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We propose that a combination of the semiclassical approximation with Monte Carlo simulations can be an
efficient and reliable impurity solver for dynamical mean field theory equations and their cluster extensions with
large cluster sizes. In order to show the reliability of the method, we consider two test cases: (i) the single-band
Hubbard model within the dynamical cluster approximation with four- and eight-site clusters and (ii) the
anisotropic two-orbital Hubbard model with orbitals of different bandwidth within the single-site dynamical
mean field theory. We compare the critical interaction Uc/t with those obtained from solving the dynamical mean
field equations with the continuous-time and Hirsch-Fye quantum Monte Carlo approaches. In both test cases we
observe reasonable values of the metal-insulator critical interaction strength Uc/t and the nature of Mott physics
in the self-energy behavior. While some details of the spectral functions cannot be captured by the semiclassical
approximation due to the freezing of dynamical fluctuations, the main features are reproduced by the approach.
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I. INTRODUCTION

The single-site dynamical mean field theory (DMFT) ap-
proach has been extensively employed to explore the properties
of the Hubbard model and, in general, of strongly correlated
materials.1–3 Though the metal–Mott insulator transition can
be successfully accounted for within the DMFT approximation
where dynamical fluctuations alone are emphasized, inter-
esting physical phenomena such as spin-density waves and
superconductivity cannot be properly described due to the
absence of spatial fluctuations. Cluster extensions of DMFT
like cellular-dynamical mean field theory3 and the dynamical
cluster approximation4,5 (DCA) can take into account the
intersite spatial fluctuations within the size of the cluster in
addition to the dynamical fluctuations. For example, cluster
extensions of DMFT with four-site clusters in combination
with the continuous-time (CT) quantum Monte Carlo (QMC)
method or exact diagonalization (ED) can partly capture the
physics of the Fermi liquid (FL), non-FL (or pseudogap),
Mott insulator, and superconductivity on an equal footing.6–12

However, due to the computational expense of the CT QMC
method and ED, the system size is still limited to only small
clusters and not all physical properties can be equally precisely
studied. In particular, the hybridization expansion CT QMC
approach is able to treat small cluster sizes up to only Nc = 4
due to an exponential increase of the local Hilbert space
with Nc.13,14 The ED approach encounters a similar problem.
Even though other impurity solvers such as the interaction
expansion CT QMC approach are applicable to large cluster
systems, the computational expense is proportional to the
square of three quantities: the interaction strength U , the
inverse of the temperature T , and the number of cluster
sites Nc.15–17 The Hirsch-Fye (HF) QMC (Refs. 18 and 19)
impurity solver shows a computational expense proportional
to N3

c L3, where L is the number of slices in the imaginary time
(temperature). More recently, Khatami et al.20 proposed the
determinantal QMC (Ref. 21) as a new impurity solver where
the computational expense has an (Nc + NcNa)3L dependence

with Na being the number of bath sites connected to each
cluster site. This is, though, a Hamiltonian-based impurity
solver that requires an explicit form of a cluster Anderson
impurity model to calculate the self-energy. In contrast, the
CT QMC method, the Hirsch-Fye QMC impurity solver,
and the method under discussion in the present work, the
semiclassical approximation (SCA), are action-based impurity
solvers. Summarizing and in view of the above, a fast and
reliable impurity solver for DMFT calculations and its cluster
extensions with large cluster sizes is still highly desirable.

The SCA has been proposed as an impurity solver for
DMFT and its cluster extensions.22–24 (i) This impurity solver
is fast since the computational expense depends only on
calculation time at each Matsubara frequency of the inverse
of a matrix with dimensions Nc × Nc (for a cluster with Nc

sites) or Lc × Lc (for a single site with Lc orbitals), where Lc

is the number of orbitals. (ii) While it cannot properly account
for Fermi-liquid behavior in the weak-coupling limit22 and,
in general, it is not adequate at low temperatures due to the
freezing of quantum fluctuations in the method, it is especially
suited for large interaction strength and multisites where, for
example, the powerful interaction expansion CT QMC method
is very costly. (iii) It provides self-energy information directly
on the real frequency axis. This avoids the uncertainty from
analytic continuation that has to be done in various QMC
approaches.25 The previously used SCA approach22–24 was
limited, though, to considering small cluster sizes of Nc = 4
due to the difficulty of the multidimensional integrations.

In the present work, we propose to combine the SCA
approach with the Monte Carlo (MC) method. The latter is
used to evaluate the multidimensional integrals. We apply
our scheme to two test cases: (i) the one-orbital Hubbard
model on the square lattice at half filling within the DCA
with cluster sizes Nc = 4 and 8 and (ii) the anisotropic
two-orbital Hubbard model with different bandwidths on the
Bethe lattice at half filling within single-site DMFT. We
present the density of states, momentum-dependent spectral
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functions, and momentum-dependent self-energy as a function
of real frequency ω. For case (i) we find that even though the
Fermi-liquid behavior is not obtained,26 the critical on-site
Coulomb interaction Uc/t for the metal-insulator transition
calculated by our SCA approach for both cluster sizes
shows reasonable agreement with the value obtained from
the CT QMC method, which should be numerically exact. In
particular, we find that the behaviors of the density of states at
the Fermi level in each momentum sector obtained from both
SCA and CT QMC approaches are quantitatively consistent
with each other. For case (ii) we also find reasonable agreement
of Uc/t obtained from the SCA and HF QMC methods. The
orbital-selective phase transition is also correctly detected.
However, we observe that if the bandwidth difference between
narrow and wide orbitals is large, a causality problem appears
in the SCA results.

The paper is organized as follows. In Sec. II we present the
general formalism of the semiclassical approximation and its
application to cases (i) and (ii). In Sec. III we discuss our SCA
calculations and compare some results with both CT QMC and
HF QMC methods. We summarize our findings in Sec. IV.

II. SEMICLASSICAL APPROXIMATION

In this section we will review the formalism of the SCA
approach22–24 adapted to the two test cases considered in this
work: the eight-site DCA and two-orbital DMFT systems with
paramagnetic solutions.

A. General formalism

The partition function can be written as

Z =
∫

D[c†c]e−(S0+Sint), (1)

where

Sint = U

∫ β

0
dτ

∑
i

ni↑(τ )ni↓(τ ) (2)

and

S0 = −
∫ β

0
dτ

∫ β

0
dτ ′ψ†

σ (τ )âσ (τ,τ ′)ψσ (τ ′), (3)

where ψ†
σ = (c†1σ · · · c†lσ ), c

†
iσ (ciσ ) is a Grassmann number

corresponding to the fermionic creation (annihilation) operator
at site i and spin σ , and âσ = ∑

ξ aξσ K̂ξσ where aξσ are

inverted frequency-dependent Weiss fields and K̂ξσ are l × l

matrices defined according to the chosen cluster. Here l denotes
the number of sites in the multisite system [case (i)] or two
times the number of orbitals in the multiorbital system [case
(ii)] and ξ denotes the distance between two sites within the
cluster. For example, a−1

0σ means the local (on-site) Weiss field
while a−1

ξσ is the intersite Weiss field with the sites located a
distance ξ apart. The orthogonality is imposed by

Tr[K̂ξσ K̂ξ ′σ ′] = lδξξ ′δσσ ′ . (4)

In the decoupling scheme ni↑(τ )ni↓(τ ) can be written as

ni↑(τ )ni↓(τ ) = 1
4 [Ni(τ )2 − Mi(τ )2], (5)

where Ni = (ni↑ + ni↓) and Mi = (ni↑ − ni↓) are the particle
number and magnetization, respectively. In terms of these def-
initions and within the SCA, the partition function transforms
into

Z =
∫

D[c†c] exp

( ∫ β

0
dτ

∫ β

0
dτ ′ψ†

σ (τ )âσ (τ,τ ′)ψσ (τ ′)

+ U

4

∫ β

0

∑
i

M2
i (τ )

)
, (6)

where the N2
i (τ ) term, which describes charge fluctuations, is

neglected in the SCA. This expression can be rewritten as

Z =
∫

D[c†c]
∫ ∞

−∞

k∏
i=1

dφie
S, (7)

with

S =
∫ β

0
dτ

[∫ β

0
dτ ′ψ†

σ (τ )âσ (τ,τ ′)ψσ (τ ′)

−
(

φ2
i

4U
− φiMi(τ )

2

)]
. (8)

Here we assume that the new auxiliary fields φi(τ ), which are
given by a continuous Hubbard-Stratonovich transformation,
are τ independent [φi(τ ) ≡ φi].

We replace Mi(τ ) by

Mi(τ ) =
∫ β

0
dτ ′ ∑

ss ′
c
†
is(τ )σ zδ(τ − τ ′)cis ′ (τ ′), (9)

where σ z is the third Pauli matrix. Via a Grassmann integration
and Fourier transformation, the partition function [Eq. (6)] is
finally given as

Z =
∫ ∞

−∞

k∏
i=1

dφi exp

(
− βφ2

i

4U

+
∑
ωn

ln Det

{
− β

[
âσ (iωn) + 1

2
φiσz

]})
,

(10)

where ωn are fermionic Matsubara frequencies and k is the
dimension of integrations. The impurity Green’s function
can be obtained as Ĝ

imp
σ (iωn) = ∑

ξ Gξσ (iωn)K̂ξσ , where
Gξσ (iωn) is

Gξσ (iωn) = 1

l

∂ lnZ

∂aξσ (iωn)
, (11)

where l is the normalization factor that is given by Eq. (4). The
Green’s function on the real frequency ω is also calculated by
Eq. (11) with substitution of ωn into ω + iδ. In our calculations
we consider a broadening factor δ = 0.003. The integration
in i = Nc × m × (2m − 1) dimensions for classical fields φi

is evaluated by the MC approach, where Nc is the number
of cluster sites, m is the number of orbitals, and the weight
function W (φi) for the MC simulations is given as

lnW (φi) = −βφ2
i

4U
+

∑
ωn

ln Det

{
− β

[
âσ (iωn) + 1

2
φiσz

]}
.

(12)
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B. Eight-site dynamical cluster approximation

The partition function in the SCA approach is described
in a real-space basis in Eqs. (1)–(3). The 8 × 8 matrices of
inverse Weiss fields [Eqs. (10) and (11)] in the eight-site DCA
calculations for the Hubbard model on the square lattice are
given as

â(iωn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a2√

2
a1
2

a1
2

a2√
2

a3
a1
2

a1
2

a2√
2

a0
a1
2

a1
2 a3

a2√
2

a1
2

a1
2

a1
2

a1
2 a0

a2√
2

a1
2

a1
2 a3

a2√
2

a1
2

a1
2

a2√
2

a0
a1
2

a1
2

a2√
2

a3
a2√

2
a3

a1
2

a1
2 a0

a2√
2

a1
2

a1
2

a3
a2√

2
a1
2

a1
2

a2√
2

a0
a1
2

a1
2

a1
2

a1
2 a3

a2√
2

a1
2

a1
2 a0

a2√
2

a1
2

a1
2

a2√
2

a3
a1
2

a1
2

a2√
2

a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

where spin indices are omitted for simplicity and the nor-
malization factors 1

2 and 1√
2

are introduced in order to fulfill
the orthogonality condition (4). The indices ξ = 0,1,2, and
3 indicate on-site, first-neighbor, second-neighbor, and third-
neighbor hopping related inverse Weiss fields, respectively.
The cluster we used for constructing the â(iωn) matrices
with periodic boundary conditions is shown in Fig. 1(a)
and the division of the Brillouin zone for DCA calculations

(b)    space
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FIG. 1. (Color online) Cartoons for (a) the eight-site dynamical
cluster approximation in real space and (b) the division of the
Brillouin zone in momentum space we used.

is presented in Fig. 1(b). The real-space impurity Green’s
functions in Eq. (11) are more clearly expressed as

Gξ (iωn) = 1

l

1

Det{Â[aξ (iωn)]}
∂

∂aξ (iωn)
Det{Â[aξ (iωn)]},

(14)

where Â[aξ (iωn)] = −β[â(iωn) + φi] are 8 × 8 matrices with
spin index σ . The impurity Green’s function in Eq. (14) is
measured by

1

Det[Â(aξ )]

∂

∂aξ

Det[Â(aξ )] = tr

[
Â−1(aξ )

∂Â(aξ )

∂aξ

]
. (15)

C. Two-orbital dynamical mean field theory

The interaction term of the Hamiltonian for the 2two-orbital
system [test case (ii)] is given as

Hint = U
∑
iη

niη↑niη↓ +
∑
iσσ ′

(U ′ − δσσ ′Jz)ni1σ ni2σ ′ , (16)

where η ∈ {1,2} denote orbital indices, U and U ′ are, respec-
tively, on-site intraorbital and interorbital Coulomb interaction
parameters, and Jz is the Ising Hund’s coupling term. We are
not considering the spin-flip and pair hopping terms in our
calculations. The inverse Weiss field is given as

â(iωn) =

⎛
⎜⎜⎜⎝

a1,↑ 0 0 0

0 a1,↓ 0 0

0 0 a2,↑ 0

0 0 0 a2,↓

⎞
⎟⎟⎟⎠ . (17)

We now decouple the interaction term (16) using Eq. (5):

n1↑n1↓ = 1
4

(
N2

1 − M2
1

)
, n2↑n2↓ = 1

4

(
N2

2 − M2
2

)
,

n1↑n2↓ = 1
4

(
N2

3 − M2
3

)
, n1↓n2↑ = 1

4

(
N2

4 − M2
4

)
,

n1↑n2↑ = 1
4

(
N2

5 − M2
5

)
, n1↓n2↓ = 1

4

(
N2

6 − M2
6

)
.

By neglecting charge fluctuations N2
ξ , the partition function

can be written as

Z

Z0
= exp

[ ∫ β

0

(
U

4

(
M2

1 + M2
2

)

+ U ′

4

(
M2

3 + M2
4

) + U ′′

4

(
M2

5 + M2
6

))]
, (18)

where U ′′ = U ′ − Jz and

Z0 =
∫

D[c†c] exp

( ∫ β

0
dτ

∫ β

0
dτ ′ψ†(τ )â(τ,τ ′)ψ(τ ′)

)
,

(19)

where ψ† = (c†1↑,c
†
1↓,c

†
2↑,c

†
2↓) [compare with Eq. (3)]. In order

to make integration feasible, Eq. (18) is transformed into Z =
Z0e

−S with

S = −φ2
1 + φ2

2

4U
− φ2

3 + φ2
4

4U ′ − φ2
5 + φ2

6

4U ′′

+
∫ β

0
dτ

1

2

6∑
ξ=1

φξMξ (τ ), (20)
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where we used the continuous Hubbard-Stratonovich trans-
formation as in Eq. (8). Next [see Eq. (9)], Mξ (τ ) is replaced
by

Mξ (τ ) =
∫ β

0
dτ ′ψ†(τ )σ z

ξ δ(τ − τ ′)ψ(τ ′). (21)

Site indices are omitted due to the single-site DMFT calcula-
tion and σ z

ξ are 4 × 4 matrices:

σ z
1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , σ z

2 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ ,

σ z
3 =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠ , σ z

4 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

σ z
5 =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , σ z

6 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠ .

Finally, the partition function is rewritten as

Z =
∫ ∞

−∞

6∏
ξ=1

dφξ exp

(
− V (φξ )

+
∑
ωn

ln Det

{
− β

[
â(iωn) + 1

2
φξσ

z
ξ

]})
, (22)

where V (φξ ) = β(φ2
1+φ2

2
4U

+ φ2
3+φ2

4
4U ′ + φ2

5+φ2
6

4U ′′ ). The impurity
Green’s functions are calculated by Eq. (11).

D. Monte Carlo measurement

The weight functions for MC calculations have been given
in Eq. (12). We employ about 400 Matsubara frequencies in
performing the frequency sum in Eq. (12). The number of
classical fields φi is the same as the number of cluster sites
in the DCA calculations [case (i)]. For case (ii) the number
of classical fields is given by (2m − 1) × m, where m is the
number of orbitals. In order to avoid a local minimum problem
in the MC calculation, we use around 40 initial configurations
and we perform about 4 × 105 MC samplings for each different
initial configuration. The computational cost for 4 × 105 MC
samplings in the eight-site DCA system is around 90 min on
a single 4-GHz CPU machine and the error is smaller than
5 × 10−4.

III. RESULTS

A. Metal-insulator transition in the eight-site dynamical
cluster approximation

In what follows, we will show the reliability of our
SCA impurity solver by presenting the results obtained for
four- and eight-site DCA calculations for a two-dimensional
Hubbard model on the square lattice at half filling [case
(i)]. First, we compare the critical Uc/t obtained from DCA

 0

 0.2

 0.4

 0.6

 2.5  3  3.5  4  4.5  5  5.5  6
U/t

ρ(
E

F
)

βG(β/2), Nc = 4
ρ(ω=0), Nc = 4

βG(β/2), Nc = 8
ρ(ω=0), Nc = 8

FIG. 2. (Color online) Density of states at the Fermi level ρ(ω =
0) ≈ βG( β

2 ) and ρ(ω = 0), directly measured in real-frequency space
within the DCA (SCA), as a function of U/t for Nc = 4 and 8
at T/t = 1/12. From ρ(ω = 0) we find the critical metal-insulator
interactions Uc/t = 4.4 ± 0.2 and 5.0 ± 0.2 for Nc = 4 and 8,
respectively. The error bars are smaller than the symbol sizes. The
deviations between βG( β

2 ) and ρ(ω = 0) are around 10%. See the
main text for discussion.

(SCA) calculations with that obtained from DCA (CT QMC)
with Nc = 4 and 8. Note, that we follow the convention of
specifying the employed impurity solver in brackets after DCA
or DMFT, e.g. DCA (SCA) or DMFT (HF QMC). Within
DCA (CT QMC) calculations (Refs. 27 and 28) Uc/t = 4.5
(Nc = 4) and Uc/t = 6.5 (Nc = 8). We would like to note
that for the two-dimensional Hubbard model on the square
lattice at half filling, previous DCA calculations showed that,
at finite temperature, the larger the cluster size is, the smaller
the critical value of interaction Uc/t . This is due to the fact
that DCA calculations account for spatial correlations only
within the cluster.29,30 This suggests that we should expect
a smaller Uc/t for increasing cluster sizes. However, this
is not what was observed above. We think the reason for
this discrepancy lies in the fact that plaquette singlet ordered
states become more favorable for Nc = 4 than for Nc = 8
and artificially stabilize an insulating state in Nc = 4. We
now check whether this behavior is also observed in the SCA
approach. In Fig. 2 we plot the DCA (SCA) density of states
at the Fermi level obtained as (i) ρ(ω = 0) ≈ βG( β

2 ) (Ref. 31)
and (ii) directly calculated in real-frequency space ρ(ω = 0),
as a function of U/t for Nc = 4 and 8 at T/t = 1/12. The
imaginary-time Green’s function G(τ ) is calculated by the
Fourier transformation of G(iωn) in Eq. (11). We find Uc/t =
4.4 ± 0.2 and 5.0 ± 0.2 for Nc = 4 and 8, respectively. The
trend, i.e., smaller critical interaction Uc/t for Nc = 4 than
for Nc = 8, is the same as in the DCA (CT QMC). We also
detect that the critical interactions Uc/t in the SCA method are
slightly smaller than those calculated by the CT QMC method.
The reason why the insulating state is overestimated is due to
the fact that the auxiliary field is assumed to be τ independent
in the SCA, indicating a freezing of dynamical fluctuations in
the SCA.
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βG
(β

/2
)

ω/t

CT QMC β/t = 3
SCA β/t = 3

CT QMC β/t = 6
SCA β/t = 6

FIG. 3. (Color online) Comparison of βG( β

2 ) in the DCA (SCA)
and DCA (CT QMC) for β = 3.0/t and 6.0/t as a function of ω/t

for Nc = 4. The CT QMC results were obtained from Ref. 27.

Usually one always employs the relation ρ(ω = 0) ≈
βG( β

2 ) to determine the critical interaction Uc/t for the metal-
insulator transition in the DCA (CT QMC).27,28 This is done in
order to avoid the performance of an analytical continuation,
which will introduce some uncertainties. Therefore, it is
interesting to check whether this relation is valid in all
cases. Since the DCA (SCA) provides results directly in
real-frequency space, both definitions can be tested on the
same footing. Figure 2 shows that both definitions are in good
agreement in the weak-coupling and strong-coupling regions,
but they show deviations of about 10% close to the critical
value due to finite-temperature effects.31 In addition, we find a
causality problem in the weak-coupling region (for U/t values
smaller than 3.0).

In order to test the reliability of the SCA we present in
Fig. 3 a quantitative comparison of βG(β/2) as a function
of frequency obtained by the SCA impurity solver and by
the CT QMC method27 for Nc = 4 and inverse temperatures
β = 3/t,6/t . We observe good agreement between both sets
of results at high-temperature regions.

Next, we analyze the spectral functions in different DCA
cluster momentum sectors, i.e., A(K,ω) at K = (0,0), (0,π ),
(π

2 , π
2 ), and (π,π ) shown in Fig. 1(b) for several values of

U/t at T/t = 1/12. In Fig. 4(a) we display the noninteracting
case (U/t = 0.0). While the weights of the spectral functions
A(K,ω) at K = (0,0) and (π,π ) sectors are well separated
from each other, resembling the behavior of band insulators,
the spectral functions at K = (0,π ) and (π

2 , π
2 ) sectors cross

the Fermi level, showing metallic behavior. The Van Hove
singularity is present in the spectral function in the K =
(π,0)/(0,π ) sector. The behavior of A(K,ω) for Nc = 8 is
comparable to Nc = 4 results32 and can be understood in terms
of the noninteracting band structure.

In Fig. 4(b) we show A(K,ω) for U/t = 3.2 (weak-
coupling region). Here A(K,ω) at K = (0,0) and (π,π )
intersect each other due to the band splitting and spectral
weight transfer induced by U . This is an indication of Mott

 0

 0.5

 1

 1.5

 2

 2.5

A
(K

,ω
)

(a) (b) K = (0,0)
K = (0,π)

K = (π/2,π/2)
K = (π,π)
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0.5

1

−4 −2 0 2 4
ω/t

A
(K

,ω
)

(c)

−4 −2 0 2 4
ω/t

(d)

FIG. 4. (Color online) Spectral functions A(K,ω) in the different
DCA momentum sectors K for (a) U/t = 0.0, (b) 3.2 (c) 4.0, and (d)
6.0 at T/t = 1/12.

physics. The insulating behavior still remains in these two
sectors and the whole bandwidth is slightly narrowed due
to correlation effects. The Van Hove singularity that was
present in the K = (π,0) sector in the noninteracting case is
dramatically suppressed with increasing U/t . The absence of a
strong quasiparticle peak in the weak-interaction region is due
to the freezing of dynamical fluctuations. This is a shortcoming
of the SCA method. As the interaction U/t is increased, a
pseudogap behavior is present with suppression of the spectral
functions at K = (0,π ) and (π

2 , π
2 ) at U/t = 4.0 [Fig. 4(c)]

and the Mott insulator appears in the strong-coupling region
at U/t = 6.0 [Fig. 4(d)].

In order to study the Mott behavior in the eight-site
DCA in more detail, we present in Fig. 5 the real part of
the self-energy Re[�(K,ω)] as a function of real frequency
ω/t for U/t = 4.0 and 5.2 at T/t = 1/12. The real and
imaginary parts of the self-energy give the energy shift and the
spectral broadening, respectively, of the one-electron spectrum
due to the interaction U/t . In Fig. 5(a) for U/t = 4.0,
where the spectral function shows a pseudogap, the real
parts of the self-energy Re[�(K,ω)] at K = (0,0) and (π,π )
remain finite below and above the Fermi level, respectively,
indicating the shift of the pole positions of the one-electron
spectrum. At K = (0,π ) and (π/2,π/2), Re[�(K,ω)] shows
a positive slope with negative value of quasiparticle weight
and the corresponding Im[�(K,ω)] (not shown) exhibits a
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FIG. 5. (Color online) Real part of self-energy Re[�(K,ω)] as a
function of real frequency ω/t for (a) U/t = 4.0 and (b) U/t = 5.2
at T/t = 1/12.

peak around the Fermi level, indicating the appearance of a
non-Fermi liquid. This non-Fermi-liquid behavior is the sign
of the Mott gap beginning to form. In Fig. 5(b) the U/t = 5.2
case is presented. It is known that, in the Mott insulating state,
the self-energy has a polelike structure of the form

�(ω) ∝ 1

ω − � + iγ
, (23)

where the damping γ is small and � is the position of the
pole.33 We observe that while the real part of the self-energy
Re[�(K,ω)] at K = (0,π ) and (π/2,π/2) for ω → 0 shows a
polelike structure indicating the Mott insulating state, the pole
in the real part of the self-energy Re[�(K,ω)] at K = (0,0)
and (π,π ) lies above and below Fermi level, respectively.

In Fig. 6 we show βG(K,
β

2 ) as a function of U/t at
T/t = 1/12. When the interaction U/t is turned on, the values
of βG(K,

β

2 ) at K = (0,0) increase until U/t = 3.6 due to
spectral weight transfer caused by electronic correlations and
a metallic behavior is seen in the K = (0,0) sector in the
intermediate interaction strength regions. When the interaction
becomes strong, the gap opens and βG(K,

β

2 ) goes to zero. In
the K = (0,π ) sector, βG(K,

β

2 ) decreases monotonically and
goes to zero at U/t = 5.6. In the K = (π

2 , π
2 ) sector, the values

of βG(K,
β

2 ) remain nearly constant up to U/t = 3.0. Beyond
U/t = 3.0, they decrease and the gap opens completely around
U/t = 5.6.

Finally, we compare the results in Fig. 6 to those in Fig. 8
of Ref. 28 calculated within the CT QMC approach. The
behavior at K = (0,π ) in both SCA and CT QMC approaches
is qualitatively the same, even though the critical interactions
Uc/t are different. The main difference between these two
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FIG. 6. (Color online) Quantity βG(K,
β

2 ) in the different DCA
momentum sectors K in the eight-site DCA approach at T/t = 1/12.
The values of βG(K,

β

2 ) at K = (π,π ) are the same as those at K =
(0,0). The error bars are smaller than the symbol sizes. These results
are comparable with those obtained from the interaction-expansion
CT QMC approach in Ref. 28.

results is in the K = (π
2 , π

2 ) sector. The CT QMC results
indicate a first-order transition with a discontinuous behavior
of βG(K,

β

2 ) at the critical interaction Uc/t , while the SCA
results show a continuous transition with a smooth decrease
of βG(K,

β

2 ). We think that this discrepancy between the
two approaches also comes from the approximation that the
dynamical fluctuations are frozen in the SCA method.

B. Orbital-selective phase transitions in the two-orbital
dynamical mean field theory

The orbital-selective phase transition (OSPT), where metal-
lic behavior is seen in the wideband while a metal-insulator
transition is observed in the narrow band, has been intensively
studied in model systems as well as real materials during
the past ten years.34–43 We study the anisotropic two-orbital
Hubbard model with a narrow bandwidth of W1 = 2.56 (t1 =
0.8) for the first orbital and a wide bandwidth of W2 = 4
(t2 = 1.0) for the second orbital at half filling on the Bethe
lattice using single-site DMFT. The interaction part of the
Hamiltonian is given by Eq. (16) with U ′ = U

2 and Jz = U
4 .

The density of states ρ(ω) in both orbitals obtained with
the SCA are shown in Figs. 7(a)–7(c). Metallic behavior
in both bands is observed for the weak-coupling strength
U/t2 = 2.0 in Fig. 7(a). As the interaction U/t increases,
an orbital-selective phase transition behavior is present in the
intermediate regions for U/t2 = 2.8 [see Fig. 7(b)]. Finally,
insulating states in both orbitals are seen in the strong-coupling
region for U/t2 = 3.6 in Fig. 7(c). We also present the real part
of the self-energy Re[�(ω)] as a function of real frequency
ω/t in Figs. 7(d)–7(f). As discussed for the eight-site DCA
results, the Mott insulating state is related to a polelike
structure in the self-energy as in Eq. (23). For U/t2 = 2.0,
Re[�(ω)] in both orbitals is small [Fig. 7(d)]. Increasing
U/t to 2.8, we observe that Re[�(ω)] in the narrow-band
orbital becomes large near the Fermi level [Fig. 7(e)] while
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FIG. 7. (Color online) Density of states ρ(ω) and real part of the self-energy Re[�(ω)] for (a) and (d) U/t2 = 2.0, (b) and (e) 2.8, and
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it retains its small value for the wideband orbital (OSPT
region). Finally, for U/t2 = 3.6, both self-energies show poles
at ω/t = 0, indicating the Mott insulating behavior in both
orbitals.

In the following we compare the critical values of the
interaction strength obtained from the SCA and HF QMC
calculations in the case of bandwidths of W1 = 2 (narrow
band) and W2 = 4 (wideband). The critical values in the HF
QMC approach are given as Uc1/t2 = 2.0 and Uc2/t2 = 2.8 in
narrow bands and widebands, respectively.36 Our SCA results
show the critical values Uc1/t2 = 2.0 and Uc2/t2 = 3.2 from
the analysis of the Green’s function in the Matsubara frequency
space, in good agreement with the values from the HF QMC
approach. We encounter, though, a causality problem if the
difference between the bandwidths of narrow and wide orbitals
is large.

IV. SUMMARY

In this work we proposed that the semiclassical approxima-
tion in combination with the Monte Carlo method can be used
to study large clusters and multiorbital systems and is easy to
embed into DMFT and its cluster extensions. We investigate
the single-orbital Hubbard model by the DCA (SCA) method
with cluster sizes of Nc = 4 and 8 and a two-orbital system
by DMFT (SCA). The critical Uc/t and G( β

2 ) as a function of
ω are compared with existing DCA (CT QMC) results. The
critical interactions U/t of SCA and CT QMC approaches in
both cases are in reasonable agreement. In the eight-site DCA

cluster calculation, we analyze the spectral functions A(K,ω)
and self-energy at each momentum sector. The only difference
between SCA and CT QMC results is that the CT QMC result
shows a discontinuous behavior of the spectral density in the
K = (π

2 , π
2 ) sector around the critical value of interactions,

while the SCA exhibits smoothly decreasing behavior. We
think that the reason for the discrepancy is that quantum
fluctuations are frozen in the SCA approach. In the two-orbital
DMFT (SCA) calculation, we observe the orbital-selective
phase transition as in previous studies performed with DMFT
(HF QMC).36 This method is rather powerful since it can
be applied for problems where other impurity solvers remain
computationally too expensive, but one should be aware of
possible causality problems in some cases.
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