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Mott correlated states in the underdoped two-dimensional Hubbard model: Variational
Monte Carlo versus a dynamical cluster approximation

Luca F. Tocchio, Hunpyo Lee, Harald O. Jeschke, Roser Valentı́, and Claudius Gros
Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany

(Received 27 July 2012; published 11 January 2013)

We investigate the properties of the frustrated underdoped Hubbard model on the square lattice using two
complementary approaches, i.e., the dynamical cluster extension of the dynamical mean-field theory and the
variational Monte Carlo simulations of Gutzwiller-Jastrow wave functions with backflow corrections. We compare
and discuss data for the energy and the double occupancies, as obtained from both approaches. At small dopings,
we observe a rapid crossover from a weakly correlated metal at low interaction strength U to a non-Fermi-liquid
correlated state with strong local spin correlations. Furthermore, we investigate the stability of the correlated
state against phase separation. We observe phase separation only for large values of U or very large frustration.
No phase separation is present for the parameter range relevant for the cuprates.
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I. INTRODUCTION

The Hubbard model on the square lattice is a minimal
model for describing electronic correlation. This model has
played a central role in the study of high-TC superconductivity,
since it is believed to capture the essential physics of the
copper-oxygen planes in cuprate materials. Furthermore, the
properties of the Hubbard model in the underdoped regime,
i.e., in the proximity of the Mott-insulating state at half filling,
is a stimulating research area due to the challenge of describing
the physics of the correlated pseudogap state and its non-
Fermi-liquid behavior. Significant achievements in this field
have been made, for instance, by the cluster extensions of dy-
namical mean-field theory,1–7 by means of a phenomenological
theory8 and the Gutzwiller approximation,9 as well as on the
basis of increasingly accurate variational wave functions.10,11

Recently, it has been proposed that the pseudogap and the
superconducting phases present at finite doping12–14 and for
onsite U values corresponding to a Mott-insulating state at
half filling can be continuously connected to a pseudogap
and a superconducting phase at half filling for U values
lower than the critical Uc corresponding to the Mott-Hubbard
metal-insulator transition (MIT). This proposal contrasts with
Anderson’s concept of superconductivity as a state emerging
out of a resonant valence bond (RVB) state,15 which is a
prototypical Mott-insulating state at half filling in the absence
of magnetic order.

Another interesting feature of a correlated electron state in
the underdoped regime is the tendency of the system to phase
separate into an undoped state with strong antiferromagnetic
correlations and a hole-doped region. Indeed, if the Hubbard
model would be unstable to phase separation, its validity as a
model to properly describe the development of superconduc-
tivity could be questioned. Phase separation occurs when the
stability condition ∂2E(n)/∂n2 > 0 is violated, i.e., when the
ground-state energy E(n), as a function of electronic density
n, is no longer convex. As introduced by Emery et al.,16 phase
separation can be studied by looking at the hole energy Eδ(δ),
defined as

Eδ(δ) = E(δ) − E(0)

δ
, (1)

where δ = 1 − n is the hole density. If the hole energy has a
minimum at a critical doping δc, then the system is unstable
to phase separation for δ < δc. A difficulty when using the
Emery criterion (1) is its strong dependence on the accuracy
in the estimate of the ground-state energy, as discussed in
Ref. 17. In particular, less accurate ground-state energies tend
to overestimate the critical δc below which the system exhibits
phase separation. This is a consequence of the fact that good
estimates for the energy of low-doping states are hard to obtain
because of the strong local correlations. Different approaches
have led in the past to contradictory results for the Hubbard
model in the parameter range relevant for hole-doped cuprates,
ranging from an absence of phase separation to a range of
estimates for phase separation up to 10% doping.18–24 For the
t − J model,25–28 i.e., for the large-U limit of the Hubbard
model, phase separation is present at all dopings for large
values of J , but the possible occurrence of phase separation
close to half filling for small values of J has been a long-
standing debate.26–28

In this work, we make use of variational Monte Carlo
(VMC) simulations, including backflow correlations,29 and
of the dynamical cluster approximation (DCA)30,31 to address
the properties of the Hubbard model on the square lattice
with nearest- and next-nearest-neighbor hoppings in the
underdoped regime, both at zero and finite temperature. As
already pointed out in Ref. 11, we distinguish a weakly
correlated metal at small U (i.e., continuously connected to
a half-filled metallic regime) and a strongly correlated state
at intermediate to large U (i.e., when the half-filled case is
insulating). We find significant differences between the two
regimes in the static and in the dynamical spin correlations as
well as in the low-energy part of the self-energy. The above
observations obtained from two complementary approaches,
VMC and DCA, and the violation of the Luttinger sum rule for
the strongly correlated state reported in a previous study11 hint
to a non-Fermi-liquid nature of the strongly correlated state.
The two states are separated by a crossover line at the critical
interaction Uc, which may evolve into a first-order transition6

when doping is vanishing.
Moreover, we investigate the occurrence of phase separa-

tion in the underdoped Hubbard model. We find no tendency
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to phase separation when the Coulomb repulsion U is slightly
above the critical Uc, regardless of the ratio t ′/t between next-
nearest- and nearest-neighbor hoppings, t ′ and t , respectively.
Our results therefore indicate that for intermediate values of
the Coulomb repulsion (U/t ∼ 6–8), the Hubbard model is
stable against phase separation, irrespective of the value of
t ′/t . The actual value of t ′/t is sensitive to the details of the
high-Tc cuprate compound investigated and can be calculated,
for example, in density functional theory, leading to t ′/t �
[−0.1, − 0.4]. A larger degree of frustration has been shown
to correlate, in general, with higher critical temperatures.32

If we increase the electron repulsion U at constant t ′/t , then
the system is, in contrast, found to be unstable towards phase
separation. However, since increasing the variational accuracy
tends to suppress phase separation, we cannot exclude that an
even more accurate approach could eliminate or significantly
reduce the tendency to phase separate also for larger values of
the Coulomb repulsion.

The paper is organized as follows: in Sec. II, we intro-
duce the Hamiltonian and describe the VMC and the DCA
approaches. In Sec. III, we compare ground-state energy and
the density of double occupancies within the two methods.
In Sec. IV, we discuss the non-Fermi-liquid properties of the
underdoped region at U > Uc, in contrast with the weakly
correlated metal at U < Uc. In Sec. V, the occurrence of
phase separation is discussed, and, finally, we present our
conclusions in Sec. VI.

II. MODEL AND METHODS

We consider the frustrated Hubbard model with extended
hopping on a two-dimensional (2D) square lattice,

H = −t
∑

〈ij〉σ
c
†
iσ cjσ − t ′

∑

〈〈ij〉〉σ
c
†
iσ cjσ + H.c. + U

∑

i

ni↑ni↓,

(2)

where c
†
iσ (ciσ ) denotes the electron creation (annihilation)

operator of one electron on site i with spin σ =↑ , ↓; 〈ij 〉
and 〈〈ij 〉〉 indicate nearest- and next-nearest-neighbor sites,
respectively; niσ = c

†
iσ ciσ is the electron density; t and t ′ are

the nearest- and next-nearest-neighbor hopping amplitudes,
respectively; and U is the on-site Coulomb repulsion.

A. Variational Monte Carlo

Variational Monte Carlo (VMC) simulations allow one to
perform nonperturbative calculations at zero temperature for
one- and two-dimensional correlated and frustrated systems.
VMC simulations are based on numerically sampling expec-
tation values over a variational estimate of the ground-state
wave function. Here we will use a powerful variational ansatz
for frustrated electron systems, which has been strictly tested
by extensive comparisons to analytical and numerical exact
limiting cases. Our variational ansatz has been tested, in par-
ticular, against Bethe ansatz predictions for the Luttinger liquid
exponents in one dimension,33 with respect to Lanczos results
in terms of wave-function overlap for a two-dimensional 18-
site cluster,34 and with respect to the results of density-matrix
renormalization group studies in terms of the ground-state
energy for the 1D J1-J2 model.29

The variational ansatz consists of three components. In
a first step, we construct uncorrelated nonmagnetic wave
functions given by the ground state |BCS〉 of a superconducting
Bardeen-Cooper-Schrieffer (BCS) Hamiltonian:35–37

HBCS =
∑

kσ

ξkc
†
kσ ckσ +

∑

k

�kc
†
k↑c

†
−k↓ + H.c., (3)

where both the free-band dispersion ξk and the pairing ampli-
tudes �k are variational functions. We use the parametrization

ξk = −2t̃(cos kx + cos ky) − 4t̃ ′ cos kx cos ky − μ, (4)

�k = 2�BCS(cos kx − cos ky), (5)

where the effective hopping amplitude t̃ ′, the effective chemi-
cal potential μ, and the local pairing field �BCS are variational
parameters to be optimized in order to minimize the variational
energy. The parameter t̃ is kept fixed to set the energy scale.
We point out that large electronic correlations, as in proximity
of a Mott insulator, lead to a strong renormalization of t̃ ′ with
respect to the bare Hamiltonian value t ′; see Ref. 11.

The correlated state |�BCS〉, without backflow
terms, is then given by |�BCS〉 = J |BCS〉, where J =
exp(−1/2

∑
ij vij ninj ) is a density-density Jastrow factor

(including the on-site Gutzwiller term vii), with the vij ’s being
optimized for every independent distance |i − j |. Notably,
within this kind of wave function, it is possible to obtain
a pure (i.e., nonmagnetic) Mott insulator for a sufficiently
singular Jastrow factor vq ∼ 1/q2 (where vq is the Fourier
transform of vij ), while a superconducting (metallic) state is
found whenever vq ∼ 1/q and �BCS > 0 (�BCS = 0).33

A size-consistent and efficient way to further improve
the correlated state |�BCS〉 for large on-site interactions is
based on backflow correlations. In this approach, each orbital
that defines the unprojected state |BCS〉 is taken to depend
upon the many-body configuration in order to incorporate
virtual hopping processes;29 in particular the recombination of
neighboring charge fluctuations is favored. This is a substantial
improvement with respect to Jastrow factors, where electron-
electron correlation is included only via a multiplicative term.
All results presented here are obtained by fully incorporating
the backflow corrections and optimizing individually38 every
variational parameter in ξk and �k , in the Jastrow factor
J as well as for the backflow corrections. Calculations are
performed on 45◦ tilted clusters with L = 162 lattice sites and
periodic boundary conditions.

B. Dynamical cluster approximation

DCA is the cluster extension of single-site dynamical mean-
field theory (DMFT),39 which includes, to a certain degree,
momentum dependencies. Since the hopping matrix for sites
within the considered cluster and for sites on different clusters
is the same, in contrast to the cellular DMFT approach,40 the
DCA self-consistent equation can be written in momentum
space with the assumption that the self-energy is constant in
the Brillouin-zone sectors that are considered. The DCA self-
consistency equation is given as

Gσ (K,iωn) = 1

N

∑

K̃

1

iωn + μ − εK+K̃ − 
σ (K,iωn)
, (6)
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where N is the number of k points in each Brillouin-zone
sector (compare Fig. 3), μ is the chemical potential, K
is the cluster momentum, εK+K̃ is the dispersion relation,
ωn are the fermionic Matsubara frequencies, and where
the summation over K̃ is performed in each Brillouin-zone
sector. In our calculations, we employed the DCA cluster
with Nc = 4, where K = (0,0),(0,π ),(π,0), and (π,π ). The
converged self-energy 
σ (K,iωn) is evaluated by means of
Eq. (6) and the Dyson equation. We employ the interaction
expansion continuous-time quantum Monte Carlo approach as
an impurity solver.41,42 All calculations presented here are
for a temperature T/t = 0.05 and we perform more than
107 quantum Monte Carlo (QMC) samplings for the impurity
Green’s function G(iωn), in order to keep the QMC statistical
errors smaller than 5 × 10−3 for the first Matsubara frequency.
As the Matsubara frequencies increase, the error bar decreases.

III. ENERGY AND DOUBLE OCCUPANCIES

In Fig. 1, we compare the average number of double
occupancies per site D = 〈ni,↑ni,↓〉 and the energy, for U/t =
7.0 and t ′ = −0.4t as a function of the electron density n,
as obtained from VMC and DCA simulations. For the DCA
calculations, the energy is calculated by

E = T

N

∑

n,k,σ

[εkGσ (k,iωn)]eiωn0+ + UD, (7)

 0.05
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FIG. 1. (Color online) (a) Double occupancy D and (b) energy
as a function of electronic density n for U/t = 7.0 and t ′ = −0.4t .
Results are obtained using a VMC approach on an L = 162 lattice
size (blue circles) and within DCA by means of a 2 × 2 plaquette in
k space for a temperature T/t = 0.05 (red squares). Errors in VMC
are smaller than the symbol size. Lines are just guides to the eye.

where the index k runs over the first Brillouin zone and
we considered the asymptotic behavior of the self-energy in
the limit of large Matsubara frequencies iωn: 
σ (K,iωn) ∼
U 2nσ (1 − nσ )/iωn. The error �n of the self-energy

∑
(iωn)

is calculated by

�n = 2ξ

G(iωn)2
, (8)

where iωn is the Matsubara frequency and ξ is the error of
G(iωn); it turns out that �n is almost constant as a function of
n. The error on the energy is then estimated as the difference
between the energy calculated in Eq. (7) using

∑
(iωn) + �n as

the self-energy and the energy calculated using
∑

(iωn) − �n

as the self-energy.
For the large value of U/t presented in Fig. 1, both

approaches show good agreement in the double occupancy
and in the energy, even if the energies in DCA are characterized
by large error bars, due to the high-frequency tail of the
self-energy.

In Fig. 2, we present the double occupancy D and the
energy close to half filling, for n = 0.95 and t ′ = −0.4t , as
a function of the interaction strength U/t . We observe that
the results for the double occupancies at strong coupling
(U/t ∼ 7.0) and at weak coupling (U/t < 3.5) are in good
agreement, but they differ in the range U/t = 4–6. This
discrepancy is related to the fact that VMC and DCA predict
different values for the location of Uc/t of the metal-insulator
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FIG. 2. (Color online) (a) Double occupancy D and (b) energy as
a function of U/t for electron density n = 0.95 and t ′ = −0.4t . Data
are obtained by a VMC approach on an L = 162 lattice size (blue
circles) and within DCA by means of a 2 × 2 plaquette in k space for
a temperature T/t = 0.05 (red squares). Errors in VMC are smaller
than the symbol size. Lines are just guides to the eye.
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FIG. 3. (Color online) Partitioning of the square lattice Brillouin
zone within the Nc = 4 DCA method. There are four sectors
characterized by the cluster momentum K. An arbitrary reciprocal
space vector k is represented as a sum of K and a vector K̃ running
within the cell labeled by K.

transition at half filling. The singlet RVB state is dominant
in the DCA on a 2 × 2 cluster, thus favoring correlated
states, and also the VMC results can be slightly dependent
on the accuracy of the trial wave function. The metal-insulator
transition at half filling, which is weakly first order, takes
place at Uc/t = 5.8 ± 0.2 within VMC,11 while for DCA, on
a 2 × 2 cluster, the critical Uc/t is approximately estimated at
Uc/t = 4.6 ± 0.4.13,43 Note that the metal-insulator transition
in VMC has been determined by looking at the static structure
factor N (q) = 〈n−qnq〉, where nq = 1/

√
L

∑
r,σ eiqrnr,σ is the

Fourier transform of the particle density. Indeed, the metallic
phase is characterized by N (q) ∼ q for q → 0, which implies
a vanishing gap for particle-hole excitations. On the contrary,
in the insulating phase, N (q) ∼ q2 for q → 0, implying the
fact that the charge gap is finite.

At difference with the double occupancies, the energy
data do not show in general good agreement within the two
methods. One possible reason for the discrepancy is that the
energy in DCA is calculated in terms of the self-energy [see
Eq. (7)], which is taken as constant within the Brillouin-zone
sectors. This means that we cannot obtain a true k-dependent
self-energy in our small cluster DCA calculations. Further-
more, the high-frequency part of the self-energy is evaluated
according to an approximate formula that may introduce a
further systematic error in the calculated self-energy. Also,
VMC energies are not exact and further improvements in the
wave function may lower the variational energy.

Signatures of the metal-insulator transition occurring at half
filling are visible at low doping in VMC calculations, where
both the double occupancy D and the energy show kinks for
interactions U close to the critical Uc. Similar signatures are
more difficult to infer from the DCA data around U/t = 4.5
due to the larger error bars, but can be clearly observed in
the behavior of the one-particle self-energy, as we discuss in
the next section. In fact, both approaches, irrespective of the
actual location of the MIT predicted in each method, exhibit
a rapid crossover between a weak-coupling Fermi-liquid (FL)

and an intermediate to large U non-FL regime for small but
finite dopings. This conclusion will be discussed in the next
section, based on the observed behavior of the one-particle
self-energy and of the two-particle correlation functions.

IV. NON-FERMI-LIQUID VERSUS FERMI-LIQUID
PROPERTIES

In this section, we explore in more detail the FL and non-FL
properties of the frustrated Hubbard model close to half filling,
using both the VMC and DCA approaches. Long-range static
correlations can be evaluated within VMC but not within DCA,
due to cluster-size restrictions. Dynamical quantities like the
one-particle self-energy can, however, be calculated within
DCA and not with VMC; the two approaches complement
each other nicely.

The nature of the non-Fermi-liquid region has been charac-
terized, using VMC simulations,11 by a strong renormalization
of the underlying Fermi surface and a small violation of the
Luttinger sum rule. Here, we assess the magnetic properties at
low dopings via the static structure factor, defined as

S(q) = 1

L

∑

m,n

eiq(Rm−Rn)
〈
Sz

mSz
n

〉
, (9)

where Sz
m is the z component of the spin operator on site m

and where L denotes the total number of sites. The presence
of (short-range) antiferromagnetic correlations is signaled by
the appearance of a (nondiverging) peak in S(q), located at
Q = (π,π ).

As shown in Fig. 4, for the two electron densities n = 0.975
and n = 0.95 at t ′/t = −0.4, the non-Fermi-liquid state at
U/t � 6 is characterized by antiferromagnetic correlations,
which are substantially enhanced with respect to the weakly
correlated metallic phase at U/t � 6. For the smaller doping,
n = 0.975, the two regimes are clearly separated by a rapid
increase in the value of S(Q), which could be compatible with
a first-order transition, while for the larger doping, the jump
is less evident and the observed rise in the strength of the
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,π
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n=0.95

FIG. 4. (Color online) Evolution of the static structure factor
correlations S(q) = 〈s−qsq〉 at Q = (π,π ) as a function of U/t for
n = 0.975 (blue squares) and n = 0.95 (red circles) at t ′/t = −0.4.
The appearance of the non-FL region is characterized by a rapid
increase in the short-range antiferromagnetic correlations. Data are
obtained by means of VMC simulations on an L = 162 lattice size.
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FIG. 5. (Color online) Upper panel: The imaginary part of the
lowest (red circles) and the second-lowest (blue squares) self-energy
values in Matsubara frequencies as a function of U/t at T/t = 0.05,
with n = 0.95 and t ′ = −0.4t . Data have been obtained by DCA
using a 2 × 2 cluster. The crossing point of both self-energies occurs
around U/t = 4.5, which is the same critical Uc/t where the kink
in the double occupancy data of Fig. 2 is located. The quantity a

is defined in Eq. (10). Lower panel: The imaginary part of the self-
energy as a function of the Matsubara frequencies at U/t = 3.6 and
n = 0.94 (FL, red squares) and at U/t = 5.0 and n = 0.96 (non-FL,
blue circles). Data have been obtained by DCA using a 2 × 2 cluster.

short-range spin-spin correlations is more in agreement with a
smooth crossover.

Next, we plot the imaginary part of the lowest and the
second-lowest Matsubara frequency self-energy values as a
function of U/t at T/t = 0.05, n = 0.95 and t ′ = −0.4t (see
Fig. 5, upper panel), obtained using DCA. We define

a = Im[
(iω1)] − Im[
(iω0)]

ω1 − ω0
, (10)

where Im[
(iω0)] is the imaginary part of the lowest Mat-
subara frequency self-energy value and Im[
(iω1)] is the
imaginary part of the second-lowest Matsubara self-energy
value. Negative ratios a < 0 indicate (quasi)-FL behavior,
while positive ratios a > 0 suggest a non-Fermi-liquid state.
Indeed, the value of the imaginary part of the self-energy
converges to zero (or to small values due to the effect of
temperature) for iωn → 0 in the Fermi-liquid regime, while
it is monotonically decreasing for iωn → 0 in the non-Fermi-
liquid state; see Fig. 5, lower panel. From the data presented in
Fig. 5, we find a critical Uc/t = 4.5 between FL and non-FL

 0
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 0  1  2  3  4  5

Im
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(ω

))

ω / t

t’/t=-0.4 T/t=0.05
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FIG. 6. (Color online) The local dynamical spin susceptibility
Im[χ sp(ω)] for U/t = 3.6 and n = 0.94 (FL, open red squares),
U/t = 5.0 and n = 0.96 (non-FL, filled green squares), and U/t =
7.0 and n = 1.0 (Mott insulator, open blue circles), as a function
of the real frequency ω/t at T/t = 0.05 and t ′ = −0.4t . A Padé
approximation has been employed for the analytical continuation of
χ sp(τ ).

states, which is in agreement with the location of the small
kink in the double occupancy D; compare Fig. 2.

Finally, we present in Fig. 6 the local dynamical spin
susceptibility Im[χ sp(ω)] obtained within DCA with 108 QMC
samplings, by performing the analytical continuation of

χ sp(τ ) = 〈Sz(τ )Sz(0)〉, (11)

where Sz = 1
2 (n↑ − n↓) and τ is the imaginary time, with the

help of the Padé approximation. The Im[χ sp(ω)] around ω/t =
0.5 is strongly suppressed in the FL region at U/t = 3.6 and
n = 0.94. This low-frequency peak is dominant in the non-FL
region at U/t = 5.0 and n = 0.96 and in the Mott-insulating
region at U/t = 7.0 and n = 1. We relate the enhancement
of the low-energy peak in non-FL and Mott-insulator regions
to the formation of short-range antiferromagnetic correlations,
as presented in Fig. 4, in terms of increased RVB-type singlet
pairing. These results demonstrate the complementarity of the
DCA and VMC methods in identifying the region of possible
non-FL behavior, and they are compatible with studies of the
Kagome and the triangular lattice.44,45
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FIG. 7. (Color online) The hole energy Eδ(δ) = [E(δ) − E(0)]/δ
as a function of doping for different values of U/t at t ′/t = −0.4.
Data are obtained by means of VMC simulations on an L = 162
lattice size.
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FIG. 8. (Color online) The hole energy Eδ(δ) = [E(δ) − E(0)]/δ
as a function of doping for the four cases U/t = 6, t ′/t = 0 (blue
squares), U/t = 6, t ′/t = −0.2 (pink diamonds), U/t = 6, t ′/t =
−0.4 (red circles), and U/t = 8, t ′/t = −0.75 (black triangles). The
data has been obtained by means of VMC simulations on an L = 162
lattice.

V. PHASE SEPARATION

We investigate now the possible occurrence of phase
separation in the hole-doped regime n < 1 by considering
the hole energy defined in Eq. (1). The system is unstable
to phase separation for δ < δc, if the hole energy has a
minimum at a critical doping δc, while a monotonically
increasing hole energy corresponds, on the other hand, to an
energetically favorable homogeneous solution for the doping
levels investigated. Physically, phase separation is driven by
magnetic correlations, which can be substantially increased, in
the phase without holes, at the expense of the kinetic energy.

In Fig. 7, we focus on the case t ′/t = −0.4 and vary the
interaction strength U/t . As expected, we find that no phase
separation is possible when the half-filled case is metallic
(U/t = 5) due to the absence of a relevant magnetic energy
scale. Phase separation is also not observed, interestingly,
when U is only slightly above the critical interaction Uc

(U/t = 6, in Fig. 7), at least for small but finite doping levels
δ � 0.02. At very low dopings, δ � 0.02 (and U/t = 7), phase
separation could possibly be present. However, since the model
is expected to exhibit a magnetic instability close to half filling,
a possible phase separation occurring for δ � 0.02 would be
masked by long-range magnetic order. For larger values of
U/t , phase separation seems, however, to be energetically
favorable for a wider range, δ � 0.08, of doping levels. The
data for larger electron repulsion (U/t ∼ 20) are not shown in
Fig. 7, but they exhibit trends similar to the case U/t = 10.
However, we cannot exclude that better estimates of the
ground-state energy can reduce this tendency to phase separate,
as detailed in Ref. 17. This is a consequence of the fact that
good estimates for the energy of low-doping states are hard to
obtain because of the strong local correlations.

In Fig. 8, we show the hole energy as a function of doping
for four values of the next-nearest-neighbor hopping, ranging
from t ′/t = 0 to t ′/t = −0.75. The value of the Coulomb
repulsion is slightly above the critical Uc, which is located
between U/t = 5 and U/t = 6 for −0.4 < t ′/t < 0, while it
is located between U/t = 7 and U/t = 8 at t ′/t = −0.75. In
all of the cases relevant for the cuprates, t ′/t � [−0.1, − 0.4],
no phase separation occurs. Only in a small range, δ � 0.02,
is a tendency for phase separation observed for t ′/t = −0.75.
Thus, our data suggest that for the cuprates, the Hubbard model
is not unstable against phase separation when the value of
the electronic repulsion is chosen to be close to the critical
interaction Uc of the Mott-Hubbard transition.

VI. CONCLUSIONS

When investigating correlated electron systems, numerical
or analytical approximations are generically necessary and the
accuracy of the employed approach is notoriously difficult
to control. Here we compare results obtained by two comple-
mentary approaches, DCA and VMC. We find good agreement
for the calculation of the double occupancies, apart from the
value of the critical Hubbard U for the Mott-Hubbard metal-
insulator transition at half filling, while comparing energies
is more problematic, as discussed in Sec. III. We use the
complementary information, i.e., static long-range correlations
provided by VMC and dynamical properties provided by DCA,
to investigate the physics at finite- but low-doping levels. We
find that the crossover from a weakly correlated electron state
at intermediate to small values of U to a non-Fermi-liquid
state at intermediate to large values of U is characterized by a
strong increase in local magnetic correlations. In this respect,
we do not find evidence for non-Fermi-liquid properties below
the critical Hubbard U , as suggested instead by a recent DCA
study.12,13 Our result is a solid feature of the VMC approach.11

The application of DCA in the present work has been oriented
to supplement the dynamical properties that are missing in
VMC and we do not exclude that other studies within DCA
can show evidence of non-Fermi-liquid properties also below
the critical U , although this is in contradiction to VMC. This
remains a controversial issue13,46 and needs further study. In
Sec. V, we investigate the stability of the non-Fermi-liquid
state against phase separation and find it to be stable for all pa-
rameters relevant for the cuprates. These studies further prove
the synergies obtainable when using complementary methods
for the study of frustrated and correlated electron systems.
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