1 space group, containing 6 inequivalent copper ions. A 6 × 6 × 6 k mesh was used
after confirming that an 8 × 8 × 8 k mesh yields identical results. The error given in Tables I and II reflects the
statistical error of fitting 9 energies to 5 unknowns (reference energy and four exchange couplings). We have also
performed calculations with 2 × 2 × 1 supercells of kapellasite and haydeeite yielding 46 distinct total energies from
12 inequivalent copper ions. The two approaches proved to be precisely equivalent so that the computationally less
demanding smaller supercell was chosen for the final computations. Very small fitting errors indicate that the Cu2+

spins are well localized and their interaction is very well described by the chosen Heisenberg model.
The two significant exchange couplings, J1 and Jd, obtained in this way, are shown visually in Fig. 1 for kapellasite

and in Fig. 2 for haydeeite. Evolution of couplings with pressure, and with onsite interaction U is very smooth. The
ferromagnetic nearest neighbour coupling in the kagome plane is larger in haydeeite compared to kapellasite while
the antiferromagnetic exchange Jd coupling Cu2+ ions across the hexagons of the kagome lattice is slightly larger in
kapellasite than in haydeeite. J1 varies more strongly with pressure than Jd, reflecting its sensitivity to the bond
angle. Increasing the onsite interaction U from U = 6 eV to U = 7 eV and U = 8 eV leads to a smooth decrease in
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absolute value of both exchange couplings. The other two exchange couplings are not shown in the figure; J2 is very
small at ∼ 0.5 K and insensitive to pressure, while J4 is nearly exactly zero within computational error.

TABLE I: Kapellasite exchange couplings. All structures except the one marked “exp.” are predicted as described in the
text.

P (GPa) J1 J2 J4 Jd

GGA+U, U = 8 eV, JH = 1 eV
0 (exp.) -12.59(3) -0.55(3) -0.17(3) 16.16(4)

0 -15.27(2) -0.55(2) -0.08(3) 16.40(4)
1.6 -20.78(2) -0.50(2) -0.04(3) 17.57(4)
3.4 -26.41(2) -0.48(2) 0.01(3) 18.87(4)
5.5 -32.02(2) -0.49(2) 0.04(3) 20.28(4)
7.9 -37.48(2) -0.53(2) 0.07(2) 21.80(3)

GGA+U, U = 7 eV, JH = 1 eV
0 -16.65(4) -0.56(4) -0.02(4) 19.89(6)

1.6 -22.94(4) -0.50(4) 0.03(4) 21.33(6)
3.4 -29.37(3) -0.48(3) 0.09(4) 22.95(5)
5.5 -35.79(3) -0.48(3) 0.13(4) 24.71(5)
7.9 -42.06(3) -0.52(3) 0.16(4) 26.58(5)

GGA+U, U = 6 eV, JH = 1 eV
0 -18.05(6) -0.53(6) 0.10(7) 24.00(9)

1.6 -25.22(6) -0.46(6) 0.17(6) 25.80(9)
3.4 -32.57(5) -0.42(5) 0.23(6) 27.81(9)
5.5 -39.93(5) -0.43(5) 0.28(6) 29.98(8)
7.9 -47.13(6) -0.46(6) 0.28(7) 32.33(10)

TABLE II: Haydeeite exchange couplings. All structures except the one marked “exp.” are predicted as described in the text.

P (GPa) J1 J2 J4 Jd

GGA+U, U = 8 eV, JH = 1 eV
0 (exp.) -21.27(2) -0.57(2) -0.13(3) 12.72(4)

0 -28.39(2) -0.55(2) -0.02(3) 14.06(4)
1.8 -33.94(2) -0.51(2) 0.03(2) 15.42(3)
3.5 -39.50(2) -0.50(2) 0.08(2) 16.97(3)
5.6 -45.07(2) -0.51(2) 0.12(2) 18.71(3)
7.9 -50.50(3) -0.52(3) 0.08(3) 20.65(4)

GGA+U, U = 7 eV, JH = 1 eV
0 -31.23(3) -0.57(3) 0.05(4) 16.60(5)

1.8 -37.57(3) -0.53(3) 0.11(3) 18.26(5)
3.5 -43.92(3) -0.52(3) 0.16(3) 20.14(4)
5.6 -50.30(3) -0.53(3) 0.21(3) 22.25(4)
7.9 -56.56(2) -0.57(2) 0.25(3) 24.59(4)

GGA+U, U = 6 eV, JH = 1 eV
0 -34.15(5) -0.57(5) 0.17(5) 19.52(7)

1.8 -41.38(6) -0.52(6) 0.25(7) 21.52(9)
3.5 -48.64(4) -0.50(4) 0.31(5) 23.81(6)
5.6 -55.94(4) -0.52(4) 0.36(4) 26.36(6)
7.9 -63.13(4) -0.57(4) 0.40(4) 29.18(6)
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TABLE III: Hypothetical Cd-kapellasite exchange couplings. All structures are predicted as described in the text.

P (GPa) J1 J2 J4 Jd

GGA+U, U = 8 eV, JH = 1 eV
0.6 36.96(5) -0.10(3) -0.46(5) 7.15(7)
3.2 23.82(4) -0.09(2) -0.33(5) 8.04(6)
4.8 17.13(4) -0.08(2) -0.27(4) 8.55(6)
7.6 6.98(3) -0.08(2) -0.20(4) 9.38(5)
9.8 0.25(3) -0.08(2) -0.15(4) 9.99(5)
13.6 -9.95(3) -0.08(2) -0.11(3) 11.00(5)
20 -23.31(3) -0.09(2) -0.11(3) 12.54(4)

GGA+U, U = 7 eV, JH = 1 eV
0.6 42.37(7) -0.10(4) -0.46(8) 8.77(11)
3.2 27.39(6) -0.08(3) -0.31(7) 9.90(9)
4.8 19.74(5) -0.08(3) -0.25(6) 10.53(9)
7.6 8.10(5) -0.07(3) -0.15(6) 11.58(8)
9.8 0.37(5) -0.07(3) -0.11(5) 12.34(7)
13.6 -11.39(4) -0.08(2) -0.06(5) 13.62(7)
20 -26.83(4) -0.09(2) -0.08(4) 15.53(6)

GGA+U, U = 7 eV, JH = 1 eV
0.6 48.46(10) -0.09(5) -0.41(11) 10.69(16)
3.2 31.40(9) -0.074(5) -0.23(10) 12.13(14)
4.8 22.67(7) -0.07(4) -0.13(8) 12.93(11)
9.8 0.42(7) -0.06(4) 0.00(8) 15.20(11)
13.6 -13.14(7) -0.07(4) 0.05(8) 16.78(11)
20 -31.05(6) -0.08(3) -0.01(6) 19.14(10)

II. ORIGIN OF EXCHANGE PARAMETERS

Cu2+ is usually a textbook case for the Hubbard model. Cu electrons are strongly localized with hopping t � U,
and the standard superexchange perturbation theory works very well. Most experimental papers interpret haydeeite
(HD) and kapellasite (KL) in terms of this theory, specifically, in terms of the Goodenough-Kanamori-Anderson
rules, which stipulate that at the bond angle φ = 90°, the superexchange process Cu-O-Cu is completely suppressed
and the only remaining interaction is ferromagnetic and generated by the Hund’s rule coupling on oxygen (the fact
that in these materials the angle is actually rather far from 90◦ is usually swept under the rug). This coupling is
proportional to t4pdJO/∆

4
pd (where tpd is the hopping and ∆pd is the charge transfer energy). Note that the usual

antiferromagnetic superexchange is proportional to t4pd/∆
2
pdU, which is larger by a factor ∆2

pd/UJO for ∆2
pd/UJO > 1.

Thus, near-cancellation of the assisted hopping via different O orbitals is a necessary requirement for ferromagnetic
superexchange. There are two ways to look at this situation. One can assume a coordinate system where x̃ and ỹ
are along the Cu-O and O-Cu bonds in the trimer, in which case the “left” Cu electron can only hop to the O px̃
orbital, and the “right” one only to the O pỹ one. Since these are mutually orthogonal, there is no net assisted Cu-Cu
hopping. Another way is to assume the system where x is along the Cu-Cu bond and y is perpendicular to it. In
this case, there is assisted hopping via each of the orbitals, but the two contributions are equal in magnitude and
opposite in sign, so they cancel out. As the angle becomes larger than 90◦, the Cu-px-Cu hopping becomes larger
than Cu-py-Cu one and cancellation becomes incomplete. In typical transition metal oxides if the angle is larger than
≈ 95° this effect is significant.

However, our calculations as well as the experimental results, indicate that the crossover from the antiferromagnetic
to ferromagnetic J1 in these materials occurs at the bond angle of 108°−109°. Moreover, as discussed in Ref. [8] and
confirmed in our calculations, shifting H away from O makes the interaction at a given angle less ferromagnetic,
suggesting an important role of H orbitals.

In the literature one can find two seemingly contradicting predictions regarding adding to the standard 4-orbitals
(two Cu d and two O d) another bridging orbital. On one hand, Geertsma and Khomskii considered a φ = 90° case
[10] when O p orbitals are bound to another orbital, such as in our case hydrogen, in their case germanium, or, in
the simplest case with the same symmetry, to O s. In that case the py orbital couples with H, but px does not. As
a result, the cancellation described above is incomplete and there is some residual antiferromagnetic superexchange,
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FIG. 1: Exchange couplings of kapellasite. The two significant Heisenberg Hamiltonian parameters for kapellasite are given
as function of applied pressure and for three different values of the onsite interaction strength U .

which can either overcome the weak ferromagnetic coupling, as in Ref. [10], or considerably reduce it. Furthermore,
this theory predicts that at φ = 90° moving H toward O must enhance the tendency to antiferromagnetism.

On the other hand, Hay et al. [11] considered a similar problem (using O s and the additional bridging orbital,
which is not important) as a function of φ and concluded that the full cancellation between all Cu-O-Cu hopping
processes occurs not at φ = 90°, but at a larger φc [for the Cu2(OH)2Cl2−4 radical they found numerically φc ≈ 108°,
but the actual value must be system-dependent, and, in particularly, may be smaller for our materials]. This is not
in contradiction with Ref. [10]; indeed Hay et al. explicitly emphasize that it is only at φc that the antiferromagnetic
exchange completely cancels out; for both larger and smaller angles there is residual antiferromagnetic coupling, in
accord with the Geertsma and Khomskii theory. However, at φ = 90° the Cu-py-Cu hopping is the stronger the
shorter the O-H bond is, and to restore the balance one needs to enhance Cu-px-Cu hopping by flattening φ. So, at
least qualitatively (quantitative analysis is underway and will be published elsewhere), Hay et al. theory seems to
explain why the large bond angles in HD and KL nontheless generate net ferromagnetic coupling.

Yet another paradox manifests itself in comparing the Jd values for HD and KL. It is generally believed that this
exchange is provided by hopping from Cu (via O) to Zn or Mg. However, as discussed below, this may be not the
case. Indeed, Cu-(Zn,Mg) hopping can proceed either to the s orbitals of Zn or Mg, or to d orbitals of Zn. The 5s
orbitals of Zn are considerably more diffuse than the 3s orbitals of Mg, and much closer to the Fermi level. Since Jd
in the simple Hubbard theory should be proportional to the square of the overlap integrals and inversely proportional
to the energy separation, we estimate that Jd in HD should be nearly an order of magnitude smaller than in KL,
even without taking into account an additional hopping channel via 3d orbitals of Zn. In the experiment, as well as
in the calculations, the difference is less than a factor of two. A closer look, however, shows that this naive reasoning
doesn’t apply here. Indeed, an inspection of the crystal structure shows that the Cu-O2-(Zn,Mg)-O2-Cu multimer is
planar, as shown in Fig. 4. The bond angle is about 100° considerably closer to 90° that the Cu-O-Cu angle. Had it
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FIG. 2: Exchange couplings of haydeeite. The two significant Heisenberg Hamiltonian parameters for haydeeite are given
as function of applied pressure and for three different values of the onsite interaction strength U .

been exactly 90°, the hopping from the x2 − y2 Cu orbital, where the actual hole resides, to the (Zn,Mg) s orbital
would be zero by parity (see Fig. 4(b)). For 100°, it should be strongly suppressed. For Zn, there is an additional
option of hopping via 3d orbitals. However, as Fig. 4(c) shows, dpσ − pdσ hopping is again forbidden by symmetry.
The dpσ − pdπ hopping is allowed, but the two oxygens are antiphase and cancel each other (see Fig. 4(d)).

Keeping in mind the H effect, one may conjecture that 100° may be rather close to full cancellation. Our numerical
results provide for the effective (after integrating out O) Cu(d)−Zn(d) hopping a value of about τ ≈ 40 meV, which
is nearly an order of magnitude smaller that for the Cu-Cu one. Thus, we conclude that the mechanism providing
for sizeable Jd in HD and KL, as compared to herbertsmithite, is more complex than it has been anticipated so
far, and does not reduce to just providing a hopping path via a central atom. This makes it very difficult, if at
all possible, to anticipate the trends in the exchange parameters after material modifications and makes ab initio
calculations indispensable. As a last remark, it should be mentioned that for a systematic investigation of the effects
of, for instance, substitution of the central atom, experimental estimates are not necessarily superior to the theoretical
estimates, due to the problems related to site disorder in the samples.
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FIG. 4: Orbitals and hopping pathways.
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